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Falsification has garnered much interest recently as a way to validate complex CPS
designs with respect to a specification expressed via temporal logics. Using their quanti-
tative semantics, the falsification problem can be formulated as a robustness minimization
problem. To make this infinite-dimensional problem tractable, a common approach is to
restrict to classes of signals that can be defined using a finite number of parameters, such
as piecewise-constant or piecewise-linear signals with fixed time intervals. A drawback of
this approach is that when the input signals must satisfy non-trivial temporal constraints,
encoding these constraints into bounded domains for parameters can be difficult. In this
work, to better capture temporal constraints on the input signal space, we use timed au-
tomata (TA) and make use of a transformation that allows sampling TA traces by sampling
points in the unit box. We exploit this transformation to efficiently encode constrained
CPS signals in the robustness minimization problem. This transformation also allows us
to define an effective coverage measure for the constrained signal space so as to provide
quantitative guarantees when no falsifying behaviour is found. Additionally, the coverage
measure is used to improve the black-box optimisation performance by detecting situa-
tions where the search is stuck near a local optimum. The approach is demonstrated on
a AY modulator and a model of a car automatic transmission subject to constraints that
describe usual driving patterns.

1 Introduction

Cyber-physical systems (CPS) are found in many safety-critical applications, like aircraft,
medical devices, and automobiles, hence it is vital that they behave in a manner consis-
tent with their design expectations. CPS models are growing rapidly in complexity and
size and are often beyond the scalability of formal verification techniques. As of today,
industrial validation is carried out mostly by sampling a finite number of input stimuli and
checking the corresponding behaviors obtained by model simulation or system execution.

Another approach to CPS validation is requirement falsification using black-box opti-
mization. Falsification can be thought of as testing where requirements are expressed in
a formal specification language such as metric temporal logic (MTL) or signal temporal
logic (STL) [33, 36], which are appropriate for specifying behaviors defined using real-
valued signals over dense time. A key feature of such logics is that they are equipped
with quantitative semantics, and for a given behavior, a real value, called the robustness,
quantifies the property satisfaction level of the behavior [21, 25]. Using such semantics,



the falsification problem can be formulated as a robustness minimization problem, so as
to automatically find behaviors that violate (falsify) the property. Falsification techniques
have been applied to many CPS systems and are finding applications in industry (see a
recent survey [10]), by way of tools like S-TaLiRo and Breach [4, 18].

The optimization-based approach is faced with several challenges. First, existing op-
timization solvers expect decision variables in a space of finite dimension, whereas the
search space for CPS falsification problems can be of infinite dimension, as they include
continuous-time input signals. This gives rise to the problem of encoding CPS signal
spaces. To address this, a common practice (initiated in [18, 38]) is to restrict to classes of
signals that can be defined using a finite number of parameters. A second challenge is that,
for cases where the inputs must satisfy non-trivial temporal constraints, encoding these
constraints into bounded domains for parameters can be difficult. Ad hoc rejection sam-
pling methods become inefficient when the portion of signals satisfying the constraints
is small. Lastly, it is difficult to define meaningful coverage measures for CPS falsifica-
tion problems. When the input signals are subject to complex temporal constraints, the
resulting constrained signal space may be difficult to encode and measure.

In this paper we address the above challenges by introducing the following into the
the optimization-based falsification framework: (1) a new encoding of input signal spaces
that are subject to temporal constraints specified using timed automata [3]; (2) a new
coverage measure for constrained signal spaces that is based on this encoding, which we
use to improve the efficiency of an iterative black-box optimization procedure. For clarity
of explanation, before describing our contributions and comparing them with the current
state of the art, we provide an overview of the existing approaches and their limitations.

2 Requirement Falsification Problem

CPS Models and Specification. We model the behaviors of a CPS using the following
input-output mapping:

y = F(u), ()

where u € U is a function of time that represents the input signals to the system, that is
u:Z — U, where Z is an interval of the form [0, 7] with T' € R~, and U is some metric
space of finite dimension. Note that initial conditions as well as other parameters (some
finite set of variables influencing the system’s behavior) can be captured as constant input
signals. Similarly, we assume that each output signal y € Y is afunctionZ — Y, where Y
is some metric space of finite dimension. To specify the correct or expected behaviors for
the system (1) in an unambiguous form that can be efficiently measured and quantified,
we use the Signal Temporal Logic (STL) language [36].

Overview of STL. An STL formula ¢ consists of atomic predicates along with logical
and temporal connectives. Atomic predicates are defined over signal values and have the
form f(y(t)) ~ 0, where f is a scalar-valued function over the signal y evaluated at time
t,and ~€ {<, <, >, >, =, #}. Temporal operators “always” (), “eventually” (), and
“until” (/) have the usual meaning and are scoped using intervals of the form (a, b), (a, b],
[a,b), [a,b], or (a,0), where a,b € R>g and a < b. If [ is a time interval, the following
grammar defines the STL language.

o =T flyt) ~0]=p|oi ANpa | oilhrpr: ~e{<,<,>,2,=,#} ()



The ¢ operator is defined as Q7 £ TUj¢p, and the (] operator is defined as (lyp =
—(O1—p). When omitted, the interval I is taken to be [0, c0). Given a signal y and an STL
formula ¢, we use the quantitative semantics for STL, which is defined formally in [21].
The quantitative semantics defines a function p such that when p(p, y,t) is positive it
indicates that (y,t) satisfies o, and its absolute value estimates the robustness of this
satisfaction. If ¢ is an inequality of the form f(y) > b, then its robustness is p(p, y,t) =
f(y(t)) — b. When t is omitted, we assume ¢t = 0 (i.e., p(p,y) = p(p,y,0) ). For the
conjunction of two formulas ¢ := @1 A @2, we have p(p, y) = min (p(p1,y), p(w2,v)),
while for the disjunction ¢ := ¢1 V 9, we have p(p, y) = max (p(p1,v), p(v2,y)). For
a formula with until operator as ¢ := @1U; 2, the robustness is computed as p(p, y,t) =

maXg ey (min (P(Sﬁbyat/), mint“e[t,t'] (P(Sﬁlayvt”)))) .

Falsification Problem. Given a system model such as (1) and a requirement ¢ specified
as an STL formula, we want to find an input v € U such that y = F(u) does not satisfy ¢,
denoted y }~ ¢. Such a behavior y is called a counter-example, which is identified when
p(p,y) < 0. This is usually solved by formulating the following optimization problem:

min p(, y) sty = F(u) (€)

This formulation has been the focus of numerous research efforts [10]. We next discuss
the challenges in solving this optimization problem and some existing approaches.

Input Signal Encoding. The input signals are taken from an infinite-dimensional space
(i.e., they can be a partial function over a continuous time-domain); one thus needs a fi-
nite encoding of the signals. As mentioned earlier, most of the existing approaches restrict
to classes of input signals that are finitely parameterizable—that is, input signals u can be
uniquely characterized by a finite set of parameters. Therefore, the infinite-dimensional
optimization problem (3) becomes finite-dimensional. For example, a right-continuous
piecewise constant input signal » with discontinuities occurring at monotonically increas-
ing instants ¢1,...,%,, where 0 = ¢; < ¢, < T, can be uniquely characterised by m
values v; = u(t;). By fixing the number m of time intervals, the time points t1, ..., ¢,
and the corresponding signal values are the decision variables for the search.

Minimizing the Robustness. Fixing an input signal parametrization, the optimization
problem (3) becomes finite-dimensional but is still challenging for a number of reasons.
First, the input-output mapping F is not specified explicitly; rather, it enforces that y is
the output signal of the dynamical system model F, given the input signal u. For cases
where F is a nonlinear hybrid system modelled using heterogenous formalisms (such as
Simulink® /Stateflow®), the output y can only be determined approximately using numer-
ical simulation. This also gives rise to the hard problem of determining the gradients of
the cost function, often required by traditional continuous optimization techniques. Ad-
ditionally, the cost function p is often non-convex and contains discontinuities. For such
problems, in general there are no algorithms that can guarantee to find a global optimum
[27]. Hence, the robustness minimization step is often done using a black-box optimiza-
tion approach because it does not require derivative information [39]. This approach relies
on search techniques called metaheuristics [22], which aim to combine the strengths of



existing algorithms for discrete and continuous domains. Such a search consists of a se-
quence of moves from one candidate solution to another. In each move if the candidate
satisfies the falsification goal, a counter-example is found, otherwise, the candidate is
updated. The updating heuristics in general perform well for simple search spaces, for
instance, multidimensional boxes, or linear algebraic constraints [39]. This is one rea-
son why in practice the input signal parametrization is often chosen such that the search
space is essentially a box. The essential ideas related to black-box optimization using a
metaheuristic are summarized by the following abstract algorithm.

Algorithm 1 Optimization-based Falsification Algorithm

k=1, pm = 400
Select a set Us C U of input signals
repeat

P = min{ ppm, minuew, {p(¢, y) | y = F(u)}}

if pr, < O then

Report the falsifying behavior. Exit

end if

k=k+1

Us = Update(Us) > (using black-box optimization)
until £ = Kpaa
No falsifying behavior found.

Quantitative Guarantees. When no falsifying behavior is found, it is of great interest to
provide a quantitative guarantee expressed by a measure of the set of behaviors that was
tested. Such a ‘coverage’ measure was proposed only for point spaces (see related work
on coverage measures in Section 5), which are appropriate only for properties defined
over the system states (such as, safety). It is thus useful to use a more general notion of
signal/function space coverage, which is a problem we address in this work.

Limitations of the Existing Solutions and Our Approach. Concerning signal encoding: us-
ing fixed parametrizations restricts the searchable space, and the falsification performance
depends on the selected parametrizations, which requires validation engineers to use in-
tuition to select the number of intervals and their duration. Furthermore, as mentioned
in the introduction, input signals in practical applications are often subject to constraints
imposed by their generators. Examples of such signals include noises from specific en-
vironments or controls from under-actuated controllers. In these cases the input signals
must satisfy non-trivial temporal constraints, and encoding these constraints in forms that
can be efficiently handled by existing optimizers can be difficult; the optimizers often
treat such constraints using ad hoc methods, such as using rejection sampling. Little at-
tention has been given to these considerations in the falsification-related literature, but
[17, 40] propose some strategies that involve incrementally increasing the number of time
intervals. If these constraints are not taken into account, there are two consequences. First
the optimizers can come up with trivial non-realistic solutions, such as Zeno behaviors
switching between extreme values. Second, the unconstrained search space may be too



conservative compared to the valid search space, which makes rejection sampling ineffi-
cient, as we will show in an example involving a rather intuitive temporal constraint.

In this work, to capture temporal constraints on the input signal space, we use timed
automata (TA) [3]. Such constraints are previously considered in a procedure to uniformly
generate random signals [7], which relies on the calculation of a transformation from
the unit box to timed polytopes (allowing sampling timed words of a TA by sampling
points in the unit box) [6]. We extend this transformation to encode constrained input
signal spaces, which constitutes a crucial ingredient in the optimization process. Unlike
the work [7] where the falsification process is based on a given set of uniformly sampled
timed words, in this work we perform optimization in a search space that satisfies both
signal timed pattern and value constraints. In other words, this encoding allows us not only
to consider signals uniformly but also to perform best-case search strategies according
to an objective function, which enhances the falsification performance as shown by the
experimental results. This transformation also allows us to define an effective coverage
measure of the constrained signal space in order to provide quantitative guarantees. In
addition, this coverage will be used to improve the black-box optimization performance
by detecting situations where the search is trapped near a local optimum and to make
online decisions about when and how to switch from one optimization strategy to another.

The remainder of the paper is organized as follows. In Section 3 we briefly recall timed
automata [3] and the transformation from the unit box to timed polytopes [6, 7]. We
then show how this transformation can be used to encode constrained signals and to de-
fine coverage measures for the space of such signals. Section 5 describes the falsification
algorithm and Section 6 presents our experimental results. Section 7 concludes and Sec-
tion 8 describe with more technical details the transformation from the unit box to timed
polytopes and the sampling.

3 Preliminaries on Timed Automata and Timed Word Generation

3.1 Timed Automata

A timed automaton A = (Q, X, X, A, Inv, i) is a tuple where () is a finite set of lo-
cations with ¢y as initial location; X is a finite set of clocks which values are assumed
bounded by a constant M € N; A is a finite set of transitions. Each transition is the form
6 = (q,%,a,r,q") where q,q' € Q are the source and destination locations; 1) is the
guard, which is a conjunction of clock constraints of the form x; ~ c or z; ~ x; + ¢ with
zi, x5 € X, ~€ {<,<,=,>,>};caninteger in [-M; M] and a € X is a label; r is the
reset map; Inv associates with each location ¢ a conjunction of clock constraints, called
the invariant of q. A state of A is a pair (¢, ) where ¢ € @ and « is a clock valuation®.
The transitions of the automaton are of two types: timed transitions and discrete tran-
sitions. Timed transitions correspond to the evolution of the clocks within a location as
long as the clock valuation satisfies the invariant of the location. Concerning discrete tran-
sitions, if the transition 6 = (g, %, a,r, q') is enabled at the state (g, ) (that is « satisfies
the guard 1)), the discrete transition from g to ¢’ can take place (if the clock valuation after
applying the reset map r satisfies the invariant Invy of ¢’). The reset map r is determined

% A clock valuation, denoted by the letter x in bold, is a vector of clock values, while z; denotes
the 4*" clock of the automaton, as in Fig. 1



by a subset of clocks B C X and this transition resets to 0 all the clocks in B and does not
modify the other clocks. The initial state of A is (g, 0). A trace is an alternating sequence
(i0, o) —5 (g1, 1) ... =™ (¢, @y, ) of states and timed transitions with the fol-
lowing updating rules: ¢; is the successors of ¢;_ by transition §; = (q;—1,¥;, a;, 7, G;),
the vector (x;—1 + (7i,...,7;)) must satisfy the guard ¢); and applying the reset map
r; to it gives x;. This trace is labelled by the timed word v = (11,a1), ..., (Tm,am)
where a; are transition labels and 7; are time delays between two consecutive transitions,
(T1,...,Tm) is called a timed vector and (ay,...,a) a discrete pattern. Given a dis-

crete path o = 1, ..., d, of A the set of timed vectors (¢1,...,t,) € [0, M]™ such that

(i0,0) ZLZN (q1,t1) - .- Indn, (gn, tn) is called the timed polytope associated with the

path a. The set of timed words that label all the traces from the initial state is called the
timed language of A. As an example, we consider the TA in Fig. 1, which will be used

T4 > 8 1 > 8

a, z4:=0 :—0

b,x1:=0 c,x2:=0 d,x3:=0
d 1’3 c xo > 8

’1‘3::0 71'2::0

Fig. 1. A timed automaton used in our experiments. To avoid overloading the figure, a global clock
x (reset to O at each transition) and the global invariants x1, 22, 23,24 < 12 and < 4 hold for
each guard and are not depicted.

in our experiments. This automaton models a quasi-periodic pattern of signals with un-
certain period ranging between 8 and 12. It has the property that after entering the cycle
the time lapse between 4 consecutive transitions is contained in the interval [8, 12]. Intu-
itively, the traces of this automaton are loosely periodic as transitions cannot be taken too
early or too late. Moreover the global invariant condition « < 4 (not depicted in Fig. 1)
ensures that each duration is bounded from above by 4. An example of timed word in the
timed language is (3.4,5)(3.6,¢)(1.1,d)(2.3,a)(3.3,b).

3.2 Transformation from the unit box to a timed polytope

We want that the exploration within the domains of optimization variables reflects the
exploration within the timed language, in terms of coverage. To this end, we will use a
volume-preserving transformation developed in [6, 7], which we summarize in the Ap-
pendix (Section 8).

From a timed automaton 4, we can define inductively volume functions v,, so that
vn(q, @) is the volume of the language of words of length n starting from the state (g, )
accepted by A [5, 6]. Based on such volume functions we define cumulative distribution
functions (CDFs) that we use to sequentially sample each transition and time delay via the
inverse sampling method. These CDFs give us a transformation from the unit box [0, 1]?"
to the set of timed words of length n recognized by the automaton.

In previous work [7] three tools were used to perform the sampling: Prism [35] for
computing the zone graph, SageMath [43] for computing distributions and Cosmos [8]



for the sampling. In the present work, the tool WordGen [9] combining the three steps has
been developed, which greatly increases the usability of the method.

4 Encoding Constrained Signal Space in the Optimization Problem

A timed automaton can naturally provide a qualitative description, annotated with timing
information, for a class of CPS signals of interest. In addition, we can consider quanti-
tative constraints on signal values by associating them with the transition labels of the
automaton. More concretely, each transition label a is associated with a predicate of the
form 7, (v) < 0 where v € R is the signal value.

To perform optimization over the space of such signals, we need an efficient represen-
tation of this space. For simplicity of explanation, we focus only on the signals corre-
sponding to the timed words of A having a single discrete pattern v = (a1, -+ , am).
The timed polytope P, defined by the delays 7 between the transitions that are subject
to the clock constraints (imposed by the guards, resets and invariants along the transition
sequence), is the search space for timed words with the fixed pattern . To couple it with
the search space for signal values, we couple P, with the set of signal values satisfying
the associated predicates: P, = {v | Vi € {1,...,m}, m,,(v) < 0}. In this work, we
assume that each 7,, is an interval predicate7, and the set P, is thus a box, called a val-
ued box. Hence, this coupling of time and value constraints leads to a polytope in R?™:
I ={(r,v) | T € Py Av € P}, called a timed-valued polytope. The signal constructed
from any point (7, v) in IT is guaranteed to satisfy the constraints specified by the timed
automaton A and its associated predicates. Thus the constrained signal space in question
is encoded by this timed-valued polytope.

To generate candidate solutions from a timed-valued polytope, as mentioned earlier, we
make use of the transformation that maps the unit box to this timed polytope and extend it
to a timed-valued polytope, in order to reduce the search space to a box domain (instead
of complex polytopic domains). Indeed, since a timed-valued polytope II is the product
of a timed polytope P, and a valued box P,, it is not hard to see that the transformation
for I1, denoted by S, is composed of S for the timed polytope P, and S, for the valued
box P,. Note that S, is simply an affine function transforming P, to the unit box [0, 1]™.
In short, using the transformation S, the initial search domain, which is a timed-valued
polytope, becomes the unit box [0, 1]2™. We consider this the product of two unit boxes,
B, x B,.

This transformation was implemented in the tool WordGen to generate a timed word
from a point in the unit box B;. Then, to construct CPS signals corresponding to a given
timed word, we use the tool Breach [19]. This tool is also used to simulate the system
behaviours and evaluate their robustness. To recap, the input signal construction is done
as follows:

1. Pick a point p; in the unit box B,. Pick a point p, in the unit box B,,.
2. Use WordGen to generate a timed word w from p,.
3. Use Breach to generate a signal v from w and p,,.

7 Using more general predicates, such as linear predicates, leads to a more complicated problem
of defining the transformation from the unit box, which we plan to consider in future work. This
is indeed related to the problem of uniform sampling within a convex polytope.



Note that the above first step is done by the procedure of updating candidate input signals.
This procedure is based on a combination of metaheuristics that we discuss in the sequel.

5 Guided Combination of Metaheuristics

One natural strategy for updating candidate solutions is to use methods related to gradient
descent, wherein new points are selected based on some estimate of the gradient of the
cost function near promising previously evaluated points. Such a descent strategy may
not lead to a global optimum, leaving the search stuck around a local optimum. When
this occurs, it is possible to restart the search from a new set of candidate solutions, but
this can become expensive when there are many local optima. Metaheuristics [22] are
one way to go about this problem, by accepting from time to time candidates that do
not improve the cost function value. In this work we propose a method for combining a
number of well-known metaheuristics. The method switches between two different types
of solvers or search algorithms that, borrowing the terminology from [12, 22], are called
exploitation-driven and exploration-driven.

The exploitation-driven algorithms try to make greedy changes (often small) around the
current candidate. We make use of a number of well-known solvers in this type®, namely
Simulated Annealing [32], Global Nelder-Mead algorithms [2, 37], and CMAES (Covari-
ance Matrix Adaptation Evolution Strategy) [29]. This type of solver is used to explore
locally around promising candidates. On the other hand, the exploration-driven solvers
explore the parameter space widely, and thus quickly enlarge the exploration space. Such
solvers are particularly useful to help the search escape a local optimum, where the cost
value has stagnated. The exploration-driven solver we use in this work is based on the
low-discrepancy and uniform sampling method in [7].

It is of great interest to be able to synergize exploration and exploitation by adaptive
switching between the two strategies using appropriate measures for exploitation and ex-
ploration performance. The trade-offs between exploitation and exploration have been
explored for the purposes of falsification for CPS [34]. Exploitation performance can be
measured by the reduction in the cost value (that is the robustness value). Exploration per-
formance can be measured using the notion of search space coverage. For our framework,
we introduce in the subsequent section a signal space coverage measure.

5.1 Signal Space Coverage Measure

We define a signal space coverage measure based on a partition of the variable domains,
called cell occupancy. A similar measure was already used in our previous work [1] but
was restricted to the parameter space corresponding to the space of signal values over
fixed time parameterizations. Equipped with the transformation from the unit box, we
can now extend it to a more general class of signals. Let G be a partition of the unit
box [0, 1]>™ into N, rectangular cells with equal side length. Cell occupancy is based on
the ratio between the number N, of cells occupied by points and the total number Ny

o

0g
log IV,

of cells. Then, the cell occupancy measure is given as . Logarithm functions are

8 The exploitation-driven and exploration-driven characterization refers only to the behaviors
of the solvers seen on a global level, since the above-mentioned metaheuristics contain both
exploitation-driven and exploration-driven aspects.



used because the total number of cells could be very large as compared to the number
of occupied cells. A major advantage of the cell-occupancy measure is that it is easy
to compute; however, it is clear that when the cell size is large this measure does not
reflect levels of uniformity or equi-distributivity, as provided by the Kolmogorov-Smirnov
statistic [7].

Related Work on Coverage Measures. In the context of CPS, a signal space coverage
measure should be defined over continuous-time signals, such as the input signal space
or the system behaviour space. The latter option is more difficult because the space of all
possible system behaviours is in general unknown. When an input signal space is finitely
parameterized, a point coverage measure can be defined on its associated parameter space.
Measures like dispersion try to capture the size of the empty space between points that
have been explored [24]. A related and simple measure, partitions the search space into
cells and measures the proportion of cells that are occupied by explored points [42]. This
method is related to the combinatorial entropy notion from the domain of physics to mea-
sure the degree of randomness in a distribution of points [28]. The star discrepancy mea-
sure is a measure of the degree to which a set of points are equidistributed [30]; it was
also used for measuring the coverage of reachable states [1, 16, 23]. In this work, where
the specification imposes on the input signals complex temporal constraints, the resulting
parameter space is difficult to define; however, using the above-described volume preserv-
ing transformation, any point coverage can be defined over the unit box and carried over
to the signal space. Hence, we can use in principle any existing point coverage. In this
work, we choose to use the cell occupancy measure, since it can be efficiently computed
for the high dimensional search spaces encountered in our case studies.

5.2 Algorithm for Guided Combination of Metaheuristics

We describe our algorithm for guided combination of metaheuristics, summarized in Al-
gorithm 2. The search strategy is based on the robustness and coverage measures.

Algorithm 2 Abstract Algorithm for Combining Metaheuristics

> s: solver index; S,: set of exploitation-driven solvers; G: set of visited states; p* and
c: sequences such that p*[k] and c[k] are respectively the best robustness value and the coverage
value up to iteration k

k=1
while k£ < k0. do
{p*, G} = Exploitation(S,, G) > run all the exploitation-driven solvers
¢ = updateCoverage(c, G)
blocking = DetectBlocking(c, p*) > based on coverage and robustness
if (blocking) then
s = Rand
(p*,G) = Run(s,Ts) > run a sampling-based solver for T’s time
end if
E++
end while




The algorithm is organized in iterations, and in each iteration the solvers (or meta-
heuristics) are sequentially called, based on the current search results. Throughout the
search process, we maintain a set G of intermediate visited states. By ‘visited state’, we
mean the pair (p, p) where p is a candidate point—in the search domain, which is the
unit box—and p is its associated cost value, and by ‘intermediate’ we mean the points
successively computed by the solver scheme. The procedure starts with Exploitation,
which runs each of the exploitation-driven solvers and updates the set GG of visited states.
Then updateCoverage updates the coverage c of G (using the cell-occupancy measure).
Next, the procedure Detect Blocking determines whether the search has entered a block-
ing situation. If it has, the exploration-based search Rand, using quasi-random (that is,
low-discrepancy) or uniform methods, is run for T seconds.

Switching to Exploration to Escape a Local Minimum. The search is said to be blocking, if
it does not improve the cost value after some execution time limit, without increasing the
coverage. Such a blocking situation often indicates a local optimum, and an exploration-
driven solver, either the uniform or low-discrepancy sampling methods, is used to escape
it. We monitor the coverage and robustness evolution, to detect if they do not increase and
decrease respectively by some predefined amounts, for a predefined number of iterations.
Due to the monotonicity of the coverage and robustness evolution with respect to the
number of visited points, the detection can be done by comparing the coverage and the
robustness values of the current iteration to those of the previous iteration.

Exploitation to Improve Best Candidates. An exploitation-driven solver with index s runs
from a set P of initial points for T time (see Algorithm 2). The corresponding best
cost value is stored in p*. The reason we store the visited states is that they can reflect
the relation between the cost function and the decision variables and can thus indicate
promising regions, so as to derive good initializations for subsequent solvers.

Solver Initialization. We select initial points for a solver using the following heuristics:

— Select an initial point or a population of initial points from the best points obtained
from previous iterations.

— Pick initial points according to a distribution that is dynamically updated based on the
previous results, as inspired by the population based methods such as the CMAES.
As described above, after each iteration we keep the points visited in the previous it-
erations. We select a set of best points, the robustness values of which are below some
threshold, and use them to define the sampling distribution for new candidates. Let p
be a parameter point and p; denote its i*” coordinate. For any point p in G, let []31,,@]
be the bounding interval such that each coordinate p; € [Bi’ P,]- In the k" iteration,
the sampling distribution of p; can be a normal distribution N (pF, o¥), where the

mean p¥ is one of the most promising candidates from the previous iteration, selected
based on the robustness value. The standard deviation o¥ in the k" iteration can be
determined by oF = (p; — p,)(7)*/™, which decreases iteration after iteration. The
number N* of candidates can vary, being large at the beginning and decreasing grad-
ually. In the first iteration where no information is available, we can sample candidate
points according to the uniform distribution.
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6 Experimentation

We use two case studies to evaluate our algorithms: a model of a AY modulator and an
automatic transmission control system. We demonstrate the efficiency gained by encod-
ing the constrained signal spaces and evaluate the advantage of combining different meta-
heuristics. The combination algorithm is implemented in MATLAB® and uses 4 meta-
heuristics (integrated in Breach [20]): Simulated Annealing (SA) [32], CMAES [29], a
globalized version of the Nelder Mead algorithm proposed by Luersen and Le Richec [2]
abbreaviated by LRNM, and another globalized version of the Nelder Mead algorithm
combining the classical Nelder Mead algorithm [37] with some corner searches, abb-
reaviated by GNM. The tool Breach [20] also provides robustness evaluation and signal
construction from timed words. The generation of timed words from points in the unit
box is done by the tool WordGen. Our experiments were performed on a computer with a
1.4GHz processor with 4GB RAM, running MATLAB® R2015a 64-bit version.

A3 Modulator. We illustrate the application of our method of encoding constrained sig-
nal space with a AY modulator, which is an important component of analog-to-digital
converters. Practical quantizers have limited input and output ranges, which may lead
them to saturation, and we want to check whether the output ever saturates. We use a
behavioral model of a second-order modulator specified using Simulink®, which takes
into account most non-idealities [13], including sampling jitter, integrator noise, and op-
amp parameters (finite gain, finite bandwidth, slew-rate and saturation voltages). There
exist simplified discrete-time AX' modulator models without non-idealities, for which it
is possible to derive its dynamic equations and thus can be analyzed using optimization
[15] and statistical model-checking [14]; however, this Simulink model is heterogeneous,
including embedded MATLAB code and a mix of discrete-time and continuous-time com-
ponents. Therefore, it is too complex for existing formal verification tools. We consider
the falsification of the absence of saturation of some quantizer signal Out under a certain
class of nearly oscillatory inputs /n. Formally In and Out must satisfy for some t; > 0
and Vvt > 0,

|Our(t)| < 2 4)
3T € [8ts, 12t5] such that In(t + T') = In(T) 3)

Encoding (4) as an STL formula is trivial: ¢_g = O|Out| < psa:. However, enforc-
ing that In satisfies (5) is not so simple. For instance, unbounded periodic properties are
known to be beyond STL expressivity [36], and this is before considering that periods
may be uncertain. We consider two approaches: one based on the above-described TA
framework and another using only STL formulas. In both approaches, we use a signal
generator interpolating the signal values between points of a periodic discrete sequence
of the form: Up To U1 T1 U2 T2 U3 T3 U T4 Ul T5 U2 T U3 T7 Up TN Ugy--- The
value In(t) is obtained by finding & such that Zg T <t< ZSH 7, and interpolating
between uy; and ug, ; where k is the remainder of k/4. Since the discrete sequence u; is
periodic, the resulting signal satisfies (5) iff Vi, 8ty < 7 + 741 + Tive + Tigs < 12t,.
Note that this constraint is satisfied by the delays of the timed words of our TA of Fig. 1.
Hence by using WordGen to generate timed words and mapping labels a, b, c, d to values
ug, U1, Uz, uz We obtain the desired signals. To cross-validate this approach, we used
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Fig. 2. Example traces for the AX modulator output (bottom) using inputs signals with random
timings (top) and timings based on timed words from the TA of Fig. 1 (middle).

a simple formula: @per = Ofot,,.(up — upnext) A Opos,,,)(down — downnext),
where up = Inl[t] > 1.9 and upnext = Oz 5445,12.54¢5) (up), and down and downnext
are defined similarly. We then defined the falsification problem as

mvin P(@—sar, Out(v)) (6)
s.t. In(v) = @per. )

where v is a parameter vector. In the TA based approach, v € P, (as described in Sec-
tion 4); whereas in the TA-free approach, v encodes directly delays between the specified
signal values: v € {(70,...,7n) | ™ € [0,4ts]}. In the latter case, the solver is re-
sponsible for the satisfaction of constraint (7). Breach implements a simple “optimized
rejection” strategy where the constrained optimization problem (6-7) is basically replaced
by an unconstrained min, (J(v)) where J(v) = p(@-sai, Out(v)) if pper is satisfied and
J(v) = —p(per, In(v)) otherwise. In other words, when in an infeasible region, Breach
actively tries to satisfy @per With the current optimization strategy. This is a rejection
strategy in the sense that when . is not satisfied, v is not used, meaning Out(v) is not
computed to avoid useless simulations. With these settings, we could confirm that the TA-
based approach indeed generated only inputs satisfying pe, for arbitrarily long inputs.
In addition, the optimized rejection approach only works for short horizons. For instance,
we considered simulations of duration 1e—6 seconds with t;, = 1e—8 seconds. To be able
to satisfy per we had to set the horizon ¢4 to 3e—7 seconds, which considers only about
3 periods. Longer horizons would result in the solver rejecting most of considered inputs,
which can be explained by a small ratio of the volume of the language of valid inputs
w.r.t. that of the language of all inputs.

For the saturation threshold p,,; = 2 used in the model [13], the property ¢ s, Was eas-
ily falsified in our optimization setting. In addition, we could compare the performance
of different metaheuristics by continuing the optimization after falsification. Using our
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previous algorithm [7] based purely on a set of 10,000 uniformly generated signals, the
highest absolute output value is 2.32032. However, using the combined metaheuristics
after exploring only 826 signals, a higher value, 2.322586, is found. More concretely, we
fixed the saturation threshold p,¢ to be 2.325 in ¢_g, and ran the metaheuristics with
the option of stopping at the first falsifying trace that is found. With some fixed seed’
(100 in this case), all the stand-alone metaheuristics could not falsify the property, but
the combined metaheuristics could (see Table 1). The combined metaheuristics first used
Simulated Annealing and then LR Nelder Mead, which got stuck in a blocking situation
where the robustness is not improved and the coverage does not increase significantly. It
then switched to the CMAES metaheuristics but used the points explored by the previous
metaheuristics to estimate a good initial distribution for this CMAES solver, which could
then falsify the property. The CMAES method seemed to have the best performance for
this example, among the stand-alone metaheuristics; we thus compared it with the com-
bined metaheuristics using different seeds. The comparison results are summarized in
Table 2, which indicates that the combined metaheuristics algorithm outperformed the
stand-alone CMAES for seeds 1,000 and 10,000, but the results were mixed for seed
5,000. This shows how initializations can affect the performance of the metaheuristics,
and the combination guided by coverage and robustness can be thought of as a heuristic
(on top of the metaheuristics) that tries to use the information gained through the search
to lead it towards promising initializations.

Table 1. Using the different methods on the AY model with seed 100.

Search method |Min robustness; Max (|Out|)|Nb fct eval|Comp time (s)

CMAES 0.003746; 2.321254 10,000 |6,103.282974

SA 0.027244; 2.297756 10,000 |8,036.702422

GNM 0.031889; 2.293111 10,000 |6,763.065164

Uniform Rand | 0.00338031; 2.32161969 10,000 |4,539.560286

LRNM 0.07562901; 2.24937099 10,000 |4,854.569456
Combined Meta. -0.002414; 2.327414 826 431.434701

Table 2. Comparing the combined metaheuristics and the CMAES with different seeds.

Search method | Seed [Min robustness; Max (|Out|) |Nb fct eval|Comp time (s)

CMAES 1,000 0.002282; 2.322718 10,000 |6,430.215422
Combined Meta.| 1,000 | -0.00323532; 2.32823532 936 489.150343
CMAES 5,000 | -0.00164623; 2.32664623 1,081 463.796410

Combined Meta.| 5,000 | -0.00201822;2.32701822 1,100 536.904802

CMAES 10,000{ 0.00226337; 2.32273663 10,000 |7,747.896409
Combined Meta.|10,000(-0.000305395; 2.324694605 766 310.282428

® The seed here refers to the index for a sequence of random numbers in MATLAB.
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Automatic Transmission Control. This model [31] has been used as a benchmark for
evaluating hybrid systems validation techniques!®. Here we extend it to capture con-
straints on the input signals that reflect usual driving patterns, based on the data from
the study in [41]. The system has two inputs: throttle « and brake /3, and two outputs:
the engine speed w (RPM) and the vehicle speed v (mph). We consider the input signals
that satisfy the constraints of the timed automaton with two clocks z and y in Fig. 3.
‘Coasting’ means that both the brake and acceleration pedals are not pressed, that is the

1<y A 3<z<10,{z,y}

51 coasting

s acceleration

2 <y, {z,y}

2 <y, {z,y} 1<y<2{y}

1<y AN3<z<10,

{z,y}

1<y<2{y}

Fig. 3. A timed automaton describing the driving patterns of interest. A global invariant y < 15
(meaning that the location changes within at most 15 seconds) is not depicted.

1<y, {z,y}
S3 coasting

1<y, {z,y}

two inputs are 0. The loop consisting of locations sg, s3 describes accelerating behaviors
with coasting. At the location ‘acceleration’, braking can happen after accelerating for
at least 2 and not more than 19 seconds, indicated by the transition from ‘acceleration’
to ‘braking’. The loop between ‘braking’ and ‘coasting’ models the fact that the driver
can push and release the brake pedal successively a number of times to adjust the vehicle
speed. The clock x, which is not reset in the transitions between ‘braking’ and ‘coasting’,
measures the time the system remains in this loop before returning to ‘acceleration’ by
one of the two transitions both guarded by x > 3. In other words, the driver must stay in
the braking-coasting (s1-s2) loop for at least 3 seconds. The transition labels are associ-
ated with the following range constraints on the input signal values: sq to s3 (acceleration
to coasting), « = 0, 8 = 0; s3 to sy (coasting to brake) a = 0, 5 = [100, 325]; s3 to s
(coasting to acceleration) o = (0,500], 8 = [100, 325]; sg to so (acceleration to braking)
a =0, 8 = 0; s1 to sy (coasting to brake) & = 0, 8 = [100, 325]; s to s; (brake to
coasting) « = 0, 8 = 0; s2 to sg (brake to acceleration) v = (0,500], 5 = 0; s1 to s
(coasting to acceleration) @ = (0,500], 8 = 0. In terms of values, we use piece-wise
constant signals satisfying the ranges associated to the transition labels. The property to
check states that if the gear is 3 the vehicle speed should not be too slow, which is de-
scribed by a STL formula: ¢ = g0, 100)~((9ear = 3) A (v < Vpin)). We seek a driving
behavior (that is the input signals of throttle and brake) that leads to a violation of this
property. For v,,,;, = 19.76 (mph) the combined metaheuristics algorithm falsified it af-
ter 326 seconds, while GNM alone took 974 seconds and CMAES took 650 seconds to
falsify. This experiment shows that these metaheuristics, when used alone, spent much
time around local optima.

7 Conclusion

We presented a new falsification algorithm based on a method for encoding input sig-
nals subject to timed automaton constraints. We defined a coverage measure for such

0See http://cps-vo.org/node/12116
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Fig. 4. A falsifying trace of the automatic transmission control system found by the combined meta-
heuristics algorithm. The (red) cross on the last plots indicates the instant of worst violation as com-
puted by the diagnostics algorithm of [26] which allows ignoring quantitative information from the
gear signal to focus on the speed signal only, which explains why robustness is not plotted in certain
intervals.

constrained signal spaces. We also proposed a combination of different metaheuristics
to exploit their complementary properties. Switching between the metaheuristics, based
on the coverage information, allows escaping local optimum situations. We successfully
demonstrated the efficacy and advantage of the new algorithms through two case studies.
Ongoing work includes considering the usage of other coverage measures, such as com-
binatorial entropy. Furthermore, the metaheuristic switching currently depends on global
coverage and robustness improvement thresholds determining blocking situations, and a
biased switching can be defined using local coverage measures based on multi-resolution
partitions. We also plan to use ideas from the racing algorithms [11] for identifying and
dropping inferior candidates during the search.

8 Appendix - Timed Language Volume and Uniform Generation of
Timed Words

From a timed automaton .4 we can define inductively the volume of the language of words
of length n accepted by the automaton from the state (¢, x)x:

vo(-) = 1;
(¢:%,a,m,q") Hoe /
Un, (x) = o Lottty Un1 (¢, r(x + (t,...,t),7))dt; 8)
vn(g,®) = > v (x) where A, is the set of transitions starting from g.
sEA,
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The function r produces a new clock valuation by setting to 0 the values of the clocks to be

reset and keeping the others unchanged. The function v{4"%%7¢) () is the volume of the

set of timed words starting at & which are generated by the transition (g, 1, a,r, ¢’). The
function v, (g, ) is the volume of the set of timed words starting at (g, «) that are gener-
ated by all possible transitions from ¢q. Note that the above volume definition is not oper-
ational in this form, since the integral bounds contain max/min functions. We show in [6]
that by decomposing the automaton into a zone graph with additional constraints to en-
sure that the resulting bounds are linear so that the integrals can be effectively computed.
Using this decomposition, the volume v,, can be computed efficiently in polynomial time
and can be written as polynomials functions of clock valuations. Next the transformation
is defined as the cumulative probability distributions (CDF) for sequentially sampling
each transition and time delay as follows: in state (¢,x) the next transition § is cho-
sen with probability pirans(6|q,2) = v3 (g, ®)/va(q, ). Once the transition is chosen,
the delay ¢ is distributed according to the following cumulative probability distribution:
Pdelay(t|6, ¢, ) =1 =3 (z + (t,...,t)) /v (x). In other words, these distributions de-
fine the inverse of the transformation from the timed polytope of a given discrete pattern
to the unit box. Indeed, to generate a timed word of length n, one starts with a sequence

a{

y}.[0.1],”

a, {y}, [1 —y,1], 5 — L,
17 7, 2 3

ST Tyowt g gy - L

17 v —a? . 2 _ t3428
I i e e

Fig. 5. On the left (a) a simple quasi-periodic automaton, and on the right (b) the stochastic process
used for sampling its timed words. The states are labelled by the invariants on the clocks. To explain
the labels associated to the transitions, let us consider the transition from location sg to s3. This
transition is labelled by b (action name), {z} (set of clocks to reset), [0, 1] (guard on the delay 7
(waiting time)); %7 (weight to define the probability of taking the transition); 2412 — % (cumulative
probability distribution for sampling the delay 7).

(u;)#", € [0,1] of real values, which corresponds to a point in the unit box of dimension
2n. Starting from the initial state of the automaton and the clock valuation equal to 0, the
transition and the delay at step ¢ are chosen using the inverse transform method applied to
the distribution pirans and pgeiay With the reals uz; and ug;4 1.
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