
Université Paris Est – Créteil Val de Marne

Study of language-theoretic
computational paradigms

inspired by biology

Habilitation Thesis

presented and publicly defended on 22 October 2010

by

Serghei Verlan

Composition of the examining board

Referees Jürgen Dassow Professor at the Otto-von-Guericke-University,
Magdeburg, Germany

Jean-Louis Giavitto Senior researcher at CNRS, University of Evry
Natasha Jonoska Professor at the University of South Florida, USA

Examiners Danièle Beauquier Professor emeritus at the University of Paris Est
Alessandra Carbone Professor at the University of Paris 7
Jacques Nicolas Senior researcher at INRIA Rennes
Anatol Slissenko Professor emeritus at the University of Paris Est

Laboratoire d’Algorithmique, Complexité et Logique

Acknowledgments

This work would never be possible without the help of many people who contributed
in a direct or indirect way to the presented results. First of all I would like to thank
all my co-authors for original ideas that I would maybe never find without their
help.

I would like to address particular acknowledgments to Erzsébet Csuhaj-Varjú,
Rudolf Freund, Marian Gheorghe and Ion Petre for the time they shared with me
during our numerous research visits. Every such visit gave key elements to the
puzzle that finally assembled into this thesis. I would also like to thank Gheor-
ghe Păun who inspired me with many interesting ideas and Arto Salomaa whose
suggestions were very valuable.

I would like to address special thanks to Jean-Louis Giavitto, Natasha Jonoska
and Jürgen Dassow who gratefully accepted to review this thesis. I also thank
Danièle Beauquier, Alessandra Carbone, Jacques Nicolas and Anatol Slissenko
who honored me by accepting to be members of the examining board.

I’m very much indebt to the supervisor of my PhD thesis, Maurice Margenstern,
who knew to give me very helpful advices at the right time.

I would also like to thank my colleagues from Moldova – Yurii Rogozhin and
Artiom Alhazov. Our collaboration has gone far beyond scientific topics and I
consider them now as my second family.

I am very grateful to my colleagues from the Laboratoire d’Algorithmique, Com-
plexité et Logique from the Paris Est University who created a very nice atmosphere
at the department which I enjoyed a lot. I particularly thank Danièle Beauquier,
Cătălin Dima, Flore Tsila and Anatol Slissenko whose help was extremely precious.

Finally, I would like to thank my wife and my parents who always believed in
me and who encouraged me during these years.

ii

Résumé

Nos travaux de recherche se situent dans le domaine de la théorie des langages
formels. Cependant, l’objet de nos études sont les opérations sur les mots et les
modèles de calcul qui ont une inspiration biologique. Dans notre étude nous util-
isons par exemple l’opération de recombinaison (splicing) qui formalise la recom-
binaison des molécules d’ADN. Un autre exemple sont les systèmes à membranes
qui sont un modèle de calcul distribué modélisant la structure et le fonctionnement
d’une cellule vivante.

Le mémoire est fondé sur des résultats d’universalité, décidabilité, sémantique
et complétude computationnelle. Cette étude permet de comprendre mieux les
possibilités et surtout les limites des différentes opérations inspirées par la biolo-
gie. Ces informations donnent la possibilité d’avoir une meilleure modélisation
biologique en utilisant ces opérations, mais également permettent d’avoir un re-
tour intéressant pour la théorie des langages formels ce qui peut être utile pour la
conception de nouvelles classes d’algorithmes et outils.

Le mémoire est composé de 5 chapitres. Les chapitres 2-4 présentent le travail
effectué, tandis que le chapitre 5 montre les perspectives possibles.

Le premier chapitre recueille les éléments de la théorie des langages formels qui
sont utilisés par la suite dans le mémoire. Ce chapitre précise les définitions et fixe
les notations utilisées.

Résumé du chapitre 2

Le deuxième chapitre contient l’étude de l’opération d’insértion/effacement (I/E).
Cette opération est bien connue dans la théorie des langages formels, surtout sa
variante sans contexte. Il a été montré récemment que cette opération possède
également une inspiration biologique et qu’elle formalise l’hybridation inadéquate
(mismatched annealing) des brins d’ADN. D’une manière informelle, l’opération
d’insertion rajoute une sous-chaîne dans une chaîne de caractères à l’intérieur d’un
contexte pré-défini. L’opération d’effacement est une opération inverse: une sous-
chaîne est effacée dans un contexte pré-défini. Les systèmes à insertion-effacement
(SIE) possèdent un ensemble fini de règles d’insertion et d’effacement et le résultat
de leur calcul est un sous-ensemble de mots obtenus à partir d’un ensemble fini
initial, les axiomes, par l’itération des règles. La complexité d’un SIE est décrite par
un vecteur (n,m,m′; p, q, q′), dit taille, ou les premiers trois nombres représentent
la taille maximale de la sous-chaîne insérée et la taille maximale des contextes
gauche et droit. Les trois derniers nombres représentent la même information,
mais pour les opérations d’effacement. La section 2.1 donne les définitions précises
de l’opération d’I/E et des SIE.

iii

iv

Ensuite, la section 2.2 détaille les méthodes de base utilisées pour obtenir nos
résultats. Nous donnons d’abord une présentation des méthodes existantes, puis
nous présentons la méthode de la simulation directe que nous avons élaborée.
Cette méthode nous a permis d’établir la plupart des résultats présentés dans ce
chapitre.

La section 2.3 est dédiée aux SIE sans contexte, c.-à-d. aux systèmes ayant
les paramètres de complexité (n, 0,0; p, 0, 0). Ces modèles ont un fonctionnement
particulier: le résultat du calcul est l’insertion ou l’effacement itératif d’un nombre
fini de chaînes de caractères dans les axiomes. Cette variante permet de faire le
lien avec les travaux précédents des années 80 dans le cadre de la théorie des
langages formels: plus précisément ce type d’opérations est une généralisation
des opérations de concaténation et quotient, deux opérations fondamentales de la
théories des langages formels. Nos résultats présentent une description inatten-
due de la puissance d’expression de ce type de SIE, en montrant que les SIE de
taille (3,0, 0; 2,0, 0) et (2,0, 0; 3,0, 0) ont la puissance des machines de Turing,
tandis que les SIE de taille (2, 0,0; 2, 0,0) ou inférieure forment une sous-classe
des langages algébriques. Les résultats obtenus donnent une réponse définitive
sur la puissance d’expression des opérations d’I/E sans contexte. La présentation
de cette section est fondée sur les articles [51] et [74].

La section 2.4 porte sur les SIE ayant des contextes non-vides d’un seul côté
uniquement, par exemple les SIE de taille (n,m,0; p, q, 0). Ce modèle n’a jamais
été considéré avant nos travaux. Il présente des caractéristiques uniques, ayant
certains traits communs aux SIE sans contexte et aux SIE contextuels. En ap-
pliquant notre méthode de simulation directe on a pu classifier ces SIE en deux
classes par rapport à leur puissance d’expression. Dans la première classe nous
avons placé les SIE qui possèdent une grande puissance d’expression, équivalente
à celle des machines de Turing. Dans la deuxième classe nous avons placé les
SIE qui ont une puissance d’expression strictement inférieure. L’existence de cette
deuxième classe a été l’une des découvertes importantes que nous avons réalisée
– auparavant il n’y avait aucun exemple de classe de SIE qui n’avait pas de puis-
sance d’expression maximale. La présentation de cette section est fondée sur les
articles [54, 47, 48, 46].

La section 2.5 présente des extensions possibles, afin d’augmenter la puis-
sance de calcul des SIE qui ne sont pas suffisamment puissants. Nous adaptons
le concept des grammaires ayant un contrôle dirigé par graphe (graph-controlled
grammars) aux SIE en remplaçant l’opération de réécriture par les opérations d’I/E.
Les résultats obtenus sont conséquents: comme dans le cas des grammaires tra-
ditionnelles, la puissance d’expression des modèles obtenus augmente jusqu’au
niveau maximal. La présentation de cette section est fondée sur les articles [49, 4]
et le chapitre de livre [5].

Résumé du chapitre 3

Le troisième chapitre est dédié à l’étude des systèmes à membranes (SM). Ces sys-
tèmes ont été introduits par Gh. Păun qui s’est inspiré de la structure et du fonc-
tionnement de la cellule vivante. La cellule est modélisée comme un ensemble de
compartiments imbriqués les uns dans les autres et délimités par des membranes;
les molécules sont modélisées par des multi-ensembles, et les interactions chim-

v

iques – par des règles de réécriture de multi-ensembles et changement de structure.
Même si les SM peuvent être vus comme des systèmes de réécriture parallèle de
multi-ensembles, leur présentation naturelle donne un outil clair et puissant pour
la modélisation des interactions biologiques, surtout au niveau cellulaire.

Nous nous sommes concentrés sur l’étude théorique des SM, surtout sur leur
puissance d’expression et leur sémantique.

La section 3.1 donne une présentation générale des systèmes à membranes
et leurs liens avec les autres modèles existants comme les réseaux de Petri et la
réécriture des multi-ensembles.

La section 3.2 présente nos résultats sur l’une des variantes les plus impor-
tantes des SM: les systèmes à membranes à communication (pure). Ces modèles
formalisent la communication trans-membranaire d’une cellule vivante et permet-
tent de modéliser le flux des substances chimiques qui passent par la membrane
cellulaire. Outre le domaine biologique, ces systèmes sont très intéressants du
point de vue théorique, car ils ne permettent pas de renommer, supprimer ou créer
des objets dans le système, ce qui permet d’avoir une notion stricte de ressource de
calcul et également de simuler la propagation des signaux dans des réseaux infor-
matiques. Nous montrons comment est-il possible de modéliser des mécanismes
du transport trans-membranaire et comment généraliser le modèle obtenu dans le
cadre de la théorie de langages formels. La présentation de cette section est fondée
en partie sur les articles [77, 16, 7, 76, 19]

La section 3.3 s’intéresse à la sémantique des SM et à la sémantique de l’étape
du calcul en particulier. Il est important de souligner que le concept des SM est
tellement simple et intuitif, qu’il n’a pas eu longtemps une définition formelle.
Cela s’est accentué les dernières années, lorsque différents modes d’exécution
ont commencé à être étudiés. Dans cette section nous présentons une définition
mathématique précise des systèmes à membranes ayant une structure statique
et nous donnons des exemples de plusieurs modes d’exécution étudiés précédem-
ment ou pas dans la littérature. Nous montrons également que certaines variantes
des SM sont identiques aux autres variantes des SM, mais avec une sémantique
d’exécution différente. La présentation de cette section est fondée en partie sur les
articles [26, 27, 24, 75, 3].

La section 3.4 montre l’adaptation du problème de synchronisation aux SM.
On s’intéresse au problème similaire au celui du peloton d’exécution pour les auto-
mates cellulaires. On part d’une configuration du système où toutes les membranes
sont dans le même état sauf une et qui doivent arriver toutes en même temps dans
un état spécial (de tir). La résolution de ce problème donne la possibilité de définir
plusieurs horloges dans le système. Nous donnons une solution pour le problème
de synchronisation pour plusieurs types de SM; dans certains cas la solution est
déterministe et dans d’autres – non-déterministe. La présentation de cette section
est fondée sur les articles [10, 6].

La section 3.5 s’intéresse au problème de la construction des SM universels de
petite taille. Nous rappelons qu’un système universel est un système concret qui
peut simuler l’exécution de n’importe quel dispositif de calcul, en supposant qu’un
codage adéquat est utilisé. La découverte des machines de Turing universelles
au début du 20e siècle a permis de fonder les bases des ordinateurs actuels. La
recherche des modèles de calcul universels de petite taille est un domaine im-
portant de la théorie des langages formels et de la calculabilité, car elle permet

vi

de montrer que des actions simples peuvent engendrer des comportements très
complexes. Pour la première fois nous avons considéré ce problème dans le do-
maine des SM et nous avons construit un système à membranes universel fondé
sur l’opération de recombinaison ayant uniquement 6 règles. Un autre résultat
important est un système à membranes universel fondé sur l’opération d’antiport
ayant 23 règles. Ce dernier résultat est directement convertible dans le domaine
de la réécriture parallèle de multi-ensembles et pour lequel il représente un ré-
sultat fondamental. La présentation de cette section est fondée en partie sur les
articles [16, 8, 64].

Résumé du chapitre 4

Ce chapitre présente un modèle de calcul original inspiré de l’opération la plus
courante utilisée dans les laboratoires bio-chimiques: la séparation par le gel elec-
trophoresis. Ce procédé permet de classer les molécules d’une solution par leur
longueur. Nous avons formalisé ce processus et proposé une classe de modèles où
la séparation des mots (correspondant aux molécules) par longueur est l’ingrédient
principal. L’avantage principal du modèle obtenu est sa faisabilité in vitro. De plus
ce modèle a un intérêt particulier du point de vue théorique. La présentation de ce
chapitre est fondée en partie sur l’article [18].

Contents

Introduction 1

1 Elements of formal language theory 5

1.1 Words, multisets and languages . 5
1.2 Formal grammars . 7
1.3 Finite automata and Turing machines 9
1.4 Register machines . 10
1.5 Splicing operation . 11

2 Study of insertion-deletion systems 13

2.1 Formal definition . 15
2.2 Basic simulation principles . 16

2.2.1 The method of direct simulation 18
2.3 Context-free insertion-deletion systems 19

2.3.1 Computational completeness results 19
2.3.2 Non-completeness results . 21

2.4 One-sided insertion-deletion systems 24
2.4.1 Computational completeness results 25
2.4.2 Non-completeness results . 26

2.5 Graph-controlled insertion-deletion systems 29
2.5.1 Formal definition . 30
2.5.2 Results . 32
2.5.3 Graph-controlled insertion-deletion systems with priorities . . . 33

2.6 Bibliographical remarks . 35

3 Study of P systems 37

3.1 Semantics study . 39
3.1.1 Formal definition of P systems 39
3.1.2 Study of different derivation modes 44

3.2 Communication models . 48
3.2.1 Formal definition . 49
3.2.2 Generalized communication . 53

3.3 The synchronization problem for P systems 57
3.3.1 Non-deterministic case . 58
3.3.2 Deterministic case . 61

3.4 Construction of small universal P systems 63
3.4.1 Small universal splicing P systems 63
3.4.2 Small universal antiport P systems 65

vii

viii CONTENTS

4 Length-separation model 75

4.1 Formal definition . 76
4.2 Results . 79
4.3 Restricted Variants . 80
4.4 Discussion . 81
4.5 Bibliographical remarks . 83

5 Directions for further research 85

Conclusions 89

Bibliography 91

Introduction

Understanding the surrounding matter, the laws and the functioning of the uni-
verse, this is the main challenge of the humankind, appeared at the dawn of
times. Significant progress was made during last centuries, especially in the field
of physics, which ultimately permitted the engineering of new devices and the de-
velopment of new technologies. The mathematics is in tight relation with all these
discoveries, as it provided a formal basis for these achievements.

The challenges of the actual science more and more reside in the field of biology.
This is quite natural as the fundamental questions about life: what distinguishes
living and non-living matter and what is the organization of a living thing, are
considered from the very old times. Recent developments in most areas of science
permit to approach above questions in a methodological way giving a hope for
substantial breakthrough.

Still the biology is an experimental science that accumulates a large collection
of knowledge and that needs the help of other disciplines in order to explain and
correlate the gathered information. The mathematics is the primary tool serving
this goal, for example, with differential equations in systems biology or statistical
analysis for population’s evolution.

The computer science also plays an important role in biological investigations.
Large-scale databases, data mining, sequence analysis and protein structure pre-
diction – these are several tasks that would never be possible without the arrival of
the computers, computational theory and corresponding algorithms. The molec-
ular biology highlighted the key role of DNA and of related mechanisms for the
information processing, which is crucial for the understanding of the functioning
of living organisms. The computer science traditionally deals with sequences, so
it was natural to use the provided tools for the sequence-related research, forming
the field of bioinformatics.

We note that computer science is specialized on the discrete representation
of the universe and on the representation of information flow processes. Many
key concepts from the field where borrowed from the biology. This is why it fits
well to the biological modeling providing discrete models in contrast to a modeling
with differential equations, which are continuous. This property stimulated the
investigation of (computational) models and operations issued from biology. In this
case real biological phenomena are abstracted and a discrete system based on the
involved operations and functioning is proposed.

There are two motivations for the investigation of such models. The first mo-
tivation is very clear – since the model represents an abstraction of a biological
phenomena, it is possible to describe the last one in precise terms and provide
simulations, estimations and predictions. A close relationship with target biolog-

1

2 INTRODUCTION

ical system permits to express it in a short and clear manner giving the hope to
extract additional knowledge about the model. This approach, very nice in the-
ory, encounters important difficulties while faced to the practice. Usually, simple
models are too abstract for obtaining non-trivial relations for the initial biological
system, while more complete models encounter rapidly the combinatorial explo-
sion of their size, which makes them very difficult to analyze. The success of the
approach relies on a deep knowledge of the target phenomena that permits to find
a good balance between abstraction and adequateness.

The second motivation comes from the fact that most successful applications
of computer science are based on ideas borrowed from the biology. During the
evolution of living organisms, the nature provided solutions for many complicated
problems encountered and it is very fruitful to adapt these solutions to different
problems. Ant colony optimization, cellular automata, neural networks, evolution-
ary algorithms are some examples of such an approach.

This thesis is centered around two main topics: insertion-deletion systems and
P systems. The first part does a systematical study of the operations of inser-
tion and deletion. While it is possible to consider them as biologically inspired
operations, we perform in the thesis a pure theoretical investigation in terms of
the theory of formal languages. Thus, our research provide new classes of formal
grammars which extend the Chomsky hierarchy by introducing new levels. We
introduce a new proof method and show a series of computational-completeness
and non-completeness results and discuss possibilities for the extension of the
computational power for the latter case.

The research on P systems follows a different motivation. Primary, they rep-
resent a general framework for distributed multiset rewriting, which captures im-
portant processes in cell biology. In contrast to traditional approaches in systems
biology, P systems provide a discrete framework for the representation of molecular
interactions1 that focuses on the structure of the system and on the identification
of its components. The field of application for P systems is not limited to systems
biology, the topic incorporates concepts from cell biology and aims to propagate
them to all fields of the computer science.

The first part of our work targets the core of the P systems framework – its formal
definition, which, surprisingly, was not always clear; moreover the introduction
of new concepts like the minimal parallelism lead to different interpretations by
different authors. We provide a single formal definition, which covers most of the
classes of P systems with static structure known up to now.

The second part of Chapter 3 deals with one of most important models in the
area of P systems – P systems using only communication, i.e., the objects present
in the system cannot evolve, but can only be moved from one compartment to
another. We generalize the idea of co-transporters from the cell biology and end up
with an interesting computational model based on the synchronization of signals.
It is worth to note that the obtained model generalize all previous communication-
only models of P systems.

The last part of Chapter 3 deals with two concrete problems. The first prob-
lem, the problem of the synchronization on a tree, is the generalization of the
firing squad synchronization problem for cellular automata, where a linear com-

1We remark that other discrete models like Petri nets or process algebra are also used, each of
them having advantages and limitations.

INTRODUCTION 3

munication structure is replaced by a hierarchical one. The second problem, the
construction of universal P systems of small size, is closely related to the problem of
the construction of small size universal Turing machines, which is a fundamental
problem of the computer science.

The last part of the thesis presents an exploratory topic, where we performed all
the stages for the construction of a new model – we start with a biological phenom-
ena, give its formalization and start theoretical investigations. The closeness of the
obtained model to the initial biological subject permit us to affirm that results that
are obtained theoretically, can be verified in vitro.

Outline

Chapter 1

This chapter contains elements of the theory of formal languages used in the thesis.
It mostly gives the used definitions and fixes the notations.

Chapter 2

This chapter contains a study of the insertion-deletion operation. After an intro-
duction and a formal definition given in Section 2.1, a description of formal proof
methods is shown and a new proof technique is introduced. Section 2.3 considers
context-free insertion-deletion systems and their links to the previous results in
the formal language theory. After that one-sided insertion-deletion systems are
considered. Section 2.5 investigates possible extensions of insertion-deletion sys-
tems in order to extend the computational power for non-complete classes. The
results from this chapter are based on [51, 74, 54, 47, 48, 46, 49, 4, 5].

Chapter 3

This chapter studies various variants of P systems. We start in Section 3.1 with
a general presentation of the model of P systems, its formal definition and the
semantics. Section 3.2 overviews our results related to models of P systems using
only communication. Last two sections contain more practical problems: Section
3.4 investigates the problem of synchronization in the case of P systems, while
Section 3.5 investigates the construction of small universal P systems. The results
from this chapter are partially based on [77, 16, 7, 76, 19, 26, 27, 24, 75, 3, 10, 6,
16, 8, 64, 79, 78, 22].

Chapter 4

This is an exploratory chapter that presents an original model based on the opera-
tion of length separation of molecules, usually performed by the gel electrophoresis
in a bio-chemical laboratory. This chapter presents the first results and gives the
possible insights for the future extensions. The results from this chapter are based
on [18].

Chapter 5

This last chapter gives an overview of the further research directions and open
problems raised by our research.

4 INTRODUCTION

Chapter 1

Elements of formal language

theory

In this chapter we fix the notations that we shall use in the future. For more details
concerning the theory of formal languages we refer to [37] and [65].

1.1 Words, multisets and languages

We denote by N the set of natural numbers {0, 1,2, . . . } and by N+ the set of strictly
positive integer numbers {1, 2, . . . }. We also denote by ∅ the empty set and by
P(X) the set of all subsets of X . The number of elements of a set X is denoted by
Card(X).

An alphabet is a finite non-empty set of symbols which are also called letters. A
word over the alphabet V is a concatenation of symbols of V . The empty concate-
nation is called the empty word and it is denoted by λ. The set of all words over V
is denoted by V ∗. The set of all words over an alphabet V , except the empty word,
is denoted by V+. Any subset of V ∗ is called a language over the alphabet V .

If x = x1x2 with x1, x2 ∈ V
∗, then we say that the word x1 is a prefix of x and that

the word x2 is a suffix of x. If x = x1x2x3 with x1, x2, x3 ∈ V
∗, then x2 is called factor

of x. The set of prefixes, suffixes and factors of a word x is denoted by Pref (x),
Suf (x) and Fact(x), respectively.

The length of the word x ∈ V ∗ is the number of symbols which appear in x and it
is denoted by |x |. The number of occurrences of a symbol a ∈ V in x ∈ V ∗ is denoted
by |x |a . If x ∈ V ∗ and U ⊆ V , the we denote by |x |U the number of occurrences of
symbols from U in x. For a word w ∈ V ∗ we define Perm(w) = {w′ : |w′|a =
|w|a for all a ∈ V }. The length set of a language L is defined as |L | = {|x | : x ∈ L}.
The length set of a family of languages F is defined analogously: NF = {|L | : L ∈ F }.

We denote boolean operations over languages in an ordinary way: the intersec-
tion by ∩, the union by ∪ or + and the difference by \.

The concatenation of two languages L1 and L2 is defined by:

L1L2 = {xy : x ∈ L1, y ∈ L2}.

We define the iteration of the concatenation as follows:

5

6 CHAPTER 1. ELEMENTS OF FORMAL LANGUAGE THEORY

L0
= {ε},

Li+1 = LL
i , i ≥ 0,

L∗ =

∞
⋃

i=0

L i (Kleene closure).

A mapping h : V → U ∗, extended to h : V ∗ → U ∗ by h(λ) = {λ} and h(x1x2) =
h(x1)h(x2), for x1, x2 ∈ V

∗, is called a morphism. If λ < h(a), for each a ∈ V , then h
is a λ-free morphism.

A morphism h : V ∗ → U ∗ is called a coding if h(a) ∈ U for each a ∈ V and a
weak coding if h(a) ∈ U ∪ {λ} for each a ∈ V . If h : (V1 ∪V2)∗ → V ∗1 is the morphism
defined by h(a) = a for a ∈ V1, and h(a) = λ otherwise, then we say that h is a
projection (associated to V1) and we denote it by prV1 . For a morphism h : V ∗ → U ∗,

we define a mapping h−1 : U ∗ → P(V ∗) (and we call it an inverse morphism) by
h−1(w) = {x ∈ V ∗ | h(x) = w}.

For x, y ∈ V ∗ we define their shuffle by

x � y = {x1y1 . . . xnyn | x = x1 . . . xn, y = y1 . . . yn ,

xi , yi ∈ V
∗,1 ≤ i ≤ n, n ≥ 1}.

The mirror image of a string x = a1a2 . . . an , for ai ∈ V,1 ≤ i ≤ n, is the string
mi(x) = an . . . a2a1.

In general, if we have an n-ary operation for strings, g : V ∗ × · · · × V ∗ → P(U ∗),
we extend it to languages over V by

g(L1, . . . , Ln) =
⋃

xi∈Li
1≤i≤n

g(x1, . . . , xn).

For instance, mi(L) = {mi(x) | x ∈ L}.
We say that a family of languages F is closed with respect to an n-ary operation

g if the result of the application of g on languages L1, . . . , Ln belonging to F also
belongs to F : g(L1, . . . , Ln) ∈ F .

The Parikh image of a language family F is a family of sets of vectors denoted
by PsF (we assume a fixed ordering on the alphabet T = {a1, . . . , an}):

Ps(L) = {(|w|a1 , . . . , |w|an) : w ∈ L},

PsF = {Ps(L) : L ∈ F }.

Let O = {a1, . . . , ak} be an alphabet. A finite multiset M over O is a mapping
M : O −→ N, i.e., for each a ∈ O, M(a) specifies the number of occurrences of
a in M. The size of the multiset M is |M | =

∑

a∈O M(a). A multiset M over O can
also be represented by any string x that contains exactly M(ai) symbols ai for all
1 ≤ i ≤ k, e.g., by aM(a1)

1 . . . a
M(ak)
k

, or else by the set {aM(ai)
i : 1 ≤ i ≤ k}. For

example, the multiset over {a, b, c} defined by the mapping a → 3, b → 1, c → 0
can be specified by a3b or {a3, b}. An empty multiset is represented by λ. The set
of all finite multisets over the set V is denoted by 〈V,N〉.

We may also consider mappings M of form M : O −→ N ∪ {∞}, i.e., elements of
M may have an infinite multiplicity; we shall call them infinite multisets.

1.2. FORMAL GRAMMARS 7

1.2 Formal grammars

A formal grammar is the following quadruplet G = (N, T, S, P), where N and T are
two disjoint alphabets, S ∈ N is the axiom and P is a finite set of rewriting rules
of the form u → v, u, v ∈ (N ∪ T)∗ with |u|N > 0. The alphabet N , respectively T ,
is called the non-terminal, respectively terminal, alphabet of G. The rules of P are
also called productions.

For x, y ∈ (N ∪T)∗ we write x =⇒G y if x = x1ux2, y = x1vx2 with x1, x2 ∈ (N ∪T)∗

and there is a production u → v ∈ P.
In this case we say that x derive directly y. We can omit G if the context permits

us to do so. We denote by =⇒∗ the reflexive and transitive closure of =⇒. We write
x =⇒k y if there are words w0, . . . ,wk such that wi =⇒ wi+1, i ≥ 0 and w0 = x and
wk = y. We write x =⇒∗

P′
y, where P′ is a subset of P, if in order to obtain y starting

from x we use productions only from P′.
Each word w ∈ (N ∪ T)∗ derived from the axiom of the grammar G: S =⇒∗G w is

called a sentential form of G.
The language generated by G, L(G), is defined by:

L(G) = {w ∈ T ∗ : S =⇒∗ w}.

Depending on the form of its rules formal grammars may be of one of the
following types.

• Arbitrary grammars (of type 0):

Productions are of the form u → v, where u, v ∈ (N ∪ T)∗ and |u|N > 0.

• Context-sensitive grammars (of type 1):

Productions are of the form u1Au2 → u1xu2, where u1, u2 ∈ (N ∪ T)∗, A ∈ N
and x ∈ (N ∪ T)+. Also the production S → λ is allowed, where S does not
appear at the right-hand side of any production from P.

• Context-free grammars (of type 2):

Productions are of the form A → x, where A ∈ N and x ∈ (N ∪ T)∗.

• Regular grammars (of type 3):

Productions are either of form A → aB and A → a, or of form A → Ba and
A → a, where A, B ∈ N and a ∈ T .

We denote by RE, CS, CF and respectively REG the family of languages gener-
ated by arbitrary, context-dependent, context-free and regular grammars respec-
tively. The families RE, CS, CF and REG respectively are called the family of
recursively enumerable, context-sensitive, context-free and regular languages re-
spectively. These families form the hierarchy of Chomsky. We also denote by FIN
the family of finite languages. The following strict inclusions hold.

FIN ⊂ REG ⊂ CF ⊂ CS ⊂ RE.

If Parikh images or length sets of corresponding families are considered, the
following inclusions hold:

PsFIN ⊂ PsREG = PsCF ⊂ PsCS ⊂ PsRE.

8 CHAPTER 1. ELEMENTS OF FORMAL LANGUAGE THEORY

NFIN ⊂ NREG = NCF ⊂ NCS ⊂ NRE.

The closure properties of the above families with respect to the operations on
languages are shown in Tab. 1.1.

Table 1.1: Closure properties of families in the Chomsky hierarchy.

Operation RE CS CF REG

Union Yes Yes Yes Yes
Intersection Yes Yes No Yes

Concatenation Yes Yes Yes Yes
Kleene closure Yes Yes Yes Yes

Intersection with REG Yes Yes Yes Yes

The Dyck language Dn over Tn = {a1, ā1, . . . , an, ān}, n ≥ 1 is the context-free
language generated by the grammar

G = ({S}, Tn, S, {S → λ, S → SS} ∪ {S → aiSāi | 1 ≤ i ≤ n}).

Intuitively, the pairs (ai , āi), 1 ≤ i ≤ n, can be viewed as parentheses, left and right,
of different kinds. Then Dn consists of all strings of correctly nested parentheses.
Sometimes it is convenient to define the Dyck language D over some alphabet V .
In this case n = card(V).

A tag system of degree m > 0, see [13, 56, 57], is the triplet T = (m,V, P),
where V = {a1, . . . , an+1} is an alphabet and where P is a set of productions of
form ai → Pi , 1 ≤ i ≤ n, Pi ∈ V ∗. The symbol an+1 is called a halting symbol.
A configuration of the system T is a word w. We pass from the configuration
w = ai1 . . . aimw

′ to the next configuration z by erasing the first m symbols of w
and by adding Pi1 to the end of the word: w =⇒ z, if z = w′Pi1 .

The computation of T over the word x ∈ V ∗ is a sequence of configurations
x =⇒ . . . =⇒ y, where either y = an+1ai1 . . . aim−1y

′, or y′ = y and |y′| < m. In this
case we say that T halts on x and that y′ is the result of the computation of T over
x. We say that T recognizes the language L if there exist a recursive coding φ such
that for all x ∈ L, T halts on φ(x), and T halts only on words from φ(L).

We note that tag systems of degree 2 are able to recognize the family of recur-
sively enumerable languages, see [13] and [56].

A context-free matrix grammar is a construct G = (N, T, S, M), where N, T are
disjoint alphabets (of nonterminals and terminals, respectively), S ∈ N (axiom), and
M is a finite set of matrices, that is, sequences of the form (A1 → z1, . . . , An → zn),
n ≥ 1, of context-free rules over N ∪T . For a string x, an element m = (r1, . . . , rn) is
executed by applying productions r1, . . . , rn one after the other, following the strict
order they are listed in. The resulting string y is said to be directly derived from
the original x and we write x =⇒ y. Then, the generated language is defined in the
usual way. The family of languages generated by context-free matrix grammars is
denoted by MATλ (the superscript indicates that λ-rules are allowed); when using
only λ-free rules, we denote the corresponding family by MAT .

A context-free programmed grammar is a constructG = (N, T, S, P), where N, T, S
are as above, the set of nonterminals, the set of terminals and the start symbol,

1.3. FINITE AUTOMATA AND TURING MACHINES 9

and P is a finite set of productions of the form (b : A → z, E, F), where b is a label,
A → z is a context-free production over N ∪ T , and E, F are two sets of labels of
productions of G. (E is said to be the success field, and F is the failure field of the
production.) A production of G is applied as follows: if the context-free part can be
successfully executed, then it is applied and the next production to be executed is
chosen from those with the label in E, otherwise, we choose a production labeled
by some element of F, and try to apply it. More precisely, the configuration is the
couple (x, i), where x is a word and i is a label of a production (i : A → z, E, F)
from P. The transition (x, i) =⇒ (y, j) is performed if either x =⇒A→z y and j ∈ E, or
x = y, |x |A = 0 and j ∈ F . In the latter case we say that the production is applied in
appearance checking mode. This type of programmed grammars is said to be with
appearance checking; if no failure field is given for any of the productions, then a
programmed grammar without appearance checking is obtained.

A graph-controlled grammar is the tuple G = (N, T, S, P, I, F), where N , T , S
and P are defined as above and I, F ⊆ Lab(R) are sets of labels of rules from R.
The computation in a graph-controlled grammar follows the same principles as in
the programmed grammar (N, T, S, P), however the starting label can be only one
of labels from the set I, while the terminal string can be collected only when the
current label is from F :

L(G) = {y ∈ T ∗ | ∃i ∈ I, j ∈ F : (S, i) =⇒∗ (y, j)}.

1.3 Finite automata and Turing machines

A finite automaton is the quintuplet M = (Q, V, q0, F, δ), where Q is a finite set of
states, V is a finite set of symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states and where δ : Q × V → P(Q) is the transition function of the automaton.
We define the transition ⊢ in an ordinary way: (s, ax) ⊢ (s′, x) if s′ ∈ δ(s, a), where
s, s′ ∈ Q, a ∈ V and x ∈ V ∗. We denote by ⊢∗ the reflexive and transitive closure of
⊢.

We say that the word x is accepted by M if (q0, x) ⊢∗ (q, ε) and q ∈ F . The
language accepted by M is:

L(M) = {x ∈ V ∗ : (q0, x) ⊢∗ (q, ε), q ∈ F }.

We also use a graphic notation in order to define a finite automaton. In this
case the finite automaton will be represented by a finite oriented graph whose
nodes represent the states of the automaton and whose edges are defined by the
transition function of the automaton. More exactly, there is an arc labeled by a
between vertices qi and qj of the graph if qj ∈ δ(qi , a). The final states are enclosed
by a double circle.

A Turing machine is the 6-tuple M = (Q, T, a0, q0, F, δ), where Q is a finite set of
states, T is the tape alphabet, a0 ∈ T is the blanc symbol, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states and where δ is a transition function. Every rule of δ,
also called instruction, is of form qiakDalqj, where qi , qj ∈ Q, ak, al ∈ T and where
D ∈ {L, S, R}. The semantic of the rule qiakDalqj is the following: if being in the
state qi the head of the machine sees the symbol ak on the tape, then it changes
its state to qj, replaces ak by al and moves to the left if D = L, to the right if D = R
or remains in the same position if D = S. We note that for any Turing machine

10 CHAPTER 1. ELEMENTS OF FORMAL LANGUAGE THEORY

which has stationary instructions, i.e. without a move, it is possible to construct
an equivalent machine which will have no stationary instruction.

A configuration of the Turing machine M is the following word w1qiakw2, where
w1akw2 is the part of the tape which is not empty, qi is the state of the machine
and ak is the cell which is examined by the head of the machine.

A computation of the Turing machine M on the word x ∈ T+ is a sequence of
configurations q0x =⇒ . . . w1qfw2, where qf ∈ F . The initial configuration may be
of form u1q0u2, where x = u1u2, but we may suppose without loosing generality
that it is of form q0x. In this case we say that w1w2 is the result of computation of
M on the word x.

An important notion is the universal Turing machine. Such a machine is a
fixed objectMu capable to simulate the work of any Turing machine M on an input
w providing that a suitable encoding of M and w are given as an input to Mu .

Let us stress here an important distinction between computational complete-

ness and universality. Given a class C of computability models, we say that C is
computationally complete if the devices in C can characterize the power of Turing
machines (or of any other type of equivalent devices). This means that given a Tur-
ing machine M one can find an element C in C such that C is equivalent with M.
Thus, completeness refers to the capacity of covering the level of computability (in
grammatical terms, this means to generate all recursively enumerable languages).
Universality is an internal property of C and it means the existence of a fixed ele-
ment U of C which is able to simulate any given element E (of C), providing that an
appropriate encoding of E and of the input is given. If C does not have a universal
element, then there is a family C′ ⊃ C that contains an element U universal for C.
We note that C′ is not necessarily universal for RE.

1.4 Register machines

Register machines were introduced in [56], see also [23].
A register machine with k registers is a 5-tuple M = (Q, R, q0, qf , P), where

• Q is a finite non-empty set, called the set of states,

• R = {A1, . . . , Ak}, k ≥ 1, is a set of registers,

• q0 ∈ Q is the initial state, and

• qf ∈ Q is the final state,

• P is a set of instructions of the following forms:

� (p, A+, q, s), where p, q, s ∈ Q, p , qf , A ∈ R, called an increment instruc-

tion or

� (p, A−, q, s), where p, q, s ∈ Q, p , qf , A ∈ R, called a decrement instruc-

tion.

Furthermore, for every p ∈ Q, (p , qf), there is exactly one instruction of the form
either (p, A+, q, s) or (p, A−, q, s).

According to [45], we will also use the notations (p, [RiP],q, s) and (p, 〈RiZM〉,q, s)
instead of (p, Ai+, q, s) and (p, Ai−, q, s), respectively.

1.5. SPLICING OPERATION 11

For generating languages over T , we use the model of a register machine with

output tape (introduced in [56]), which also uses a tape operation:
(p,WRITE(A), q), with p, q ∈ Q, A ∈ T .
A configuration of a register machine M, defined above, is given by a k + 1-

tuple (q,m1, . . . , mk), where q ∈ Q and m1, . . . ,mk are non-negative integers, q
corresponds to the currents state of M and m1, . . . ,mk are the current numbers
stored in the registers (in other words, the current contents of the registers or the
value of the registers) A1, . . . Ak , respectively.

A transition of the register machine consists in updating the number stored
in a register and by changing the current state to another one, according to an
instruction.

An increment instruction (p, A+, q, s) ∈ P is performed if M is in state p, the
number stored in register A is increased by 1, and after that M enters either state
q or state s, chosen non-deterministically.

A decrement instruction (p, A−, q, s) ∈ P is performed if M is in state p, and if
the number stored in register A is positive, then it is decreased by 1 and then M

enters state q, and if the number stored in A is 0, then the contents of A remains
unchanged and M enter state s.

We say that a register machine M = (Q, R, q0, qf , P), with k registers, given as
above, generates a non-negative integer n if starting from the initial configuration

(q0, 0,0, . . . , 0) it enters the final configuration (qf , n, 0, . . . , 0).
The set of non-negative integers generated by M is denoted by N(M).
It is known that register machines generate all recursively enumerable sets of

non-negative integers [56]. If the WRITE instruction is used, then RE can be
generated.

In the case when a register machine cannot check whether a register is empty
we say that it is partially blind; the second type of instructions is then written as
(p, Ak−, q) and the transition is undefined if register k is zero.

The word “partially” stands for an implicit test for zero at the end of a (suc-
cessful) computation: counters m + 1, · · · , d should be empty. It is known, that
partially blind register machines generate exactly PsMAT .

1.5 Splicing operation

Now we briefly recall the basic notions concerning the splicing operation and related
constructs [61].

A splicing rule (over an alphabet V) is a 4-tuple (u1, u2, u3, u4) where u1, u2, u3,

u4 ∈ V
∗. It is frequently written as u1#u2$u3#u4, {$, #} < V , or in two dimensions as

u1 u2

u3 u4
. Strings u1u2 and u3u4 are called splicing sites.

We say that a word x matches rule r if x contains an occurrence of one of the
two sites of r. We also say that x and y are complementary with respect to a rule
r if x contains one site of r and y contains the other one. In this case we also say
that x or y may enter rule r. When x and y can enter a rule r = u1#u2$u3#u4, i.e.,
we have x = x1u1u2x2 and y = y1u3u4y2, it is possible to define the application of
r to couple x, y. The result of this application is w and z where w = x1u1u4y2 and
z = y1u3u2x2. We also say that x and y are spliced and w and z are the result of
this splicing. We write this as follows: (x, y) ⊢r (w, z) or

12 CHAPTER 1. ELEMENTS OF FORMAL LANGUAGE THEORY

(x1u1|u2x2, y1u3|u4y2) ⊢r (x1u1u4y2, y1u3u2x2).
The pair h = (V,R) where V is an alphabet and R is a finite set of splicing rules

is called a splicing scheme or an H scheme.

For a splicing scheme h = (V, R) and for a language L ⊆ V ∗ we define:

σh(L)
def
= {w, z ∈ V ∗ | ∃x, y ∈ L,∃r ∈ R : (x, y) ⊢r (w, z)}.

Now we can introduce the iteration of the splicing operation.
σ0
h
(L) = L,

σ i+1
h

(L) = σ i
h
(L) ∪ σ(σ i (L)), i ≥ 0,

σ∗
h
(L) = ∪i≥0σ

i
h
(L).

It is known that the iterated splicing preserves the regularity of a language:

Theorem 1.5.1. [61] Let L ⊆ V ∗ be a regular language and let h = (V, R) be a

splicing scheme. Then language σ∗
h
(L) is regular.

A Head-splicing-system [35, 36], or H system, is a construct:

H = (h, A) = ((V, R), A),

which consists of an alphabet V , a finite set A ⊆ V ∗ of initial words over V , the
axioms, and a finite set R ⊆ V ∗ × V ∗ × V ∗ × V ∗ of splicing rules. System H is called
finite if A and R are finite sets.

The language generated by an H system H is defined as L(H)
def
= σ∗

h
(A).

Thus, the language generated by H system H is the set of all words that can
be generated in H starting with A as initial words by iteratively applying splicing
rules to copies of the words already generated.

Theorem 1.5.2. The following relations hold:

(1) For any H system H , L(H) ∈ REG.

(2) For any L ∈ REG there exists an H system H and an alphabet T such that

L = L(H) ∩ T ∗.

Chapter 2

Study of insertion-deletion

systems

This chapter focuses on the study of the operations of insertion and deletion. In
general form, an insertion operation means adding a substring to a given string
in a specified (left and right) context, while a deletion operation means removing a
substring of a given string being in a specified (left and right) context. An insertion
or deletion rule is defined by a triple (u, x, v) meaning that x can be inserted be-
tween u and v or deleted if it is between u and v. Thus, an insertion corresponds
to the rewriting rule uv → uxv and a deletion corresponds to the rewriting rule
uxv → uv. A finite set of insertion-deletion rules, together with a set of axioms
provide a language generating device: starting from the set of initial strings and
iterating insertion or deletion operations as defined by the given rules one gets a
language. The size of the alphabet, the number of axioms, the size of contexts and
of the inserted or deleted string are natural descriptional complexity measures for
insertion-deletion systems.

The idea of insertion of one string into another was firstly considered with a
linguistic motivation in [50] and latter developed in [30, 59]. Marcus contextual
grammars investigated in above references consider couples (x, (u, v)), meaning that
words u and v can be adjoined to the word x. This corresponds in some sense to
grammars having rules of type x → uxv, i.e., u and v are inserted around the posi-
tion marked by x. Such grammars are alternative concepts to Chomsky grammars
and present the evolution of the descriptive linguistics. Many interesting linguistic
properties like ambiguity and duplication can be captured in this framework. The
insertion of a string in a specified context was firstly considered in [30].

In [33, 34] the insertion operation and its iterated variant is introduced with
a different motivation. The author considers this operation as generalization of
Kleene’s operations of concatenation and closure [43]. The operation of concate-
nation would produce a string x1x2y from two strings x1x2 and y. By allowing the
concatenation to happen anywhere in the string and not only at its right extremity
a string x1yx2 can be produced, i.e., y is inserted into x1x2. In [38] the deletion is
defined as a right quotient operation which happens not necessarily at the right-
most end of the string. In the same thesis the duality between the insertion and
deletion is also highlighted: any insertion system generating a language L is at the
same time a deletion system recognizing L. The operations considered in above
works correspond to context-free variants of insertion and deletion operations, be-

13

14 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

cause no contexts are used. In the same place several other variants of insertion
and deletion are introduced and their closure properties are investigated.

The third inspiration for insertion and deletion operations comes, surprisingly,
from the field of molecular biology. In fact they correspond to a mismatched an-
nealing of DNA sequences. Insertion and deletion can be performed, at leat the-
oretically, as follows (for biological terminology see [61, 2]). Let us imagine that
there is a test tube with a single stranded DNA sequence 5′ − x1uvx2z − 3′. If one
adds to the test tube a single stranded DNA sequence 3′ − ūȳv̄ − 5′, where ū,v̄ are
the Watson-Crick complements of strings u,v then the two strings will anneal (u
will stick to ū and v will stick to v̄, folding y, see Fig. 2.1(b). Now one can cut the
sequence uv obtaining the structure depicted on Fig. 2.1(c). Adding a primer z̄ and
the polymerase the complete double-stranded sequence is obtained, see Fig. 2.1(d).
Finally, melting the solution the strands are separated leading to situation depicted
on Fig. 2.1(e), meaning that y was inserted between u and v.

By a similar mismatched annealing one can, theoretically, perform a deletion
operation, taking uyv in the starting string and adding ūv̄. The process is illustrated
on Fig. 2.2 (in order to go from step (b) to step (c) a polymerization and removing of
the loop by a restriction enzyme is done).

Therefore, insertion and deletion can be performed in the DNA framework. Such
operations are also present in the evolution processes under the form of point
mutations as well as in RNA editing, see the discussions in [9], [67] and [61].
This biological motivation of insertion-deletion operations lead to their study in the
framework of molecular computing, see, for example, [20], [39], [61], [69].

(d)

(e) 5′
x1 u y v x2 z

3′

z̄x̄2v̄ȳūx̄1

x1 u y v x2 z

z̄
3′ 5′

3′
zx2v

v̄ȳū

ux1
5′(c)

��
��5′(b)

x1 u v x2 z
3′

ū v̄

ȳ

5′

(a)

x1 u v x2 z
3′

5′
v̄ȳū

3′

Figure 2.1: Inserting by mismatched annealing

Insertion-deletion systems are quite powerful, leading to characterizations of
recursively enumerable languages. The proof of such characterizations was usually

2.1. FORMAL DEFINITION 15

x1 u v x2 z

z̄x̄2v̄ūx̄1

x1 u v x2 z
(d)

(c)

��
��

x1 u v

y

x2 z

z̄
3′

5′3′v̄ū

5′(b)

5′(a)
x1 u y v x2 z

3′

5′
v̄ū

3′

Figure 2.2: Deleting by mismatched annealing

done by showing that the corresponding class of insertion-deletion systems can
simulate an arbitrary Chomsky grammar. However, the obtained constructions
are quite complicated and specific to the used class of systems. We introduced a
new method of such computational completeness proofs, which relies on a direct
simulation of one class of insertion-deletion systems by another. The obtained
method is quite generic and it was used to prove the computational completeness
of 8 classes of insertion-deletion systems, the proof being similar for all cases.

Another important point bridging our work with investigations done in [33]
and [38] is the proof that context-free insertion-deletion systems are computation-
ally complete. This provides a new characterization of recursively enumerable lan-
guages, where every such language can be represented as a reflexive and transitive
closure of the insertion-deletion of two finite languages.

We started a systematical investigation of classes of insertion-deletion systems
with respect to the size of contexts and inserted/deleted strings and we showed
for the first time that there are classes that are not computationally complete,
moreover some of them are decidable. In these cases it is possible to consider a
graph-controlled variant of insertion-deletion systems, known under the name of
insertion-deletion P systems, which permits in most of the cases to increase the
computational power of corresponding systems.

2.1 Formal definition

An insertion-deletion system is a construct ID = (V, T, A, I, D), where V is an alpha-
bet, T ⊆ V , A is a finite language over V , and I, D are finite sets of triples of the form
(u, α, v), α , λ, where u and v are strings over V . The elements of T are terminal

symbols (in contrast, those of V −T are called nonterminals), those of A are axioms,
the triples in I are insertion rules, and those from D are deletion rules. An insertion
rule (u, α, v) ∈ I indicates that the string α can be inserted between u and v, while
a deletion rule (u, α, v) ∈ D indicates that α can be removed from the context (u, v).

16 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

As stated otherwise, (u, α, v) ∈ I corresponds to the rewriting rule uv → uαv, and
(u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. We denote by =⇒ins the
relation defined by an insertion rule (formally, x =⇒ins y iff x = x1uvx2, y = x1uαvx2,
for some (u, α, v) ∈ I and x1, x2 ∈ V

∗) and by =⇒del the relation defined by a dele-
tion rule (formally, x =⇒del y iff x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D and
x1, x2 ∈ V

∗). We refer by =⇒ to any of the relations =⇒ins,=⇒del , and denote by =⇒∗

the reflexive and transitive closure of =⇒ (as usual, =⇒+ is its transitive closure).
The language generated by ID is defined by

L(ID) = {w ∈ T ∗ | x =⇒∗ w, x ∈ A}.

The complexity of an insertion-deletion system ID = (V, T, A, I, D) is described
by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v) ∈ I}, p = max{|α| | (u, α, v) ∈ D},

m = max{|u| | (u, α, v) ∈ I}, q = max{|u| | (u, α, v) ∈ D},

m′ = max{|v| | (u, α, v) ∈ I}, q′ = max{|v| | (u, α, v) ∈ D}.

We also denote by INSm,m
′

n DEL
q,q′

p corresponding families of insertion-deletion
systems. Moreover, we define the total size of the system as the sum of all numbers
above: ψ = n +m +m′ + p + q + q′.

If some of the parameters n,m,m′, p, q, q′ is not specified, then we write instead
the symbol ∗. In particular, INS0,0

∗ DEL0,0
∗ denotes the family of languages generated

by context-free insertion-deletion systems. If one of numbers from the couplesm, m′

and/or q, q′ is equal to zero (while the other is not), then we say that corresponding
families have a one-sided context.

We remark that, historically, another complexity measure called weight was
used for insertion-deletion systems. It corresponds to 4-tuples (n, m̄; p, q̄), where
m̄ = max{m,m′} and q̄ = max{q, q′}.

2.2 Basic simulation principles

In this section we show some important properties of insertion-deletion systems,
present some normal forms and indicate basic methods for equivalence proofs used
in the rest of the chapter.

We start with the presentation of the normal form for insertion-deletion systems.

Definition 2.2.1. An insertion-deletion system ID = (V ∪ {$}, T, A, I, D ∪ D2) of size
(n,m,m′; p, q, q′) is said to be in the normal form if

• for any (u, x, v) ∈ I it holds |u| = m, |v| = m′, |x | = n,

• for any (u, x, v) ∈ D it holds |u| = q, |v| = q′, |x | = p,

• for any (u, x, v) ∈ D it holds that x does not contain letters from T ,

• the set D2 is defined as D2 = {(λ,$,λ)}.

Theorem 2.2.2. For any insertion-deletion system ID it is possible to construct a

system ID′ in normal form and having same size such that L(ID) = L(ID′).

2.2. BASIC SIMULATION PRINCIPLES 17

This affirmation is quite obvious. For the first two conditions it is enough to
replace any rule having left or right contexts of a smaller size by a group of rules,
where the left (resp. right) context is a string over V ∪ {$} of the required size. The
same holds for the inserted or deleted symbol and axioms. More precisely, the new
symbol $ permits to fill the context of rules and sizes of axioms up to the desired
size.

The third condition can be satisfied as follows. For any terminal symbol t ∈
T a special non-terminal Nt is considered. All rules and axioms involving t are
duplicated and t replaced by Nt. This construction ensures that symbol Nt acts like
an alias for the symbol t, i.e. for any derivation producing w1tw2 there is another
derivation producing w1Ntw2. Hence there is no difference between erasing t or Nt,
therefore all deletion rules involving t can be omitted. A formal proof of the theorem
can be found in [5].

Example 2.2.3.

Consider the insertion-deletion system ID = ({a, b, C}, {a, b}, {ab}, I, D) of
size (2, 1, 1; 2, 1, 1), where I = {(a, aC, b), (a, b, C)} and D = {(b, C, b)}. Then ID′

can be defined as follows: ID′ = ({a, b, C, $}, {a, b}, {ab� $$}, I ′, D′ ∪ {(λ, $,λ)}),
where I ′ = {(a, aC, b), (a, $b, C), (a, b$, C)} and D′ = {(b, C$, b), (b, $C, b)}.

Insertion-deletion systems represent a powerful model of computation. If the
size of the system is not bounded, then an arbitrary grammar can be simulated.

Theorem 2.2.4. For any type-0 grammar G = (N, T, S, P) there is an insertion-

deletion system ID = (V, T, A, I, D) such that L(G) = L(ID).

Proof. Let V = N ∪ {#i : 1 ≤ i ≤ |P |} ∪ {$}. Let k1 = max{|u|, u → v ∈ P} and
k2 = max{|v|, u → v ∈ P}. Consider k = max(k1, k2). The set A is defined as
A = {kSk}.

For any rule i : u → v ∈ P we add insertion rules (xu, #iv, y), x, y ∈ (N ∪ {$})∗,
|xu| = k, |y| = k, to I and a deletion rule (x, u#i , v), x ∈ N ∪ {$} to D. Finally, a rule
(λ, $,λ) is added to D.

It is not difficult to see that such system simulates G. Indeed, for any derivation
w1uw2 =⇒ w1vw2 in G there is a following two-step derivation $kw1uw2$k =⇒
$kw1u#ivw2$k =⇒ $kw1vw2$k in ID that simulates the corresponding production
of G. If w ∈ L(G) then the string kwk will be obtained in ID. Additional symbols
$ can be deleted at this moment. So w ∈ L(ID).

For the converse inclusion it is enough to observe that if an insertion rule
(xu, #iv, y) is used, then no more insertions inside the corresponding site xu can be
done. So, the only way to eliminate the symbol #i is to perform the corresponding
deletion. Hence the computation in ID can be rearranged in such a way that an
insertion is followed by the corresponding deletion. This corresponds to a derivation
step in G, which completes the proof. �

As one can see from the previous theorem, the basic idea of grammar simulation
by insertion-deletion systems is a construction of a set of related insertion and
deletion rules that shall be used in some specified sequence thus performing a
grammar rule simulation. Usually, insertion rules introduce new non-terminal
symbols in the string which can be deleted only by corresponding deletion rules
(like symbols #i in theorem above). If the correct sequence is not performed, then

18 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

some non-terminal symbols that cannot be deleted will remain in the string. In
the subsequent sections different variants of this method are shown permitting to
decrease the size of used insertion and deletion rules.

2.2.1 The method of direct simulation

A simulation of type-0 grammars by insertion-deletion systems is the main method
permitting to prove the computational completeness of insertion-deletion systems.
However, when several such results are established, it is much easier to prove
the computational completeness by simulating another insertion-deletion systems.
For example:

Theorem 2.2.5. INS1,1
1 DEL0,0

2 = RE.

Sketch of Proof. The proof may be done by simulating insertion-deletion systems
of size (1, 1,1; 1, 1,1) which are known to be computationally complete, see [69,
70]. In this case it is enough to show how a deletion rule (a, b, c), a, b, c ∈ V
can be simulated using insertion and deletion rules of size (1, 1,1; 2, 0,0). Let
a , b , c. Then a deletion rule (a, b, c) with label i may be simulated by a
sequence of the following rules: {(a, }i , b), (b,]i , c), (a, [i , }i), ([i , {i , }i), ([i , Ki , {i ,)} ⊆ I
and (λ, {i}i ,λ), (λ, Kib,λ), (λ, [i]i ,λ) ⊆ D. The simulation is performed as follows (we
underline the inserted symbols):

w1abcw2 =⇒ins w1a}ibcw2 =⇒ins w1a[i}ibcw2 =⇒ins w1a[i }ib]icw2 =⇒ins

=⇒ins w1a[i {i}ib]icw2 =⇒ins w1a[iKi{i}ib]icw2 =⇒del

=⇒del w1a[iKib]icw2 =⇒del w1a[i]icw2 =⇒del w1acw2.

The idea behind the simulation is the following. Symbols [i and]i delimit the
deletion site. Symbol Ki performs the deletion of b, while symbols }i and {i ensure
that Ki is inserted only once after [i (hence only one b can be deleted). If all
the above steps are not performed, then some of additional symbols will remain
in the string, hence it will never become terminal. This is a common method of
simulation: the working (insertion or deletion) site is delimited by special symbols
in order to avoid interactions between several such sites and inside the site the
sequence of insertions and deletions permits to simulate exactly one application of
the corresponding rule. All additional symbols are related in such a way that the
whole sequence of insertions and deletions shall be performed in order to eliminate
all of them.

We remark that it would be wrong to simulate a deletion rule (a, b, c) by only
rules {(a, [i , b), (b,]i , c), ([i , Ki , b)} ⊆ I and (λ, Kib,λ), (λ, [i]i ,λ) ⊆ D, because it is
possible to erase several symbols b, which leads to a wrong computation:

w1abbcw2 =⇒ins w1a[ibbcw2 =⇒ins w1a[ibb]icw2 =⇒ins w1a[iKibb]icw2 =⇒del

=⇒del w1a[ib]icw2 =⇒ins w1a[iKib]icw2 =⇒del w1a[i]icw2 =⇒del w1acw2.

�

The above approach is very powerful and it permits to establish the computa-
tional completeness of the corresponding class of insertion-deletion systems in a

2.3. CONTEXT-FREE INSERTION-DELETION SYSTEMS 19

much easier way. For example, the proof of Theorem 2.2.5 in [61] (Theorem 6.3)
takes more than two pages. The method is quite generic, in order to use it one
should find a computational complete class of insertion-deletion systems having
same insertion or deletion parameters. Then, in order to prove the computational
completeness, it is sufficient to simulate corresponding deletion or insertion op-
eration. This is significantly easier than the simulation of a Chomsky grammar
because only left-hand or only right-hand side of a production u → v shall be
simulated.

Most of our results about the universality of insertion-deletion systems are
obtained using this technique.

2.3 Context-free insertion-deletion systems

In this section we study an important class of insertion-deletion systems: systems
with context-free rules. This bridges our work with early investigations from [33]
and [38] and answers old questions from this area.

2.3.1 Computational completeness results

We start with the proof of computational completeness of context-free insertion-
deletion systems. We give here the sketch of the proof. More details can be found
in [51].

Theorem 2.3.1. INS0,0
∗ DEL0,0

∗ = RE.

Sketch of proof. Let G = (N, T, S, P) be type-0 Chomsky grammar where N, T are
disjoint alphabets, S ∈ N , and P is a finite subset of rules of the form u → v with
u, v ∈ (N ∪ T)∗ and u contains at least one letter from N . We assume all rules from
P labeled in a one-to-one manner with elements of a set M, disjoint of N ∪ T .

We construct the following context-free insertion-deletion system: γ = (N ∪ T ∪
M, T, {S}, I, D), where

I = {(λ, vR,λ) | R : u → v ∈ P, R ∈ M, u, v ∈ (N ∪ T)∗},

D = {(λ, Ru,λ) | R : u → v ∈ P, R ∈ M, u, v ∈ (N ∪ T)∗}.

Two rules (λ, vR,λ) ∈ I, (λ, Ru,λ) ∈ D as above are said to be M-related.

We have the equality L(G) = L(γ).
The inclusion L(G) ⊆ L(γ) is obvious: each derivation step x1ux2 =⇒ x1vx2,

performed in G by means of a rule R : u → v, can be simulated in γ by an insertion
operation step x1ux2 =⇒ins x1vRux2 which uses the rule (λ, vR,λ) ∈ I, followed by
the deletion operation x1vRux2 =⇒del x1vx2 which uses the rule (λ, Ru,λ) ∈ D.

Consider now the inclusion L(γ) ⊆ L(G). The idea of the proof is to transform
any terminal derivation in γ into one in which any two consecutive (odd, even)
derivations steps simulate one production in G. Because the labels of rules from P

precisely identify a pair of M-related insertion-deletion rules, and the elements of
M are nonterminal symbols for γ, every terminal derivation with respect to γ must
involve the same number of insertion steps and deletion steps; moreover, these
steps are performed by using pairs of M-related rules from I and D.

20 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

For every terminal derivation in γ it is possible to construct an equivalent
derivation, using the same rules in a different order, and having only matching
pairs of consecutive rules, i.e. odd steps wi =⇒ins wi+1 are performed by a rule
(λ, vR,λ) ∈ I, while even steps wi+1 =⇒ wi+2 are performed by using the M-related
rule (λ, Ru,λ) ∈ D. Clearly, two consecutive steps of a derivation in γ which use
M-related rules (λ, vR, λ) ∈ I, (λ, Ru,λ) ∈ D, correspond to a derivation step in G

which uses the rule R : u → v. This implies the inclusion L(γ) ⊆ L(G). �

The context control of a type 0 grammar does not really disappear in the cor-
responding insertion-deletion system (as constructed in Theorem 2.3.1 above). It
rather changes its form, becoming a rigid synchronization of insertions and dele-
tions. In other terms, if a word u represents the context of a word v in a “context-
sensitive production” R : u → v, then in the corresponding insertion-deletion
system the word v will also be conditioned by the later occurrence of u in a suc-
cessful derivation (hence u is yet again the context of v). This condition is enforced
by the newly introduced symbol R which acts as a “remote context binder”. The
fact that the context u “seems” to appear after the context-controlled v is of no
importance, reflecting the reversal of generative process of the grammar.

We illustrate the construction from the proof with a simple example.

Example 2.3.2.

Consider the context-sensitive grammar G = ({S, X, Y }, {a, b, c}, S, P) with
the set of productions

P = {R1 : S → aSX, R2 : S → aY, R3 : YX → bYc,

R4 : cX → Xc, R5 : Y → bc}.

It is easy to see that this grammar generates the non-context-free language
L(G) = {a ibici | i ≥ 1}.

The obtained system is

γ = (V, {a, b, c}, {S}, I, D), where

V = {S, X, Y, a, b, c, R1, R2, R3, R4, R5},

I = {(λ, aSXR1,λ), (λ, aYR2,λ), (λ, bYcR3,λ),

(λ, XcR4,λ), (λ, bcR5)},

D = {(λ, R1S,λ), (λ, R2S, λ), (λ, R3YX, λ),

(λ, R4cX,λ), (λ, R5Y, λ)}.

Consider a derivation for the word a3b3c3 in grammar G:

S =⇒ aSX =⇒ aaSXX =⇒ aaaYXX =⇒ aaabYcX =⇒

=⇒ aaabYXc =⇒ aaabbYcc =⇒ aaabbbccc.

One of the corresponding derivations in γ is as follows:

S =⇒ins aSXR1S =⇒ins aaSXR1SXR1S =⇒ins aaaYR2SXR1SXR1S =⇒del aaaYR2SXXR1S =⇒del

=⇒del aaaYXXR1S =⇒ins aaabYcR3YXXR1S =⇒del=⇒del aaabYcXR1S =⇒ins aaabYXcR4cXR1S

=⇒ins aaabbYcR3YXcR4cXR1S =⇒del aaabbYcR3YXcR1S =⇒del aaabbYccR1S =⇒ins

=⇒ins aaabbbcR5YccR1S =⇒del aaabbbcR5Ycc =⇒del aaabbbccc.

Let us denote by L ⇆ L1
L2

the operation of insertion-deletion that inserts words

from L1 into L or deletes words belonging to L2 from L and by L ⇆∗ L1
L2

its reflexive
and transitive closure. Then the following representation of RE holds:

2.3. CONTEXT-FREE INSERTION-DELETION SYSTEMS 21

Theorem 2.3.3. Any language L ∈ RE can be represented in the following form

L =
(

{S}⇆∗ L1
L2

)

∩T ∗, where L1 and L2 are two finite languages and T is an alphabet.

In the proof of Theorem 2.3.1, the length of inserted or deleted strings is not
bounded, but a bound can be easily found by controlling the length of strings
appearing in the rules of the starting type-0 grammar:

Theorem 2.3.4. INS0,0
3 DEL0,0

3 = RE.

Proof. Let G = (N, T, S, P) be type-0 Chomsky grammar in Kuroda normal form.
Then, the rules of the context-free insertion-deletion system constructed in the
proof of Theorem 2.3.1 are of the form (λ, α, λ) with |α| ≤ 3, hence RE ⊆ INS0

3DEL
0
3 .
�

The total size of the system provided by the proof of Theorem 2.3.1 is 6. We can
improve by one this result, by decreasing by one either the length of the inserted
strings or the length of the deleted strings. We give below the proof ideas for both
cases. These proofs are done by a direct simulation of systems of size (3, 0,0; 3, 0,0)
using the method presented in 2.2.1. A different approach was used in [51] where
a grammar in Kuroda normal form is simulated.

Theorem 2.3.5. INS0,0
3 DEL0,0

2 = RE.

Proof Idea. A deletion rule i : (λ, abc,λ) can be simulated by an insertion rule
(λ, CiBiAi ,λ) and three deletion rules (λ, Aia,λ), (λ, Bib,λ) and (λ, Cic,λ). The sim-
ulation works as follows.

w1abcw2 =⇒ins w1CiBiAiabcw2 =⇒del w1CiBibcw2 =⇒del w1Cicw2 =⇒del w1w2.

The proof of the validity of this simulation may be obtained in a similar way to
Theorem 2.3.1. �

A counterpart of this result is also true: we can trade-off the length of inserted
and deleted strings.

Theorem 2.3.6. INS0,0
2 DEL0,0

3 = RE.

Proof Idea. An insertion rule i : (λ, abc,λ) can be simulated by three insertion rule
(λ, aAi ,λ), (λ, bBi ,λ), (λ, cCi ,λ) and a deletion rule (λ, CiBiAi ,λ). The simulation
works as follows.

w1w2 =⇒ins w1aAiw2 =⇒ins w1abBiAiw2 =⇒ins w1abcCiBiAiw2 =⇒del w1abcw2.

�

2.3.2 Non-completeness results

We show below that the obtained complexity parameters for context-free insertion-
deletion systems are optimal. If one of the parameters is further decreased, then
the language generated by such systems is included in the family of context-free
languages.

The main idea used to obtain this result is that the non-terminal alphabet can
be omitted, consequently, the deletion can also be omitted.

22 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

This can be argued as follows. Consider a derivation of w ∈ T ∗ starting from
an empty word. Let us mark the corresponding insertion pairs by an overline
and the corresponding deletion pairs by an underline. For example, suppose that
we insert aA, after that bC in position 1, DE in position 2, aA in position 6 and
bc in position 8. After that suppose that we delete EC, DA and Ab. Then the
corresponding marking will be as follows (the resulting word is w = abac):

a
_^]\

b
GF ED^^^^^^^^^^^^^^^^

D
'& %$^^̂^̂

E C"# !
^̂ ^̂ ^

ABC@A
^^^^^^^^^^^^^^^^

a
'& %$^̂^̂^

A b"# !
^̂ ^̂ ^

'& %$^̂^̂^

c

We may interpret symbols as labeled graph nodes and lines as edges. In this
case we obtain a graph. It is easy to observe that this graph consists of a set
of disjoint linear paths and/or cycles. Indeed, for each node, at most two edges
corresponding to an insertion and a deletion may be drawn. Let us also label edges
corresponding to insertions by i and edges corresponding to deletions by d. If we
take the example above, we obtain:

a
i

A
d

D
i

E
d

C
i

b

a
i

A
d

b
i

c

We may suppose that the first and the last edge of a path are marked with i. If
this is not the case, we add an additional node labeled by λ and we connect this
node with the last node by a path labeled by i. In particular, a path containing only

one letter a (corresponding to an insertion of a) will be written as λ
i
a . Hence,

each path consists of sequences of one insertion followed by one deletion.
We observe that for a derivation of a word w ∈ T ∗ there can only be paths of the

following 4 types:

1. Paths that start with a letter a ∈ T and that end with a letter b ∈ T .

2. Paths that have at one end a terminal letter a and at the other end λ.

3. Paths that have λ at both ends.

4. Cycles.

We remark that in Case 1 the path leads to the word ab (i.e., contributes to
the production of the subword ab of w), in the second case the path produces the
letter a and in the last two cases the path generates the empty word.

Without loss of generality, we may suppose that there are no paths of type 3
and 4, because by eliminating the corresponding insertions and deletions we obtain
the same word.

Suppose that we have a path marked by over- and underlines as above. We shall
understand by an interior of the path the set of all positions that are underlined. In
the example above, all positions between D and the first A form the interior of the
path. It is clear that no other path (of type 1 and 2) may be situated in the interior
of some path, because in this case the corresponding deletion cannot be performed.
Consequently, all paths are independent of each other, and we may group rules
corresponding to each path and compute paths one after another. Moreover, each
path contributes to at most two terminal symbols of the resulting word. Therefore,

2.3. CONTEXT-FREE INSERTION-DELETION SYSTEMS 23

the computation consists of insertion of terminal symbols corresponding to paths
ends as well as of deletion of terminal symbols.

Moreover, we can show that it is possible to precompute all possible paths.
This may be done by using the following observation. We may assume that each

path p has the following property: if A
i
− B belongs to p, then p does not contain

an insertion that has A in the left-hand side (A
i
− X) or B in the right-hand side

(Y
i
− B). This assertion is obvious, because if p contains such a pair, for example

p = · · ·
d
− A

i
− X

d
− · · ·

d
− A

i
− B · · · , then we may eliminate the subpath between

two A’s by obtaining an equivalent path (that leads to the same ends) p′ = · · ·
d
−

A
i
− B · · · . Hence, the length of each path is bounded by 2 · card(V), and we may

precompute all possible paths.
In a similar manner it can be proved that the nonterminal alphabet is not

relevant even in the general case. See [74] for details.

Lemma 2.3.7. Let ID = (V, T, A, I, D) be a context-free insertion-deletion system of

size (2, 0,0; 2, 0,0). Then it is possible to construct a system ID2 = (T, T, A2, I2, D2)
of size (2, 0,0; 2, 0,0) such that L(ID) = L(ID2).

Moreover, if we consider that the initial system is in the normal form, then
there are no deletions of terminal symbols. Hence we obtain that it is sufficient to
consider insertion-only systems as INS0,0

2 DEL0,0
2 ⊆ INS0,0

2 DEL0,0
0 .

We can describe insertion-deletion systems of size (2, 0,0; 0, 0,0) by the follow-
ing context-free grammar, which is a particular case of a more general result for
systems of size (∗, 1,1; 0, 0,0) given in [61].

Let ID = (T, T, A, I, ∅) be an insertion-deletion system of size (2, 0,0; 0, 0,0).
We construct the context-free grammar G = ({Z, S}, T, Z, P) as follows. Define P =
PA ∪ PI ∪ {S → λ}, where

PA = {Z → Sa1Sa2S . . . SanS | a1a2 . . . an ∈ A},

PI = {S → SaSbS | (λ, ab,λ) ∈ I} ∪ {S → SaS | (λ, a,λ) ∈ I}.

It is clear that L(G) = L(ID). Indeed, symbol Smarks all possible insertion positions
and permits the simulation of insertion rules as well.

Consequently, we obtain:

Theorem 2.3.8. INS0,0
2 DEL0,0

2 = INS0,0
2 DEL0,0

0 ⊂ CF .

Proof. The strictness of the inclusion follows from the fact that insertion-deletion
systems of size (2, 0,0; 0, 0,0) cannot generate the language L = {a∗b∗}. Indeed,
consider an arbitrary system ID = (T, T, A, I, ∅). It is easy to observe that for each
word w that belong to L(ID) words {x∗wx∗ | (λ, x,λ) ∈ I} belong to L(ID). Therefore,
if we suppose that L(ID) is not finite, then I , ∅, and then for any word w ∈ L(ID),
there are words {x∗wx∗ | (λ, x,λ) ∈ I} in L(ID). It is easy to see that L does not have
such a property. �

Theorem 2.3.9. INS0,0
2 DEL0,0

2 is incomparable with REG.

Proof. From the previous theorem we obtain that REG \ INS0,0
2 DEL0,0

2 , ∅. It is
also clear that the Dyck language Dn may be generated by a context-free insertion
system having insertion rules (λ, ai āi ,λ), 1 ≤ i ≤ n. Hence, the assertion is proved.

�

24 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

From the description above it is clear that languages generated by insertion-
deletion systems of size (2,0, 0; 2,0, 0) have a particular structure (below, we denote
by
∏

the concatenation operation).

Theorem 2.3.10. A language L belongs to INS0,0
2 DEL0,0

2 if and only if it can be

represented in the form

L = h

T ′∗ � ⋃

w=a1...an∈A

|w|
∏

i=1

DaiD

,

where A ⊆ T ∗ is a finite set of words, T is an alphabet, D is the Dyck language over

an alphabet T ′′ ⊆ T , h is a coding and T ′ ⊆ T .

In a similar way next two results can be obtained. See [74] for more details.

Theorem 2.3.11. INS0,0
m DEL0,0

1 = INS0,0
m DEL0,0

0 ⊂ CF for any m > 0.

Theorem 2.3.12. INS0,0
1 DEL0,0

p ⊂ REG for any p > 0.

Remark 2.3.13. Using the graphical representation of insertion and deletion rules
it is possible to understand why the computational power increases in the case
when the size of inserted or deleted string is increased to 3. In fact, if we construct
a similar insertion/deletion graph – by connecting inserted, respectively deleted,
symbols pairwise by edges labeled with i, respectively d, and following the ordering
of symbols in the string – then this graph may contain non-linear structures. For
example, suppose that we insert ABC, after that DEF in position 3, GHI in position
2 and finally deleteCD and BG. Then, the corresponding graph will be the following:

A
i

B
i

d

C
d

I
i

H
i

G D
i

E
i

F

The obtained graph no longer has a linear structure, hence it is not possible to
affirm anymore that it yields to only two symbols in the final string; moreover we
may increase the length of a word.

A similar thing happens when the deletion of strings of length 3 is permitted. In
the example below, we inserted AB, CD in position 2, FE in position 1 and deleted
EBC.

E
i

F

A
i

B

d llllll
d

RRRRRR

C
i

D

2.4 One-sided insertion-deletion systems

In this section we present results about insertion-deletion systems with one-sided
context, i.e., of size (n,m,m′; p, q, q′) where either m +m′ > 0 and m ∗m′ = 0, or
q + q′ > 0 and q ∗ q′ = 0, i.e., one of numbers in some couple is equal to zero.

One-sided insertion-deletion systems present features common to both contex-
tual and context-free insertion-deletion systems. More precisely, an insertion rule
having an empty left (or right) context can be applied any number of times like in

2.4. ONE-SIDED INSERTION-DELETION SYSTEMS 25

the case of context-free rules. However, while a context-free insertion can happen
anywhere in the string, in the case of a one-sided insertion the context indicates the
place where the insertion can happen. Similar properties are exposed by deletion
rules.

Example 2.4.1.

Consider a system ID = (T, T, {a}, I, ∅), where T = {a, b, c, d} and I is defined
as follows: I = {(a, b,λ), (b, c,λ), (c, d, λ), (d, a, λ)}.

Let L be the language generated by ID (L = L(ID)). It is clear that L can
defined by the following formulas:

L = L1 L1 = aL
∗
2 L2 = bL

∗
3 L3 = cL

∗
4 L4 = dL

∗
1

By substituting Li , for 2 ≤ i ≤ 4 into the description of Li−1 we obtain:

L1 = a(b(c(dL∗1)∗)∗)∗

Let R = {(abcd)∗(dcb)∗}. Consider the language L′′ = L ∩ R. Consider
the word w = abcddbc from R. This word is generated in L as follows (we
underline the inserted symbol):

a =⇒ ab =⇒ abb =⇒ abcb =⇒ abccb =⇒ abcdcb =⇒ abcddcb

We observe that the generation of the second part of w, the subword
dcb, is related to the generation of its first part abcd, because every letter
is inserted two times: first for the second part and after that for the first
part. It is also clear that this is the only way to generate the subword dcb.
Moreover, it can be easily seen that such a generation leads to a one-to-
one correspondence between abcd and dcb. Now, taking w it is possible to
insert a after the first letter d and to continue in a similar manner as be-
fore and so on, which gives wn = (abcd)n(dcb)n, n ≥ 1. It is also possible
to obtain more copies of abcd by performing insertions of four correspond-
ing letters after d, c, b or a in the first part of wn . Hence, we finally obtain
L′′ = {(abcd)i(dcb)j, j ≤ i}, which is a non-regular context-free language (by
the inverse morphism {abcd → x, dcb → y} it becomes the well known lan-
guage {x iyj,1 ≤ j ≤ i}). Since the intersection of two regular languages would
be regular, we obtain that L is a non-regular context-free language.

2.4.1 Computational completeness results

Generally, computational completeness proofs for one-sided insertion-deletion sys-
tems take into account the above behavior and ensure that additional symbols that
potentially can be inserted more than one time are inserted exactly once. This prop-
erty is usually satisfied by introducing groups of insertion and deletion rules of a
special form that can act only if a specified pattern is present in the string. If the
pattern is compromised by inserting or deleting more than one additional symbol,
then the whole group of rules will fail and non-terminal symbols will remain in the
string; moreover, it can be guaranteed that these symbols cannot be eliminated
anymore.

The proofs are based on simulation of insertion-deletion systems from Sec-
tions 2.2 and 2.3 which are known to generate all RE languages. The proof tech-
nique is very similar to the one from Theorem 2.2.5.

We remark that by symmetry, all results for classes INSm,m
′

n DEL
q,q′

p are also true

for classes INSm
′,m

n DEL
q′,q
p .

We give the sketch of proof for the following theorem.

26 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

Theorem 2.4.2. INS1,2
1 DEL1,0

1 = RE.

Sketch of Proof. The proof is based on the simulation of insertion-deletion systems
of size (1,1, 1; 1,1, 1) in normal form. Hence, it is sufficient to show how a deletion
rule (a, x, b), with a, b, x ∈ V , may be simulated by using rules of the target system,
i.e., insertion rules of type (a′, x′, b′c′) and deletion rules of type (a′′, y,λ).

Since the system is in normal form, we may assume that ab , λ. Moreover, we
may assume that the system has no insertion rules of the form (a, b, b), a, b ∈ V.
If this is the case then we replace every such rule by two insertion rules (a, X, b),
(a, b, X), and one deletion rule (b, X, b), where X is a new nonterminal.

A deletion rule i : (a, x, b), where i is the label of the rule, is simulated by
two insertion rules (x, Xi , b), (a, Di , xXi) and three deletion rules (Di , x,λ), (Di, Xi ,λ),
(a, Di ,λ).

Symbols Di and Xi act like left and right parentheses that surround x before
deleting it. The simulation is performed as follows. First, two insertions are per-
formed:

w1axbw2 =⇒ins w1axXibw2 =⇒ins w1aDixXibw2,

and then x is deleted:

w1aDixXibw2 =⇒del w1aDiXibw2.

At this moment symbols Xi and Di are deleted:

w1aDiXibw2 =⇒del w1aDiw2 =⇒del w1abw2.

Hence, every derivation in an insertion-deletion system of size (1,1, 1; 1,1, 1) can
be carried out in a system of size (1, 1, 2; 1,1, 0). On the other hand, we observe that
once being inserted, the nonterminals Xi , Di can be erased only by the rules shown
above. Moreover, if they are not deleted, then no symbol can be inserted at the right
of a or at the left of b. The rule (Di , x,λ) can delete at most one x as the pair Dix is
followed by Xib and b , x. Thus, there is a one-to-one correspondence between the
original and the new systems, which implies that the theorem statement holds. �

In a similar way the results from Table 2.1 are obtained. We remark that last
three results are counterparts of the first three results, where the sizes for inser-
tion and deletion are interchanged. However, in general, systems where insertion
parameters are 1,1, 0 are simpler than systems having deletion parameters 1,1, 0.
This is due to the fact that it is easier to control a repeated insertion of symbols
by using deletion than a repeated deletion of symbols by using insertion. In the
latter case, special “barrier” symbols shall be inserted in order to delimit exactly
one symbol to be deleted.

2.4.2 Non-completeness results

In what follows we show that there are classes of one-sided insertion-deletion sys-
tems that are not computationally complete.

We start with the following result.

Theorem 2.4.3. REG \ INS1,0
1 DEL1,1

1 , ∅.

2.4. ONE-SIDED INSERTION-DELETION SYSTEMS 27

Table 2.1: Computationally complete one-sided insertion-deletion systems

Size Reference
(1,1,2;1,1,0) [47]
(2,0,2;1,1,0) [47]
(2,0,1;2,0,0) [47]
(1,2,0;1,0,2) [48]
(1,1,0;1,1,2) [54]
(1,1,0;2,0,2) [54]
(2,0,0;2,0,1) [54]

Sketch of Proof. Consider the regular language L = {(ba)+}. We claim that there is
no insertion-deletion system ID of size (1,1,0;1,1,1) such that L(ID) = L. We can
suppose that ID is in normal form.

Letwf ∈ (ba)+ be a word generated by ID. Now consider an arbitrary ba block of
wf (wf = ̙baγ, ̙, γ ∈ (ba)∗) and take its letter a. Since there are no rules deleting
terminal symbols in ID this letter is either inserted by an insertion rule or it was a
part of an axiom. We may omit the latter case by taking a derivation that produces
a string that is long enough. Now suppose that this letter was inserted using a rule
(z, a,λ) ∈ I, z ∈ V :

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒
∗ ̙baγ = wf . (2.1)

This means that:
w1z =⇒

∗ ̙b

aw2 =⇒
∗ aγ

(2.2)

Now we remark that symbol a might be inserted twice:

w =⇒∗ w1zw2 =⇒ w1zaw2 =⇒ w1zaaw2. (2.3)

From (2.3) and (2.2) we obtain:

w =⇒∗ w1zaaw2 =⇒
∗ ̙baaγ

which is a contradiction. �

In way similar to Theorem 2.4.3 it is possible to show several non-completeness
results for one-sided insertion-deletion systems. Table 2.2 summarizes these re-
sults. We remark that systems having smaller parameters, like systems of size
(1, 1,0; 1, 1,0) are also not complete.

Now we shall concentrate on systems of size (1, 1,0; 1, 1,0). We show that the
language generated by such insertion-deletion systems is a particular subclass of
the family of context-free languages.

We start our investigations by systems that do not contain deletion rules. In
the book [61] it is already shown that the family INS1,1

n DEL0,0
0 , n ≥ 1, is a subset

of the family of context-free languages. From the Example 2.4.1 it follows that
even a smaller subclass, INS1,0

1 DEL0,0
0 , having one-sided insertion rules contains

non-regular context-free languages.

28 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

Table 2.2: Computationally non-complete one-sided insertion-deletion systems

Size Witness language Reference
(1,1,0;1,1,1) (ba)+ [47]
(1,1,1;1,1,0) anbn, n ≥ 0 [54]
(1,1,0;2,0,0) (ba)+ [46]
(2,0,0;1,1,0) (ba)+ [46]

Theorem 2.4.4. INS1,0
1 DEL0,0

0 ∩ (CF \ REG) , ∅.

The family INS1,0
1 DEL0,0

0 can be easily described by a context-free grammar. In
order to describe the family INS1,0

1 DEL1,0
1 it is important to show that all possible

deletions may be precomputed. We start with the following definitions.

Definition 2.4.5. For a word w ∈ L(ID) (u =⇒∗ w, u ∈ A) we construct the deriva-
tion tree of w iteratively as follows:

• Initially the tree has a root labeled by λ with children a1, · · · , an, where u =
a1 · · ·an. If n = 1, we can consider that the tree is rooted by a1.

• For a transition w′aw′′ =⇒ins w
′abw′′ we consider the node corresponding

to the letter a above and add as a left child a node labeled by symbol b.

• For a transitionw′abw′′ =⇒del w
′aw′′ we consider the node corresponding to

the letter b above and strike it out. In the future, this node is not considered
anymore – it is treated like it is replaced it by its children (the corresponding
links from the parent of b to all children should be added).

Having a derivation tree T for w, one can read w by concatenating labels of
vertices from the preordering of T by a depth-first search. Hence, the root corre-
sponds to the first letter of w and the rightmost label of the tree corresponds to the
last letter of w.

Example 2.4.6.

Let ID= ({a, b, c}, {a, b, c}, {a}, I, D) with I = {(a, b,λ), (a, a,λ), (b, c,λ), (a, c,λ)}
and D = {(c, b,λ)}. We can derivew = aaccca as follows:

a =⇒ aa =⇒ aba =⇒ aaba =⇒ aacba =⇒ aacbca =⇒ aacbcca =⇒ aaccca

This corresponds to the following sequence of trees leading to the derivation
tree ofw.

It is possible to show that in order to compute the effect of deletion rules for a
system of size (1, 1,0; 1,1, 0) it is enough to take only those derivation trees that do
not contain repetitions of letters in width and height, i.e. for every node there are
no child nodes labeled by same letter and any path from the root does not contain

2.5. GRAPH-CONTROLLED INSERTION-DELETION SYSTEMS 29

repetitions of letters. Any derivation involving deletions can be decomposed into
subderivations where the deletions happen only inside trees of the above form.
Since the number of corresponding subtrees is finite, corresponding deletions can
be precomputed in advance. This gives the following result:

Theorem 2.4.7. INS1,0
1 DEL1,0

1 ⊂ CF .

The details of the construction can be consulted in [46].

Example 2.4.8.

Let ID = (T, T, {a}, I, D) with T = {a, b, c, d, d′, e, e′, f }, I = {(a, b,λ), (a, d,λ),
(a, f,λ), (b, c,λ), (d, e, λ), (d, d′,λ), (e, e′,λ)} and D = {(c, d,λ), (c, e, λ)}. Denote
by τ one of trees not having repetitions in width and height and corresponding
to the word abcdee′d′f (see Fig. 2.3(a)). Consider also the grammar G1 =

(N, T, S, P), with N = S ∪ {Sa | a ∈ T }, P = {Sa → SabSbSa | (a, b,λ) ∈ I}.
Consider also the derivation tree τ′′ of the grammar G1 corresponding to τ

(see Fig. 2.3(b)).

(a) (b)

Figure 2.3: The trees for the derivation of abcdee′d′f from Example 2.4.8. The
derivation in ID (a) and in G1 (b).

In order to take into account the action of deletion rules from D, following
rules shall be added to G1:

Sa → SabSbcSdeSee′Se′SeSdd′Sd′SdSafSf Sa (the action of (c, d,λ))

Sa → SabSbcSee′Se′SeSdd′Sd′SdSafSf Sa (the action of (c, e,λ))

In order to finish the elimination of deletion rules, similar rewriting rules
shall be added after examination of other derivation trees without repetition
of letters.

2.5 Graph-controlled insertion-deletion systems

In previous sections it was shown that there are classes of insertion-deletion sys-
tems that cannot generate RE. Making an analogy to context-free grammars, a
natural extension of insertion-deletion systems using the graph-controlled or pro-
grammed approach can be done. Such model introduces states (or labels of the
program) associated to every insertion or deletion rule. The transition is performed
by applying corresponding rule and choosing the new state (thus the rule to be
applied) among a specific set of rules. Another definition of this model in the style

30 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

of [60] or [14] can be done. This definition supposes that there are disjoint groups
of insertion and deletion rules (corresponding to membranes from [60] or compo-

nents from [14]). The transition is performed by firstly choosing and applying one of
applicable rules from the current group and switching to the next group indicated
in the rule description.

2.5.1 Formal definition

A graph-controlled insertion-deletion system is a construct

Π = (V, T, A, H, I0, If , R) where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is a finite set of axioms,

• H is a set of labels associated (in a one-to-one manner) to the rules in R,

• I0 ⊆ H is the set of initial labels,

• If ⊆ H is the set of final labels, and

• R is a finite set of rules of the form l : (r, E) where r is an insertion or deletion
rule over V and E ⊆ H.

As it is common for graph controlled systems, a configuration ofΠ is represented
by a pair (w, i), where i is the label of the rule to be applied and w is the current
string. A transition (w, i) ⇛ (w′, j) is performed if there is a rule l : ((u, α, v)t , E)
in R such that w =⇒t w

′ by the insertion/deletion rule (u, α, v)t , t ∈ {ins, del}, and
j ∈ E. The result of the computation consists of all terminal strings reaching a final
label from an axiom and the initial label, i.e.,

L(Π) = {w ∈ T ∗ | (w′, i0)⇛∗ (w, if) for somew′ ∈ A, i0 ∈ I0, if ∈ If }.

We will use another rather similar definition for a graph-controlled insertion-
deletion system, thereby assigning groups of rules to components of the system:

A graph-controlled insertion-deletion system with k components is a construct

Π = (k, V, T, A, H, i0, if , R) where

• k is the number of components,

• V, T, A, H are defined as for graph-controlled insertion-deletion systems,

• i0 ∈ [1..k] is the initial component,

• if ∈ [1..k] is the final component, and

• R is a finite set of rules of the form l : (i, r, j) where r is an insertion or deletion
rule over V and i, j ∈ [1..k].

2.5. GRAPH-CONTROLLED INSERTION-DELETION SYSTEMS 31

The set of rules R may be divided into sets Ri assigned to the components

i ∈ [1..k], i.e., Ri = {l : (r, j) | l : (i, r, j) ∈ R}; in a rule l : (i, r, j), the number j
specifies the target component where the string is sent from component i after the
application of the insertion or deletion rule r. A configuration of Π is represented
by a pair (w, i), where i is the number of the current component (initially i0) and w
is the current string. We also say that w is situated in component i. A transition
(w, i)⇛ (w′, j) is performed as follows: first, a rule l : (r, j) from component i (from
the set Ri) is chosen in a non-deterministic way, the rule r is applied, and the string
is moved to component j; hence, the new set from which the next rule to be applied
will be chosen is Rj. More formally, (w, i) ⇛ (w′, j) if there is l : ((u, α, v)t , j) ∈ Ri
such that w =⇒t w

′ by the rule (u, α, v)t ; we also write (w, i)⇛l (w′, j) in this case.
The result of the computation consists of all terminal strings situated in component
if reachable from the axiom and the initial component, i.e.,

L(Π) = {w ∈ T ∗ | (w′, i0)⇛∗ (w, if) for somew′ ∈ A}.

Is is not difficult to see that graph-controlled insertion-deletion systems with
k components are a special case of graph-controlled insertion-deletion systems.
Without going into technical details, we just give the main ideas how to obtain
a graph-controlled insertion-deletion system from a graph-controlled insertion-
deletion system with k components: for every l : ((u, α, v)t , j) ∈ Ri we take a rule
l : (i, (u, α, v)t , Lab(Rj)) into R where Lab(Rj) denotes the set of labels for the rules in
Rj; moreover, we take I0 = Lab(Ri0) and If = Lab(Rif). Finally, we remark that the
labels in a graph-controlled insertion-deletion system with k components may even
be omitted, but they are useful for specific proof constructions. On the other hand,
by a standard powerset construction for the labels (as used for the determinization
of non-deterministic finite automata) we can easily prove the converse inclusion,
i.e., that for any graph-controlled insertion-deletion system we can construct an
equivalent graph-controlled insertion-deletion system with k components.

We define the communication graph of a graph-controlled insertion-deletion sys-
tem with k components to be the graph with nodes 1, . . . , k having an edge between
node i and j if and only if there exists a rule l : ((u, α, v)t , j) ∈ Ri . In [60], 5.5, special
emphasis is laid on graph-controlled insertion-deletion systems with k components
whose communication graph has a tree structure, as we observe that the presenta-
tion of graph-controlled insertion-deletion systems with k components given above
in the case of a tree structure is rather similar to the definition of insertion-deletion
P systems as given in [60]; the main differences are that in P systems the final
component if contains no rules and corresponds with the root of the communica-
tion tree; on the other hand, in graph-controlled insertion-deletion system with k

components, each of the axioms can only be situated in the initial component i0,
whereas in P systems we may situate each axiom in various different components.

Throughout the rest of this section we shall only use the notion of graph-
controlled insertion-deletion systems with k components, as they are easier to
handle and sufficient to establish computational completeness in the proofs of
our main results presented in the succeeding section. By GCIDk(insm,m

′

n , del
q,q′

p)
we denote the family of languages L(Π) generated by graph-controlled insertion-
deletion systems with at most k components and insertion and deletion rules of
size at most (n,m,m′; p, q, q′). We replace k by ∗ if k is not fixed. The letter “G”
is replaced by the letter “T” to denote classes whose communication graph has a

32 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

tree structure. Some results for the families TCIDk(insm,m
′

n , del
q,q′

p) can directly be
derived from the results presented in [46, 60], for the corresponding families of
insertion-deletion P systems ELSPk(insm,m

′

n , del
q,q′

p), yet the results we present in
the succeeding section either reduce the number of components for systems with
an underlying tree structure or else take advantage of the arbitrary structure of the
underlying communication graph thus obtaining computational completeness for
new restricted variants of insertion and deletion rules.

Example 2.5.1.

Consider the following graph-controlled insertion-deletion system
Π = (3, T, T,λ, H, 1, 1, R), with T = {a, b, c}, H = {1, 2, 3} and R = R1 ∪ R2 ∪ R3,
where R1= {1 : ((λ, a,λ)ins, 2)}, R2 = {2 : ((λ, b,λ)ins, 3)}, R3 = {3 : ((λ, c,λ)ins, 1)}.

The system is inserting consecutively a, b and c. Therefore it is clear that
L(Π) = {w ∈ {a, b, c}∗ : |w|a = |w|b = |w|c}, which is not a context-free language.

We remark that using two nodes, it is possible to generate the non-regular
language L = {w ∈ {a, b}∗ : |w|a = |w|b} in a similar manner. The communica-
tion graph has the form of a tree in this case.

2.5.2 Results

We start with the following result from [4].

Theorem 2.5.2. PsTCID∗(ins
0,0
1 , del0,01) ⊆ PsGCID∗(ins

0,0
1 , del0,01) = PsMAT .

However, in terms of the generated language such systems are not very power-
ful. Like in the case of context-free insertion-deletion systems there is no control
on the position of insertion. Hence, the language L = {a∗b∗} cannot be generated,
for insertion strings of any size. Hence we obtain:

Theorem 2.5.3. REG\GCID∗(ins
0,0
n , del0,01) , ∅, for any n > 0.

However, there are non-context-free languages that can be generated by such
systems (even without deletion). From Example 2.5.1 we obtain:

Theorem 2.5.4. GCID∗(ins
0,0
1 , del0,00) \ CF , ∅.

We show a more general inclusion:

Theorem 2.5.5. GCID∗(ins
0,0
n , del0,01) ⊂ MAT , for any n > 0.

Sketch of Proof. We can suppose that the system is in normal form, hence, in par-
ticular, there are no deletions of terminal symbols. Consider a graph-controlled
insertion-deletion system Π = (O, T,w, p0, h, R) and H = Lab(R). Such a system
can be simulated by the following matrix grammar G = (O ∪ H, T, S, P).

For insertion instruction ((λ, a1 · · ·an ,λ)ins, q) in component p, let P contain the
matrix {p → q, D → Da1D · · ·DanD}. For any deletion instruction ((λ, A,λ)del , q) in
component p, let P contain the matrix {p → q, A → λ}. We also add to P three
additional matrices: {h → λ}, {D → λ} and {S → p0Da1D · · ·DamD} (w = a1 · · · am).

The above construction correctly simulates the system Π. Indeed, symbols
D represent placeholders for all possible insertions. The first rule in the matrix
simulates the navigation between cells. �

Next theorem shows that graph-controlled insertion-deletion systems are strict-
ly more powerful than ordinary insertion-deletion systems of the same size.

2.5. GRAPH-CONTROLLED INSERTION-DELETION SYSTEMS 33

Theorem 2.5.6. TCID5(ins1,0
1 , del1,01) = RE.

The proof is based on the following idea. Any rule AB → CD of a type-0 grammar
in Kuroda normal form can be simulated in 4 stages: (1) erasing A, (2) erasing B,
(3) inserting D and (4) inserting C. Every operation can be done by a dedicated
component with the help of an additional symbol that marks the position before A
and that is used in all operations. A typical computation may look as follows:

w1ABw2 ⇛ w1PiABw2 ⇛ w1PiBw2 ⇛ w1Piw2 ⇛

w1PiDw2 ⇛ w1PiCDw2 ⇛ w1CDw2

Other rules of the grammar can be simulated in a similar manner. We leave
technical details that can be consulted in [48].

In a similar way it is possible to obtain a characterization of RE languages by
the family TCID5(ins1,0

1 , del0,11), i.e. with contexts for insertion and deletion on
different sides. Taking also into account the symmetrical cases we get:

Corollary 2.5.7. TCID5(ins1,0
1 , del0,11) = TCID5(ins0,1

1 , del1,01) =
TCID5(ins0,1

1 , del0,11) = RE.

Using a similar technique it is possible to prove following theorems.

Theorem 2.5.8. TCID5(ins1,0
1 , del0,02) = TCID5(ins0,1

1 , del0,02) = RE.

Theorem 2.5.9. [49] TCID5(ins0,0
2 , del1,01) = TCID5(ins0,0

2 , del0,11) = RE.

However, in some cases graph-controlled insertion-deletion systems are still
not complete.

Theorem 2.5.10. REG \ GCID∗(ins
0,0
2 , del0,02) , ∅.

Sketch of Proof. We show that Lab = {a∗b} < GCIDk(ins0,0
2 , del0,02), for any k ≥ 1.

Assume the converse, and let Π be a graph-controlled insertion-deletion system
having context-free rules that may insert or delete at most two symbols and that
L(Π) = Lab. After a reasoning similar to the one from Lemma 2.3.7 we obtain that for
every finite derivation in Π one can construct a partition of rules P1 ∪ · · · ∪ Pr , r ≥ 1
such that the overall effect of rules from each Pi , i = 1, . . . , r is the context-free
insertion of at most two terminals. By taking a word of sufficient length it is clear
that some applications of rules from Pi which insert a or aa should be performed.
Since the insertion is context-free, such an application can happen at the end of
the word leading to a word having a preceded by b, which is a contradiction. �

2.5.3 Graph-controlled insertion-deletion systems with priorities

A further control can be added to graph-controlled insertion-deletion systems by
introducing a priority of deletion over insertion, i.e., if deletion and insertion rules
are applicable, then one of deletion rules will be chosen. This condition can also be
viewed as a particular case of the graph-controlled insertion-deletion systems if the
latter have rules with appearance checking. We denote by TCIDk(insm,m

′

n < del
q,q′

p)
the families of languages generated by corresponding classes.

34 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

Using priorities it is possible to further decrease the length of contexts needed
for computational completeness. It is quite astonishing that insertion-deletion sys-
tems that insert or delete one symbol in a context-free manner can generate PsRE.
In case of general communication graph this is particularly easy to see: jumping
to an instruction of a register machine corresponds to switching to the associ-
ated component, and the entire construction is a composition of graphs shown in
Fig. 2.4. The decrement instruction works correctly because of priority of deletion
over insertion. A configuration (p, x1, · · · , xn) of a register machine is encoded by
strings Perm(pAx1

1 · · ·A
xn
n).

/.-,()*+
p

((λ,Ak ,λ)ins,q) //

((λ,Ak ,λ)ins,r)
��

/.-,()*+
q

/.-,()*+
r

/.-,()*+
p

((λ,Ak ,λ)del ,q) //

((λ,N,λ)ins,p′)
��

/.-,()*+
q

/.-,()*+
p′
((λ,N,λ)del ,r) ///.-,()*+

r

Figure 2.4: Simulating (p, Ak+, q, r)(left) and (p, Ak−, q, r) (right).

For the tree-like communication graph, the proof is more sophisticated and
needs a communication graph depicted at Fig. 2.5. The main idea is to use a
rule ((λ, p,λ)del , p+1) if p is an increment instruction or ((λ, p,λ)del , p−1) if p is a
decrement instruction and redirect the computation to corresponding components
that simulate only one instruction of the register machine. This gives:

Theorem 2.5.11. PsTCID∗(ins
0,0
1 < del0,01) = PsRE.

/.-,()*+
1

/.-,()*+
0/.-,()*+

2
KK

KK
KK

K

for every p ∈ Q+ /.-,()*+
3

iiiiiiiiiiiii

UUUUUUUUUUUUU /.-,()*+
4

for every p ∈ Q−

/.-,()*+
p+1

/.-,()*+
p−1

VVVVVVVVVVVVV

/.-,()*+
p+2

/.-,()*+
p−2

/.-,()*+
p0

2/.-,()*+
p+3

/.-,()*+
p−3

/.-,()*+
p0

3

_ _ _ _�

�

�

�

�

�

�

�

�

�

�

�
_ _ _ _

_ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

�

�

�

�

�

�
_ _ _ _ _ _ _ _ _ _ _

Figure 2.5: Communication graph for Theorem 2.5.11. The structures in the
dashed rectangles are repeated for every instruction of the register machine.

Although the above theorem shows that corresponding systems are quite pow-
erful, they cannot generate RE without control on the place where a symbol is
inserted (REG\GCID∗(ins

0,0
n < del0,01) , ∅ for any n > 0, see Theorem 2.5.3). Once

we allow a context in insertion or deletion rules, they can.

Theorem 2.5.12. TCID∗(ins
0,1
1 < del0,01) = RE.

For the proof it suffices to simulate register machines with WRITE instructions.
It is possible to implement this instruction as an ADD instruction and use a special
marker (deleted at the end) to place the “written” symbol at the left of the marker.

In a similar way following result can be obtained.

2.6. BIBLIOGRAPHICAL REMARKS 35

Theorem 2.5.13. TCID∗(ins
0,0
1 < del1,01) = RE.

However in this case the proof is more technical and needs additional compo-
nents, see [4]. The output symbols are appended at the end of the string and the
deletion is used to check for erroneous evolutions the symbol is not added at the
end. A similar can be done with a context-free deletion of two symbols.

Theorem 2.5.14. TCID∗(ins
0,0
1 < del0,02) = RE.

We mention that the counterpart of Theorem 2.5.14 obtained by interchanging
parameters insertion and deletion rules is not true, see Theorem 2.5.3.

2.6 Bibliographical remarks

Insertion systems, without using the deletion operation, were first considered
in [30], however the idea of the context adjoining was exploited long time before
by [50]. Context-free insertion systems as a generalization of concatenation were
first considered in [33, 34]. A formal language study of both context-free insertion
and deletion operations was done in [38], however the operations were considered
separately. Both operations were first considered together in [40] and related for-
mal language investigations can be found in several places; we mention only [53]
and [59]. The biological motivation of insertion-deletion operations leaded to their
study in the framework of molecular computing, see, for example, [20], [39], [61],
[69]. An interesting study of the deletion operation can be found in [21].

The universality of context-free insertion-deletion systems of size (2, 0,0; 3, 0,0)
and (3, 0, 0; 2,0, 0) was shown in [51], while the optimality of this result was shown
in [74]. The last article suggested to consider the sizes of each context as a com-
plexity measure and not the maximum as it was done before. One-sided insertion-
deletion systems were firstly considered in [54] and the graph-controlled variant
in [48]. Graph-controlled insertion-deletion systems with priorities were introduced
in [4].

36 CHAPTER 2. STUDY OF INSERTION-DELETION SYSTEMS

Chapter 3

Study of P systems

The initial intuition for membrane computing, also called P systems, comes from
the cell biology, more exactly it was given by the structure of a living cell, whose
hierarchical organization is formalized as a set of nested compartments delimited
by membranes. Each compartment can contain objects (chemicals) which can
participate in evolution rules (reactions) and thus evolve in time. One of the most
important features of P systems is that an object can leave the compartment where
it was previously situated and move through the system.

The freedom of the choice of types of objects and evolution rules transforms
the model of membrane computing into a powerful framework that can be adapted
to many case studies. Traditionally, P systems are investigated from the com-
putational completeness and complexity points of view, however there are a lot
of successful applications in modeling of biological processes. We refer to the
books [62, 12] and to the web page [82] for more details.

We can define, in an informal way, a P system Π as a collection of cells (also
called membranes) C = {C1, . . . , Cn} each of them containing, in most cases, multi-
sets of objects. Another component of a P system is the set of rules R. Every rule
r ∈ R permits to rewrite a part of the multiset contained in Ci , 1 ≤ i ≤ n. Rules
of R induce a relation between cells which can be represented by a hypergraph
whose nodes correspond to cells of C and the hyperedges are given by R (there is
a hyperedge between nodes i1, . . . , ik iff there is r ∈ R involving at the same time
aforementioned cells). We call this hypergraph the communication (hyper)graph of
Π. In some cases R can contain rules that change the communication (hyper)graph
by adding new nodes and links. This happens, for example, in the case of P systems
with active membranes or P systems with membrane division/creation.

Historically, a particular class of P systems is widely investigated; these are the
systems whose communication graph has the form of a tree. This corresponds to
the initial intuition about P systems which considers them as a formalization of
a living cell. In this case, the root of the tree corresponds to the skin membrane
and inner nodes correspond to some inner membranes of a cell. The tree structure
also permits to define the nesting of membranes in each other (child membranes
are nested in the parent membrane). This has a direct correspondence in the
biology. Theoretical investigations further extended the structure to a graph (tissue
P systems) and hypergraph (network of cells).

The rules in the framework of P systems can be arbitrary, however in most
of the cases simple rules are used corresponding to trivial local transformations.

37

38 CHAPTER 3. STUDY OF P SYSTEMS

These rules fall into two classes according to the fact if more than one membrane
is used to determine the applicability of the rule.

For the applicability of rules of the first class one needs to investigate only the
contents of one membrane. Hence, in some sense these rules are attached to the
corresponding membrane. A typical example of such rules are multiset rewriting
rules u → v, where u is a multiset over V , the alphabet of Π, while v is a multiset
over V × {tark | 1 ≤ k ≤ n}. The multiset u gives the symbols that shall be removed
from the membrane, while v gives the new distribution of objects: a symbol (a, tark)
of v denotes that an object a will be added to the membrane k. The notation tark

can be replaced by here if k is the current membrane, out if k is the parent of the
current membrane or by in if k is one of the children of the current membrane.
In the latter case, one of children membranes will be chosen for communication,
non-deterministically.

In order to apply rules from the second class, one needs to check the contents
of several membranes. In the simplest and most common case, the contents of two
membranes is checked. In this case, it is possible to associate the corresponding
rule to the edge linking the two membranes. An example of rules of this class
are antiport rules, which exchange specific multisets of objects in two membranes.
Using more complex rules that check several membranes, it is possible to obtain a
direct correspondence with (colored) Petri Nets.

Another interesting class of P systems are communication P systems. In these
systems objects cannot be rewritten and they can only be moved from one mem-
brane to another. However, in order to have arbitrary computations an infinite
supply of objects of some type shall be present in the environment.

It is worth to note that most of P systems dealing with symbol objects can be
considered as ordinary multiset rewriting systems. This becomes obvious if every
object is labeled by the number of the membrane in which it is situated. Hence the
membrane structure and different types of rules can be viewed as a restriction of
form of rules of a multiset rewriting system. However, considering a P system in
such a way discards most of important information given by the structuring of the
system.

The evolution of P systems is intuitively clear, rules are applied in a non-
deterministic maximally parallel manner, which corresponds to a full consumption
of ingredients used to perform the operations. However, further investigations of
P systems, especially the definition of new transition modes, showed that such in-
formal definitions cannot be applied in all cases and that a formal definition of the
computational step should be done. The first attempt to formalize this was done
in [26] and Section 3.1 presents this approach in details.

The obtained formal definition permitted to construct new classes of P systems
with interesting properties as well as a comparison of existing classes of P systems.
An overview of these results is given in Subsection 3.1.2.

3.1. SEMANTICS STUDY 39

3.1 Semantics study

In this section we shall give a precise mathematical definition of P systems. Al-
though Section 3.5 of [60] gives a formal definition of some classes of P systems,
there are a lot of classes defined in an informal way. Since the maximal paral-
lelism is a quite simple concept, usually there are no ambiguities concerning the
definitions. However, with the introduction of the minimal parallelism [11], the in-
formal definition was not sufficient as several interpretations of this concept could
be done. The first attempt to formalize it and to have a uniform definition for many
kinds of P systems was done in [26]. In this section we shall follow the line of the
aforementioned article.

We shall concentrate our effort on the description of P systems with static
structure, i.e. where the number of cells/membranes does not evolve in time.

3.1.1 Formal definition of P systems

Since P systems represent computational devices, their formal definition is similar
to many such definitions in the area. Hence, in order to define what is a P system
we shall answer the following questions:

• What is a configuration of a P system?

• How a transition between two configurations is computed?

• When the computation halts?

• What is the result of the computation?

Below we give an answer to these questions which is valid for most types of
P systems (with static structure) known up to now. Such an answer requires
an abstraction of different types of P systems, more precisely of their rules and
features.

We design a general class of multiset rewriting systems containing, in partic-
ular, P systems and tissue P systems. We recall that any P system may be seen
at the most abstract level as a multiset rewriting system with only one compart-
ment, encoding the membrane as part of the object representation. However, this
approach completely ignores the inner structure of the system because all struc-
tural information is hidden (by an encoding) which makes it difficult do deduce any
compartment-related information or to model (processes in) biological systems. At
a lower level of abstraction, a P system may be seen as a network of cells (com-
partments) evolving with multi-cell multiset rewriting rules. At the lowest level, the
graph/tree structure appears as well as a specialization of rules which are of a very
particular form. This last level is usually used in the area of P systems because it
permits to easily specify the system and to incorporate different new types of rules.

In order to be quite general, we place our reasoning at the abstract level of
networks of cells, already considered in a slightly different way in [77] and [26].

Definition 3.1.1. A network of cells of degree n ≥ 1 is a construct

Π = (n, V,w, Inf, R)

where

40 CHAPTER 3. STUDY OF P SYSTEMS

1. n is the number of cells;

2. V a finite alphabet;

3. w = (w1, . . . , wn) where wi ∈ 〈V,N〉, for all 1 ≤ i ≤ n, is the finite multiset

initially associated to cell i;

4. Inf = (Inf1, . . . , Infn) where Infi ⊆ V , for all 1 ≤ i ≤ n, is the set of symbols

occurring infinitely often in cell i (in most of the cases, only one cell, called the

environment, will contain symbols occurring with infinite multiplicity);

5. R is a finite set of interaction rules of the form

(X → Y ; P, Q)

where X = (x1, . . . , xn), Y = (y1, . . . , yn), xi , yi ∈ 〈V,N〉, 1 ≤ i ≤ n, are vectors
of multisets over V and P = (p1, . . . , pn), Q = (q1, . . . , qn), pi , qi , 1 ≤ i ≤ n
are finite sets of multisets over V . We will also use the following notation
corresponding to the list representation of sparse vectors:

(

(x1, 1) . . . (xn , n)→ (y1, 1) . . . (yn , n); (p1, 1) . . . (pn, n), (q1,1) . . . (qn , n)
)

for a rule (X → Y ; P, Q); moreover, if some pi or qi is an empty set or some xi
or yi is equal to the empty multiset, 1 ≤ i ≤ n, then we may omit it from the
specification of the rule.

A network of cells consists of n cells, numbered from 1 to n, that contain
(possibly infinite) multisets of objects over V ; initially cell i contains wi ∪ Inf

∞
i .

Cells can interact with each other by means of the rules in R. An interaction rule

(

(x1, 1) . . . (xn , n)→ (y1,1) . . . (yn , n); (p1, 1) . . . (pn , n), (q1, 1) . . . (qn, n)
)

rewrites objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n, if every cell k,
1 ≤ k ≤ n, contains all multisets from pk and does not contain any multiset from
qk. In other words, the first part of the rule specifies the rewriting of symbols, the
second part of the rule specifies permitting conditions and the third part of the
rule specifies the forbidding conditions. In the next section we give an even more
detailed precise definition for the application of an interaction rule.

It is clear that the set of interaction rules induces a hypergraph structure over
the set of cells (vertices). Indeed, for an interaction rule r of the form above, the set

{

i | xi , λ or yi , λ or pi , ∅ or qi , ∅
}

defines a hyperedge between the interacting cells. In most of the cases, this relation
is binary, so corresponding systems are defined on a graph and even tree structure.

We note that most variants of P systems with static structure can be translated
in terms of network of cells with specific restrictions of the above rule.

Now we can define the concept of the configuration.

Definition 3.1.2. Consider a network of cells Π = (n, V,w, Inf, R). A configuration

C of Π is an n-tuple of multisets over V (u′1, . . . , u
′
n) with u′i ∈ 〈V,N∞〉, 1 ≤ i ≤ n; in

the following, C will also be described by its finite part Cf only, i.e., by (u1, . . . , un)
satisfying u′i = ui ∪ Inf

∞
i and ui ∩ Infi = ∅, 1 ≤ i ≤ n.

3.1. SEMANTICS STUDY 41

In the sense of the preceding definition, the initial configuration of Π, C0, is
described by w, i.e., Cf0 = w = (w1, . . . ,wn), whereas w′i = wi ∪ Inf

∞
i , 1 ≤ i ≤ n, is

the initial contents of cell i, i.e., C0 = w ∪ Inf
∞.

Definition 3.1.3. We say that an interaction rule r = (X → Y ; P, Q) is eligible for
the configuration C with C = (u1, . . . , un) if and only if for all i, 1 ≤ i ≤ n, we have

• for all p ∈ pi , p ⊆ ui (every p ∈ pi is a submultiset of ui),

• for all q ∈ qi , q " ui (no q ∈ qi is a submultiset of ui), and

• xi ⊆ ui (xi is a submultiset of ui).

Moreover, we require that xj ∩ (V − infj) , ∅ for at least one j, 1 ≤ j ≤ n. This
last condition ensures that at least one symbol appearing only in a finite number
of copies is involved in the rule. The set of all rules eligible for C is denoted by
Eligible(Π, C).

The marking algorithm. Let C = (v1, . . . , vn) be a configuration of a network of
cells Π and Cf its finite description; moreover, let R′ be a finite multiset of rules
from R consisting of the (copies of) rules r1, . . . , rk, where for each i, 1 ≤ i ≤ k, we
have ri = (Xi → Yi ; Pi , Qi) ∈ Eligible(Π, C), Xi = (xi,1, . . . , xi,n), Yi = (yi,1, . . . , yi,n).
Moreover, let X ′i and Y ′i , 1 ≤ i ≤ k, be the vectors of finite multisets from 〈V,N〉
with Xi,j = X ′i,j ∪ Inf

∞
j and X ′i,j ∩ Infj = ∅, 1 ≤ j ≤ n. Then:

1. consider a vector of multisets Mark0(Π, C, R′) = (λ, . . . ,λ) of size n and let
i = 1;

2. if X ′i ≤ C
f −Marki−1(Π, C, R′), then set

Marki(Π, C, R
′) = Cf −Marki−1(Π, C, R′) − X ′i ,

otherwise, end the algorithm and return false;

3. if i = k then end the algorithm and return true, otherwise set i to i + 1 and
return to step 2.

If the marking algorithm returns true for the pair (C, R′) then we say that the
configuration C may be marked by R′, and define Mark(Π, C, R′) = Markk(Π, C, R′).

Definition 3.1.4. Consider a configuration C and R′ be a multiset of rules from
Eligible(Π, C) (i.e., a multiset of eligible rules). We say that the multiset of rules
R′ is applicable to C if the marking algorithm as described above returns true

and Mark(Π, C, R′). The set of all multisets of rules applicable to C is denoted by
Appl(Π, C).

We remark that the marking algorithm is not the only way to define the set
Appl(Π, C). There are other possibilities of its definition, here we just wanted to
give at least one precise algorithm of its computation.

Definition 3.1.5. Consider a configurationC and a multiset of rules R′∈Appl(Π, C).
According to the marking algorithm described above, we define the configuration
being the result of applying of R′ to C as

Apply(Π, C, R′) = (C − Mark(Π, C, R′)) + Σ1≤i≤kY
′
i .

42 CHAPTER 3. STUDY OF P SYSTEMS

We remark that Apply(Π, R′, C) is again a configuration.

For the specific derivation modes to be defined in the following, the selection of
multisets of rules applicable to a configuration C may only be a specific subset of
Appl(Π, C).

Definition 3.1.6. For the derivation mode δ, the selection of multisets of rules
applicable to a configuration C is denoted by Appl(Π, C, δ).

It should be made clear that Appl(Π, C, δ) ⊆ Appl(Π, C).

For a derivation mode we now can define how to obtain a next configuration from
a given one by applying an applicable multiset of rules according to the constraints
of the underlying derivation mode:

Definition 3.1.7. Given a configuration C of Π and a derivation mode δ, we may
choose a multiset of rules R′ ∈ Appl(Π, C, δ) in a non-deterministic way and apply
it to C. The result of this transition step from the configuration C with applying R′

is the configuration Apply(Π, C, R′), and we also write C =⇒(Π,δ) C
′. The reflexive

and transitive closure of the transition relation =⇒(Π,δ) is denoted by =⇒∗(Π,δ).

Especially for computing and accepting devices, the notion of determinism is of
major importance. For networks of cells, determinism can be defined as follows:

Definition 3.1.8. A configuration C is said to be accessible in Π with respect to
the derivation mode δ if and only if C0 =⇒

∗
(Π,δ) C (C0 is the initial configuration of

Π). The set of all accessible configurations in Π is denoted by Acc(Π).

Definition 3.1.9. A network of cellsΠ is said to be deterministic with respect to the
derivation mode δ if and only if |Appl(Π, C, δ)| = 1 for any accessible configuration
C.

Halting conditions

A halting condition is a predicate applied to an accessible configuration. The system
halts according to the halting condition if this predicate is true for the current
configuration. In such a general way, the notion of halting with final state or signal
halting can be defined as follows:

Definition 3.1.10. An accessible configuration C is said to fulfill the signal halting

condition or final state halting condition (S) if and only if C ∈ S(Π, δ) where

S(Π, δ) = {C′ | C′ ∈ Acc(Π) and State(Π, C′, δ) = true}.

Here State(Π, C′, δ) means a decidable feature of the underlying configuration
C′, e.g., the occurrence of a specific symbol (signal) in a specific cell.

The most important halting condition used from the beginning in the P systems
area is the total halting, usually simply considered as halting:

Definition 3.1.11. An accessible configuration C is said to fulfill the total halting

condition (H) if and only if no multiset of rules can be applied to C with respect to
the derivation mode anymore, i.e., if and only if C ∈ H(Π, δ) where

H(Π, δ) = {C′ | C′ ∈ Acc(Π) and Appl(Π, C′, δ) = ∅}.

3.1. SEMANTICS STUDY 43

The adult halting condition guarantees that we still can apply a multiset of rules
to the underlying configuration, yet without changing it anymore:

Definition 3.1.12. An accessible configuration C is said to fulfill the adult halting

condition (A) if and only if C ∈ A(Π, δ) where

A(Π, δ) = {C′ | C′ ∈ Acc(Π), Appl(Π, C′, δ) , ∅ and
Apply(Π, C′, R′) = C′ for every R′ ∈ Appl(Π, C′, δ)}.

We should like to mention that we could also consider A(Π, δ)∪H(Π, δ) instead
of A(Π, δ).

Computation, goal and result of a computation

A computation in a network of cells Π, Π = (n, V,w, Inf, R), starts with the initial
configuration C0, C0 = w ∪ Inf

∞, and continues with transition steps according to
the chosen derivation mode until the halting condition is met.

The computations with a network of cells may have different goals, e.g., to gen-
erate (gen) a (vector of) non-negative integers in a specific output cell (membrane)
or to accept (acc) a (vector of) non-negative integers placed in a specific input cell
at the beginning of a computation. Moreover, the goal can also be to compute
(com) an output from a given input or to output yes or no to decide (dec) a specific
property of a given input.

The results not only can be taken as the number (N) of objects in a specified
output cell (we also write Ni if corresponding cell has the label i), but, for example,
also be taken modulo a terminal alphabet (T) or by subtracting a constant from the
result (−k).

Such different tasks of a network of cells may require additional parameters
when specifying its functioning, e.g., we may have to specify the output/input
cell(s) and/or the terminal alphabet.

We shall not go into the details of such definitions here, we just mention that
the goal of the computation γ ∈ {gen, acc, com, dec} and the way to extract the
results ρ (usually taken from halting computations) are two other parameters to be
specified and clearly defined when defining the functioning of a network of cells or
of a membrane system.

Taxonomy of networks of cells and (tissue) P systems

For a particular variant of networks of cells or especially P systems/tissue P sys-
tems we have to specify the derivation mode, the halting condition as well as the
procedure how to get the result of a computation, but also the specific kind of rules
that are used, especially some complexity parameters.

For networks of cells, we shall use the notation

OmCn(δ,φ, γ, ρ)[parameters for rules]

to denote the family of sets of vectors obtained by networks of cells defined by
Π = (n, V, w, Inf, R) with m = |V |, as well as δ, φ, ρ indicating the derivation mode,
the halting condition, and the way how to get results, respectively; the parameters

for rules describe the specific features of the rules in R. If any of the parameters m

and n is unbounded, we replace it by ∗.

44 CHAPTER 3. STUDY OF P SYSTEMS

For P systems, with the interaction between the cells in the rules of the cor-
responding network of cells allowing for a tree structure as underlying interaction
graph, we shall use the notation

OmPn(δ, φ, γ, ρ)[parameters for rules].

Observe that usually the environment is not counted when specifying the num-
ber of membranes in P systems, but this usually hides that in many cases the
environment takes an important role in the functioning of the system.

For tissue P systems, with the interaction between the cells in the rules of
the corresponding network of cells allowing for a graph structure as underlying
interaction graph, we shall use the notation

Om tPn(δ, φ, γ, ρ)[parameters for rules].

In most of the cases the results obtained in the area of P systems are formulated
for sets of numbers instead of sets of vectors. Although in most of the cases the
corresponding formulations are valid for the vector case, we shall use the traditional
notations and write symbol N in front, e.g., NOm tPn(δ, φ, γ, ρ)[parameters for rules].

3.1.2 Study of different derivation modes

In this section we give examples of different derivation modes that can be defined
for network of cells and P systems. We start with the simplest possible derivation
mode.

Definition 3.1.13. For the asynchronous derivation mode (asyn),

Appl(Π, C, asyn) = Appl(Π, C),

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 3.1.14. For the sequential derivation mode (sequ),

Appl(Π, C, sequ) = {R′ | R′ ∈ Appl(Π, C) and |R′| = 1},

i.e., any multiset of rules R′ ∈ Appl(Π, C, sequ) has size 1.

The most important derivation mode considered in the area of P systems from
the beginning is the maximally parallel derivation mode where we only select mul-
tisets of rules R′ that are not extensible, i.e., there is no other multiset of rules
R′′ % R′ applicable to C.

Definition 3.1.15. For the maximally parallel derivation mode (max),

Appl(Π, C, max) = {R′ | R′ ∈ Appl(Π, C) and there is
no R′′ ∈ Appl(Π, C) with R′′ % R′}.

For the minimally parallel derivation mode, we need an additional feature for
the set of rules R, i.e., we consider a partitioning Θ of R into disjoint subsets R1 to
Rh . Usually, this partition of R′ may coincide with the assignment of rules to the
cells. For any set of rules R′ ⊆ R, let ‖R′‖ denote the number of sets of rules Rj,
1 ≤ j ≤ h, with Rj ∩ R′ , ∅.

3.1. SEMANTICS STUDY 45

There are several possible interpretations of this minimally parallel derivation
mode which in an informal way can be described as applying multisets such that
from every set Rj, 1 ≤ j ≤ h, at least one rule – if possible – has to be used (e.g.,
see [11]). We start with the basic variant where in each derivation step we only
choose a multiset of rules R′ from Appl(Π, C, asyn) that cannot be extended to
R′′ ∈ Appl(Π, C, asyn) with R′′ % R′ as well as (R′′ − R′) ∩ Rj , ∅ and R′ ∩ Rj = ∅ for
some j, 1 ≤ j ≤ h, i.e., extended by a rule from a set of rules Rj from which no rule
has been taken into R′.

Definition 3.1.16. For the minimally parallel derivation mode with partitioning Θ
(min(Θ)),

Appl(Π, C, min(Θ)) = {R′ | R′ ∈ Appl(Π, C, asyn) and
there is no R′′ ∈ Appl(Π, C, asyn)
with R′′ % R′, (R′′ − R′) ∩ Rj , ∅

and R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h}.

We can omit Θ if it can be deduced from the context.

In the following we also consider further restricting conditions on the four basic
modes defined above, especially interesting for the minimally parallel derivation
mode, thus obtaining some new combined derivation modes.

A derivation mode closely related to the maximally parallel one can be obtained if
we not only demand that the chosen multiset R′ is not extensible, but also contains
the maximal number of rules among all applicable multisets:

Definition 3.1.17. For any derivation mode δ, we define the maximal in rules δ

derivation mode (maxruleδ) by setting

Appl(Π, C, maxruleδ) = {R′ | R′ ∈ Appl(Π, C, δ) and
there is no R′′ ∈ Appl(Π, C, δ)
with |R′′| > |R′|}.

In the case of the minimally parallel derivation mode, we can also maximize the
sets of rules involved in a multiset to be applied (maxsetmin):

Definition 3.1.18. For any derivation mode δ and a partition of rules Θ we define
the maximal in sets of Θ δ derivation mode (maxset(Θ)δ) by setting

Appl(Π, C, maxset(Θ)δ) = {R′ | R′ ∈ Appl(Π, C, δ) and
there is no R′′ ∈ Appl(Π, C, δ)
with ‖R′′‖ > ‖R′‖}.

We can restrict further the minimally parallel transition mode by allowing at
most k rules to be taken from each partition Rj, 1 ≤ j ≤ h.

Definition 3.1.19. The k-restricted minimally parallel transition mode with parti-
tioning Θ (mink(Θ)) is defined as

Appl(Π, C, mink(Θ)) = {R′ | R′ ∈ Appl(Π, C, min(Θ)) and
|R′ ∩ Rj | ≤ k for all j, 1 ≤ j ≤ h}.

46 CHAPTER 3. STUDY OF P SYSTEMS

The min1 derivation mode is of special interest as it provides the simplest way
of maximally parallel evolution: at the level of partition the execution is sequential,
while partitions evolve in a maximally parallel manner. Such behavior is for ex-
ample observed in catalytic or spiking P systems. Moreover, each multiset of rules
from min1 can be seen as a kind of basic maximally parallel vector and it can be
used for the definition of the minimal parallelism as it is done by Gh. Păun in [62].
We give below the formalization of that definition:

Definition 3.1.20. For the base vector minimally parallel derivation mode with
partitioning Θ (minG(Θ)),

Appl(Π, C, minG(Θ)) = {R′ | R′ ∈ Appl(Π, C, min(Θ) and R′ ⊇ R′′

for some R′′ ∈ Appl(Π, C, min1(Θ))}.

Looking carefully into the definitions for all the derivation modes defined above,
we immediately infer the following equalities which do not depend on the kind of
rules at all (observe that the restricting conditions for the combined modes using
the condition maxrule or maxset are defined with respect to the underlying basic
mode, which, for example, immediately implies the equalities for the sequential
mode):

Lemma 3.1.21. The following equalities for derivation modes hold true in general

for all kinds of networks of cells:
maxrulesequ = maxsetsequ = sequ,

maxruleasyn = maxrulemin = maxrulemax,

maxsetmin = maxsetasyn,

It is also clear that different derivation modes may yield different application re-
sults. Moreover, the following simple example shows most of the incomparabilities
between some derivation modes.

Example 3.1.22.

Consider the network of cells

Π = (4, {a, b}, (b3, a3, b, b), (∅, ∅, ∅, ∅), R)

with the following rules in R:

1. (b, 1)(a, 2)→ (a, 1)(b, 2)

2. (a, 2)(b, 3)→ (b, 2)(a, 3)

3. (aa, 2)(b, 4)→ (b, 2)(aa, 4)

In fact, Π can be interpreted as a P system with antiport rules, 3 mem-
branes with membrane i represented by cell i + 1, as well as cell 1 represent-
ing the environment, see Fig. 3.1. Due to the availability of objects in the four
cells, only the following multisets of rules (represented as strings) are appli-
cable to the initial configuration C0, C0 = (b3, a3, b, b):

Appl(Π, C0, asyn) = Appl(Π, C0) = {1, 12, 13, 122, 12, 13, 2, 23, 3}

Assuming the partition for the minimally parallel derivation mode to be
the partition into the three single rules (which corresponds to assigning the

3.1. SEMANTICS STUDY 47

1 : b ←→ a

bbb

2 : a ←→ b

3 : aa ←→ b

aaa

b

b

3

2

1

Figure 3.1: Network of cells depicted as P system with antiport rules.

rule i to cell i+1 – corresponding tomembrane i in a membrane system – and
no rule to cell 1 which represents the environment), we obtain the following
sets ofmultisets of rules applicable toC0 according to the different derivation
modes:

Appl(Π, C0, δ1) = {1, 2, 3} for δ1 ∈ {sequ, maxrulesequ, maxsetsequ},

Appl(Π, C0, min) = {13, 122, 12, 13, 23},

Appl(Π, C0, max) = {13, 122, 13, 23},

Appl(Π, C0, maxruleδ2) = {13, 122}, δ2 ∈ {asyn, min, max},

Appl(Π, C0, maxsetδ3) = {122, 12, 13, 23}, δ3 ∈ {asyn, min},

Appl(Π, C0, maxsetmax) = {122, 13, 23},

Appl(Π, C0, min1) = {12, 13, 23},

Appl(Π, C0, minG) = {122, 12, 13, 23}.

All these sets of multisets of rules listed above are different which shows
the incomparability of the corresponding derivation modes (observe that the
inherent equalities for the modes δ1, δ2, and δ3 follow from Lemma 3.1.21).

Example 3.1.23.

In this example we consider catalytic P systems. Such systems have a
special set of symbols C, each of them called catalyst, and a set of rewriting
rules R of type ca → cu, where c ∈ C and symbols of u can be distributed
to other membranes. Such rules formalize the notion of a catalytic reac-
tion from chemistry. Although the system evolves in a maximally parallel
manner, it is clear that at most |C| rules can be executed in parallel. This
permits to consider a partition of rules Θ with respect to the used catalyst:
Θ = Θ1, . . . ,Θn , n = |C| and Θi = {a → u | cia → ciu ∈ R}. It is easy to see that
Appl(Π, C, max) = Appl(Π, C, min1(Θ)). Hence, any catalytic P system evolv-
ing in maximally parallel derivation mode is a context-free rewriting P system
working in min1(Θ) mode, Θ being the partition of rules associated to each
catalyst.

Other derivation modes were also considered, see for example [75, 27, 24].

48 CHAPTER 3. STUDY OF P SYSTEMS

3.2 Communication models

As it was mentioned before, the communication models present the particularity
that objects of the system are not changed during the evolution, but only moved.
This directly corresponds to the biological phenomena of membrane transport and
the first communication models where the models using symport and antiport
operations.

We shall give in more details the biological insight behind these operations.
There are different membrane transport mechanisms, depending on the size and
type of molecules. Fig. 3.2 gives an overview of the most important trans-membrane
transport mechanisms.

Figure 3.2: Membrane transport mechanisms

Large molecules need a deformation of the membrane they cross with a creation
of a new membrane surrounding the molecule. Smaller molecules can directly
penetrate inside a membrane or leave it. In the case of a passive transport, the
molecules are very small (water, small ions) and can move through membrane
in the direction of the chemical gradient. Such mechanism does not need any
additional energy to be consumed.

In the case of an active transport, molecules are moved against the chemi-
cal gradient, so the consumption of energy is necessary. Symport and antiport
(see Fig. 3.3) are particular example of co-transporters. In the symport case two
molecules will travel together inside or outside the membrane, while in the antiport
case two molecules will be exchanged.

This process can be formalized as follows. The biological membrane corre-
sponds to a membrane in the P system, molecules to objects and the antiport
process to the antiport operation. An antiport rule is denoted as (u, in; v, out) and
permits to exchange two multisets y and x, which are situated in region i and
the outer region of i respectively. A symport rule (x, in) permits to move x into a
region from the immediately outer region. In a similar way, a symport rule (x, out)
permits to move the multiset x from a region to the outer region. In multiset rewrit-
ing terms, an antiport rule (u, in; v, out) corresponds to the multiset rewriting rule
ujvi → uivj, where i is the label of the inner region of the involved membrane and

3.2. COMMUNICATION MODELS 49

Figure 3.3: Uniport, symport and antiport

j is the label of the outer region of the membrane. A symport rule can be defined
analogously.

We remark that during the evolution we consider only the action of symport
or antiport rules. Hence, the objects (molecules) are not modified, but only moved
between different cells or compartments of a cell.1 From the formal language theory
point of view, the evolution of such a system can lead only to a finite number of
configurations, because in the initial configuration a finite number of objects is
present and no new objects are created/removed. A natural addition to such a
model would be the presence of a region where some objects are present in “infinite”
(or more precisely in a large unbounded) number of copies. Taking the biological
analogy, this addition corresponds to the environment of a cell or group of cells,
which contain a huge number of substances interacting with the cell. After the
addition of this “infinity” the obtained formal systems become more complicated
and in a lot of cases their behavior is unpredictable.

3.2.1 Formal definition

We shall give the traditional definition of symport/antiport P systems and translate
it afterwards using terms defined in Section 3.1.

Definition 3.2.1. A P system with symport/antiport of degree n is a construct

Π = (O, µ, w1, . . . , wn , E, R1, . . . , Rn, i0),

where:

1. O is a finite alphabet of symbols called objects,

2. µ is a membrane structure consisting of n membranes that are labeled in
a one-to-one manner by 1, 2, . . . , n. Usually, µ is given as a set of nested
parentheses.

3. wi ∈ O∗, for each 1 ≤ i ≤ n is a finite multiset of objects associated with the
region i (delimited by membrane i),

1Even if the objects are not modified, the couple object/position changes. These changes are best
exposed by the multiset rewriting representation of the system

50 CHAPTER 3. STUDY OF P SYSTEMS

4. E ⊆ O is the set of objects that appear in the environment in infinite numbers
of copies,

5. Ri , for each 1 ≤ i ≤ n, is a finite set of symport/antiport rules associated with
the region i and which have the following form (x, in), (y, out), (y, out; x, in),
where x, y ∈ O∗,

6. i0 is the label of a membrane of µ that identifies the corresponding output
region.

This definition can be translated to the network of cells as follows. We consider
Π = (n + 1, O, w, Inf, R), where Inf = (E, ∅, . . . , ∅) (we note that the environment has
the label 0), w = (λ, w1, . . . , wn) and the set of rules R is defined as follows:

• for any rule (x, in; y, out) ∈ Ri we add to R the rule (x, j)(y, i) → (y, j)(x, i),
where j is the parent membrane of i according to µ,

• for any rule (x, in) ∈ Ri we add to R rules (x, i) → (x, j), for all children
membranes j of i, according to µ,

• for any rule (y, out) ∈ Ri we add to R the rule (y, i) → (y, j), where j is the
parent membrane of i according to µ.

We remark that the root of µ has a parent node – the environment labeled by 0.
The obtained class of systems is denoted as NOmPn(δ, φ, γ, ρ)[symr , antit], where

r and t is the maximal size of symport and antiport rules respectively. The size of
a symport rule (x, in) or (x, out) is given by |x |, while the size of an antiport rule
(y, out; x, in) is given by |x | + |y|.

In most of the cases the considered classes have δ = max, φ = H, γ = gen and
ρ = Ni0 . So we shall use a special notation for this case:
NOmPn(max, H, gen, Ni0)[symr , antit] = NOPn(symr , antit).

The result of a successful computation is the natural number that is obtained
by counting the objects that are presented in region i0. Given a P system Π, the set
of natural numbers computed in this way by Π is denoted by N(Π).

In the accepting variants of symport/antiport P systems the system accepts
the number corresponding to the quantity of objects given at the beginning of the
computation in the predefined cell i0.

For the tissue case the traditional definition is as follows.

Definition 3.2.2. A tissue P system with symport/antiport of degree n ≥ 1 is a
construct

Π = (O, G, w1, . . . , wn, E, R, i0),

where O is the alphabet of objects and G is the underlying directed labeled graph
of the system. The graph G has n +1 nodes and the nodes are numbered from 0 to
n. We shall also call nodes from 1 to n cells and node 0 the environment. There is
an edge between each cell i, 1 ≤ i ≤ n, and the environment. Each cell contains a
multiset of objects, initially cell i, 1 ≤ i ≤ n, contains multiset wi . The environment
is a special node which contains symbols from E in infinite multiplicity as well
as a finite multiset over O \ E, but initially this multiset is empty. The symbol
i0 ∈ (1 . . . n) indicates the output cell, and R is a finite set of rules (associated to
edges) of the following forms:

3.2. COMMUNICATION MODELS 51

1. (i, x, j), 0 ≤ i ≤ n, 0 ≤ j ≤ n, i , j, x ∈ O+ and not i = 0 & x ∈ E+ (symport rules
for the communication).

2. (i, x/y, j), 0 ≤ i, j ≤ n, i , j, x, y ∈ O+(antiport rules for the communication).

Such definition translates easily to the network of cells as follows. We consider
Π = (n + 1, O, w, Inf, R′), where as before Inf = (E, ∅, . . . , ∅) (the environment has
the label 0), w = (λ, w1, . . . , wn) and R′ is defined as follows:

• for any rule (i, x/y, j) ∈ R we add to R′ the rule (x, i)(y, j)→ (y, i)(x, j),

• for any rule (i, x, j) ∈ R we add to R′ the rule (x, i)→ (x, j).

As above, we denote by NOtPn(symp, antiq) the family of all sets of numbers
generated by tissue P systems with symport/antiport of degree at most n and
which have symport rules of size at most p and antiport rules of size at most q,
working in the derivation mode max and using halting condition H.

Example 3.2.3.

Consider the following symport/antiport P system:
Π = ({A, B}, {B}, [1[2]2]1, {B}, {An}, R1, R2, 1), with n > 0 and
R1 = {1 : (A, out; BB, in)} and R2 = {2 : (B, in; A, out), 3 : (B, out)}.
Suppose that the number of B’s in membrane 1 is equal to q (initially 1)

and that the number of A’s in membrane 2 is equal to p (initially p = n). Sup-
pose also that there are no symbols A in the first membrane and no symbols
B in the second (the initial configuration satisfies this condition). Hence, the
configuration of Π at this moment is (Am , Bq, Ap) (p + m = n). Suppose that
q < p. Then at the next step only rule 2 is applicable leading to the con-
figuration (Am , Aq, Ap−qBq). On the next step rules 1 and 3 are applicable in
parallel leading to the configuration (Am+q, B3q, Ap−q). If q ≥ p, then after two
steps the configuration (An , Bq+2p, ∅) is obtained. By induction we deduce that
Π computes the function 2n + 1 in 2([log3 2n] + 1) steps.

Example 3.2.4.

Consider the following tissue P system Π = (O, E, w1, w2, w3, R, 1), with
O = {A, B, C, X, Y }, E = {A, B, C}, w1 = {X }, w2 = {Y }, w3 = {B}. The set of rules
R is defined as follows:

1 : (1, X/A, 0) 2 : (0, X, 1) 3 : (1, X/Y, 2) 4 : (1, A/B, 2) 5 : (1, Y, 0)

6 : (2, X/B, 3) 7 : (2, B/CC, 0) 8 : (1, C/B, 0) 9 : (1, AB/X, 3)

These rules induce the graph G shown at the right:

0??

����
��

��
� __

��>
>>

>>
>>

1 oo // 2OO

��
3

We affirm that Π generates the set {2n | n ≥ 0}. Indeed, the computation
in Π can be split into two stages. During the first stage k − 1 symbols A are
brought to cell 1 using rules 1 and 2. The second stage starts by using the
rule 3 and 6. At this moment there are k symbols A in cell 1 and one copy of
B in cell 2. Rules 7 and 8 double the number of B’s in cell 2. Suppose that
there are m copies of B in cell 2. At any time it is possible to use rule 4 up to

52 CHAPTER 3. STUDY OF P SYSTEMS

min(k, m) times. If it is used p times, p < k, then this leads to a configuration
when both symbols A and B are present in cell 1 and on the next step rule 9
should be used which brings symbol X to cell 1 and starts an infinite compu-
tation because there is no more symbol Y in cell 2. If rule 4 is used k times
and m , k, then the computation does not stop because rules 7 and 8 are
always applicable. So, the only way to stop the computation is when m = k,
hence k = 2n , n > 0.

This example uses the pumping technique which consists in two stages:
first a big (unbounded) number of working symbols is introduced into the sys-
tem and after that the system computes using these additional symbols. In
the case above, the pumping phase introduce symbols A which permit to ver-
ify further that all symbols B were moved to cell 1.

The investigation of membrane systems with symport and antiport rapidly
showed that corresponding systems are able to generate all recursively enumer-
able languages. Then a quest for systems having smallest descriptional complexity
began. There are 4 basic descriptional complexity parameters investigated for sym-
port/antiport P systems:

• the number of membranes,

• the size of the alphabet (the number of different objects),

• the size of rules,

• the number of rules.

The first parameter, the number of membranes, can reach its optimal value:
one membrane is already sufficient to get the computational completeness with
symport or antiport rules of size 3, see [29] and [25].

Theorem 3.2.5. NOP1(sym3) = NOP1(anti3) = NRE.2

Moreover, the above systems can deterministically accept NRE.
In the biological case symport and antiport operations involve at most two ob-

jects. This is why symport/antiport P systems having symport and antiport rules
of size at most 2, called minimal symport and minimal antiport rules, are of special
interest. We recall the following results.

Theorem 3.2.6. NOP1(sym1, anti1) ∪ NOP1(sym2) ⊆ NFIN.

Theorem 3.2.7. NOP2(sym1, anti1) = NOP2(sym2) = NRE.

However, the last result is true only for non-deterministic systems. If the system
is deterministic, then the following result holds.

Theorem 3.2.8. For any deterministic P system with rules of type sym2 and anti1,

the number of objects present in the initial configuration of the system cannot be

increased.

The situation changes for the case of tissue P systems where systems with 2
cells can deterministically accept NRE, see the results from [7].

The number of rules is investigated in Section 3.4.2, while the results on the
number of objects can be consulted in [62].

2More precisely, in the symport case 7 additional objects remain, so the result strategy −k shall
be applied.

3.2. COMMUNICATION MODELS 53

3.2.2 Generalized communication

We can generalize the idea of minimal symport and minimal antiport to a hyper-
graph structure: two objects change their positions (cells) in a synchronous way,
for example, an object a from cell i and an object b from cell j move synchronously
to cell k and cell l, respectively. Formally, in network of cell terms, this corre-
sponds to the rule (a, i)(b, j)→ (a, k)(b, l), which we also call communication rule.
We graphically depict it as on Fig. 3.4. Depending on their form, several restrictions

on communication rules (modulo symmetry) can be introduced; we provide below a
detailed description of these variants.

Figure 3.4: The communication rule

Definition 3.2.9. A generalized communicating P system (a GCPS) of degree n,

where n ≥ 1, is an (n + 4)-tuple

Π = (O, E, w1, . . . , wn, R, h)

where

1. O is an alphabet, called the set of objects of Π;

2. E ⊆ O; called the set of environmental objects of Π;

3. wi ∈ O∗, 1 ≤ i ≤ n, is the multiset of objects initially associated to cell i;

4. R is a finite set of minimal interaction rules (or communication rules) of the
form (a, i)(b, j)→ (a, k)(b, l), where a, b ∈ O, 0 ≤ i, j, k, l ≤ n, and if i = 0 and
j = 0, then {a, b} ∩ (O \ E) , ∅; i.e., a < E and/or b < E;

5. h ∈ {1, . . . , n} is the output cell.

In a similar way as it was done for symport/antiport P systems GCPS can be
translated to networks of cells as Π = (n + 1, O, w, Inf, R), where w and Inf are
defined as for symport/antiport P systems and R is exactly the same set of rules.

Remark 3.2.10. Besides the non-deterministic maximally parallel semantics that
is commonly associated to P systems, other types of behavior may be associated
to an interaction rule depending on the number of objects which are processed by
each application of such a rule. Here we list some possible alternatives although,
we will essentially deal with the usual semantics where each application of a rule
processes exactly one occurrence of each object involved.

54 CHAPTER 3. STUDY OF P SYSTEMS

• One application of a rule (a, i)(b, j)→ (a, k)(b, l) affects min(|wi |a , |wj |b) objects
(i.e., min(|wi |a , |wj|b) occurrences of a are moved from cell 1 to cell 2, and
min(|wi |a , |wj|b) occurrences of b are moved from cell 3 to cell 4) (〈h : h〉

semantics)).

• One application of a rule (a, i)(b, j)→ (a, k)(b, l) affects one occurrence of a

and all occurrences of b (〈1 : all〉 semantics).

• One application of a rule (a, i)(b, j)→ (a, k)(b, l) affects h1 occurrences of a

and h2 occurrences of b, with h1, h2 arbitrary values such that 1 ≤ h1 ≤ |wi |a ,
1 ≤ h2 ≤ |wj|b (〈∗ : ∗〉 semantics).

• For some given n, m ≥ 1, one application of a rule (a, i)(b, j)→ (a, k)(b, l)
affects at least (resp. at most) n occurrences of a (resp. at most) and at least
(resp. at most) m occurrences of b (〈≥ n :≥ m〉 semantics (resp. 〈≤ n :≤ m〉

semantics)).

In general, the behavior of GCPS is different when various semantics are consid-
ered. However, special GCPS’s can be constructed in such a way that their behavior
is the same irrespective of the type of semantics (or at least for some of them).

In the following we recall the notions of the possible restrictions on the inter-
action rules (modulo symmetry). Let O be an alphabet and let us consider an
interaction rule (a, i)(b, j)→ (a, k)(b, l) with a, b ∈ O, i, j, k, l ≥ 0. Then we distin-
guish the following cases:

1. i = j = k , l: the conditional-uniport-out rule

(the uout rule, for short) sends b to cell l provided that a and b are in cell i;

2. i = k = l , j: the conditional-uniport-in rule

(the uin rule, for short) brings b to cell i provided that a is in that cell;

3. i = j, k = l, i , k : the symport2 rule

(the sym2 rule, for short) corresponds to the minimal symport rule, i.e., a

and b move together from cell i to k;

4. i = l, j = k, i , j : the antiport1 rule

(the anti1 rule, for short) corresponds to the minimal antiport rule, i.e., a

and b are exchanged in cells i and k;

5. i = k and i , j, i , l, j , l: the presence-move rule

(the presence rule, for short) moves the object b from cell j to l, provided that
there is an object a in cell i and i, j, l are pairwise different cells;

6. i = j, i , k, i , l, k , l : the split rule

(the split rule, for short) sends a and b from cell i to cells k and l, respectively;

7. k = l, i , j, k , i, k , j : the join rule

(the join rule, for short) brings a and b together in cell k;

8. i = l, i , j, i , k and j , k : the chain rule

(the chain rule, for short) moves a from cell i to cell k while b is moved from
cell j to cell i, i.e., to the cell where a was previously ;

3.2. COMMUNICATION MODELS 55

9. i, j, k, l are pairwise different numbers: the parallel-shift rule

(the shift rule, for short) moves a and b from two different cells to another
two different cells.

A generalized communicating P system may have rules of several types as de-
fined above. When only one of them is considered, then we call the corresponding
GCPS a minimal interaction P system (with the given type of rules), or a GCPSMI,
for short.

In the following, NOtPk(x) denotes the set of numbers generated by mini-
mal interaction P systems of degree k and with rules of type x, k ≥ 1 and x ∈

{uout, uin, sym2, anti1, presence, split, join, chain, shift}, and NOtP∗(x) is the nota-
tion for

⋃∞
k=1 NOtPk(x).

If the number of objects in the alphabet of objects in the GCPSMI is m, then
the previous notations are changed to NOm tPk(x) and NOm tP∗(x), respectively. We
call these GCPSMIs m-symbol minimal interaction P systems (with a given type of
rules). For simplicity, we use terms 1-symbol GCPSMI and one-symbol GCPSMI as
equivalent.

We remark that symport/antiport P systems using either minimal symport or
minimal antiport rules are not GCPSMIs. This is due to the fact that in sym-
port/antiport P systems uniport rules are allowed. A uniport rule, denoted (i, A, j),
move unconditionally the symbol A from cell i to cell j. Such kind of rules does not
fit the communication rule pattern, although they can be simulated in some cases.

Due to their simplicity, the generative power of minimal interaction P systems
is of particular interest. In [77] and [19] it was shown that NOtP∗(anti1) ⊂ NFIN

and

Theorem 3.2.11.

NRE = NOtP30(uin) = NOtP30(uout) = NOtP9(split) =
= NOtP7(join) = NOtP36(presence) = NOtP19(shift) = NOtP∗(chain),

We also note that systems with sym2 rules can accept any recursively enumer-
able set of numbers with 10 cells.

Moreover, if the alphabet O is restricted to one symbol, then the following
relations hold.

Theorem 3.2.12.

NRE = NO1tP∗(join) = NO1tP∗(presence) = NO1tP∗(shift) = NO1tP∗(chain).

Notice that in the case of one-symbol minimal interaction P systems, the con-
cepts of rule types conditional-uniport-out, symport2, antiport1, and split are not
applicable. Since O = E in these cases the rules (•, i)(•, j)→ (•, k)(•, l) do not satisfy
condition 4. of Definition 3.2.9, namely, that if i = 0 and j = 0, then {•}∩(O\E) , ∅.
For the case of uniport-in we obtain the following result.

Theorem 3.2.13. For any one-symbol GCPSMI Π with conditional-uniport-in rules

either N(Π) is finite or there is a natural number K such that l ∈ N(Π) for every l ≥ K.

It is worth to note that most of the proofs are compositional: a set of special
primitive blocks is proposed and the proof results from their assembly in a special

56 CHAPTER 3. STUDY OF P SYSTEMS

way; of cause, the implementation of each block for the target system shall be pro-
vided. Among most interesting blocks we used so far, we can cite the 1 : all block,
which is graphically depicted as on Fig. 3.4, but simulates the 〈1 : all〉 semantics
(using 〈1 : 1〉 semantics). Such a block was extremely useful in constructions, in
particular, for the implementation of the n2 function. For the proof of the compu-
tational completeness we used 3 blocks: the uniport block, the main block and the
zero block, see Fig. 3.5.

(a) (b) (c)

Figure 3.5: The blocks used for computational completeness proofs: (a) the uniport
block, (b) the main block, (c) the zero block

The uniport block, see Fig. 3.5(a), is be denoted by an arrow between circles
labeled by i and j with a object (say A) on the top of it.

The basic or main block, see Fig. 3.5(b), permits to move synchronously objects
A from cell i to cell j and B from cell k to cell m. If B is not present, then an
infinite loop occurs. The arrows show the direction of the move of the objects, the
circles corresponds to the cells. Since the semantic of the block is not symmetric,
the double circle, labeled by i, indicates the place of the symbol that triggers the
computation and for which the infinite loop can occur.

The zero block, see Fig. 3.5(c), moves object A from cell i to j providing that there
are no objects B in cell k. If there are objects B in cell k then the computation enters
an infinite loop. The notations are analogous to the ones used in see Fig. 3.5(b),
namely, the arrow denotes the direction of the movement of the object, the circles
denote cells, the double line labeled with −B and the circle labeled with k refers to
the condition that no object B is present in cell k.

Using these blocks, a typical computational completeness proof of the minus
instruction of the register machine looks like on Fig. 3.6.

Figure 3.6: A typical construction for the simulation of a decrement instruction
(p, A−, q, s) of a register machine using building blocks.

3.3. THE SYNCHRONIZATION PROBLEM FOR P SYSTEMS 57

3.3 The synchronization problem for P systems

In the framework of P systems usually the computational power is investigated.
Here, we present a different kind of research: we adapt to P systems a known
problem from the area of cellular automata and give algorithms solving it.

The synchronization problem can be formulated in general terms with a wide
scope of application. We consider a system constituted of explicitly identified ele-
ments and we require that starting from an initial configuration where one element
is distinguished, after a finite time, all the elements which constitute the system
reach a common feature, which we call state, all at the same time and the state
was never reached before by any element.

This problem is well known for cellular automata, where it was intensively
studied under the name of the firing squad synchronization problem (FSSP): a line
of soldiers have to fire at the same time after the appropriate order of a general
which stands at one end of the line, see [31, 56, 55, 71, 66, 81]. The first solution
of the problem was found by Goto, see [31]. It works on any cellular automaton
on the line with n cells in the minimal time, 2n−2 steps, and requiring several
thousands of states. A bit later, Minsky found his famous solution which works
in 3n, see [56] with a much smaller number of states, 13 states. Then, a race to
find a cellular automaton with the smallest number of states which synchronizes
in 3n started. See the above papers for references and for the best results and for
generalizations to the planar case, see [71] for results and references.

The synchronization problem appears in many different contexts, in particular
in biology. As P systems model the work of a living cell constituted of many micro-
organisms, represented by its membranes, it is a natural question to raise the same
issue in this context. Take as an example the meiosis phenomenon, it probably
starts with a synchronizing process which initiates the division process. Many
studies have been dedicated to general synchronization principles occurring during
the cell cycle; although some results are still controversial, it is widely recognized
that these aspects might lead to an understanding of general biological principles
used to study the normal cell cycle, see [68].

We may translate FSSP in P systems terms as follows. Starting from the ini-
tial configuration where all membranes, except the root, contain same objects the
system must reach a configuration where all membranes contain a distinguished
symbol, F . Moreover, this symbol must appear in all membranes only during at
the synchronization time.

We study the synchronization problem as defined above for two classes of P
systems: transitional P systems and P systems with promoters and inhibitors.

In the sequel, we will use transitional P systems without a distinguished com-
partment as an output, i0, as this is not relevant for FSSP.

We translate the FSSP to P systems as follows:

Problem 3.3.1. For a class of P systems C find two multisetsW,W′ ∈ O∗, and two

sets of rules R, R′ such that for any P system Π ∈ C of degree n ≥ 2 having

w1 =W
′, R1 = R

′, wi =W and Ri = R for all i in {2..n}, assuming that

the skin membrane has the number 1

it holds

58 CHAPTER 3. STUDY OF P SYSTEMS

• If the skin membrane is not taken into account, then the initial configuration of

the system is stable (cannot evolve by itself).

• If the system halts, then all membranes contain the designated symbol F which

appears only at the last step of the computation.

We give two solutions, using a deterministic and a non-deterministic strategy.
It should be noticed that in the non-deterministic case the concept of the syn-
chronization is somehow different and the traditional intuition is misleading. It
should be understand that in this case the synchronization is performed only on
the computational paths leading to a successful computation.

3.3.1 Non-deterministic case

In this section we discuss a non-deterministic solution to the FSSP using transi-
tional P systems. We recall that a transitional P system has a tree structure and
rules of the following type: (u, i)→ (v1, j1) . . . (vn, jn), where jk, 1 ≤ k ≤ n is either i,
or a parent or child membrane of i.

The main idea of the synchronization is based on the fact that if a signal (mate-
rialized by an object) is sent from the root to a leaf then it will take at most 2h steps
to reach the leaf and return back to the root. In the meanwhile, the root may guess
the value of h and propagate it step by step down the tree. This takes also 2h steps:
h for the guess at the root, and h to end the propagation and synchronize. Hence,
if the signal sent to the leaf, having depth d ≤ h, returns at the same moment that
the root ended the propagation, then the root guessed the value d. Now, in order
to finish the construction it is sufficient to cut off cases when d < h.

In order to implement the above algorithm in transitional P systems we use
following steps (the formal description of the construction can be found in [6]).

• Mark leaves and nodes (nodes by S̄ and leaves by S).

• From the root, send a copy of symbol a down. Any inner node must take one
a in order to pass to state S′. If some node is not passed to state S′ then
when the signal c will come inside, it will be transformed to #.

• The end of the guess is marked by signal c. Symbols S in leaves are trans-
formed to S′′′ and those in inner nodes to S′′.

• In the meanwhile the height is computed with the help of C3. If a smaller
height d ≤ h is obtained at the root node, then either the symbol C3 will
arrive to the root node, which will contain some symbols b – then the symbol
will be introduced at the root node, or the guessed value will be d and then
there will be an inner node with S̄ or a leaf with S (because we have at most
d letters a) which leads to the introduction of # in corresponding node.

The sets of rules used to implement this behavior are all equal and they are
described below (the in! target sends the symbol to all child nodes).
Start:

S1 → (S2, here)(C2, here)(S, in!)(C1, in)

3.3. THE SYNCHRONIZATION PROBLEM FOR P SYSTEMS 59

Propagation of S:

S → (S̄, here)(S, in!)

Root counter (guess):

S2 → (S2, here)(b, here)(a, in!) S2 → (S3, here)(c, in!)

Propagate a:

S̄a → (S′, here) a → (b, here)(a, in!)

Propagate c:

cS′ → (S′′, here)(c, in!) cSa → (S′′′, here)

Decrement:

S′′b → (S′′, here) S′′′a → (S′′′, here)

S′′ → (F, here) S′′′ → (F, here)

S3b → (S3, here)

Height computing:

C1 → (C1, in) C2 → (C2, in)

C1C2 → (C3, here) C2 → (#, here)

C3 → (C3, out)

Root firing:

C3S3 → (F, here)

Traps:

cS̄ → (#, here) cS → (#, here) C3 → (#, here)

aF → (#, here) bF → (#, here) #→ (#, here)

Example 3.3.2.

We discuss the functioning of the system on the following example. Con-
sider a system Π with 7 membranes and the following membrane structure:

1

2 3

4 5 6

7

�
�

@
@

�
�

@
@

Now consider the evolution of the system Π constructed as above. We
represent it in a table format where each cell indicates the contents of the
corresponding membrane at the given time moment. Since the evolution is
non-deterministic, we consider firstly the correct evolution and after that we
shall discuss unsuccessful cases.

60 CHAPTER 3. STUDY OF P SYSTEMS

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S′a S S S̄C2 SC1

4 S2bbb Saaa S′ba Sa Sa S̄a SC1C2

5 S3bbb Saaac S′bbc Saa Saa S′a SC3

6 S3bb S′′′aa S′′bb Saac Saac S′bcC3 Sa

7 S3b S′′′a S′′bC3 S′′′a S′′′a S′′b Sac

8 S3C3 S′′′ S′′ S′′′ S′′′ S′′ S′′′

9 F F F F F F F

The system will fail in the following cases:

1. Signals C1 and C2 go to different membranes.

2. Some symbol S̄ is not transformed to S′ (or the deepest leaf does not
contain a letter a).

3. S3 appears in the root membrane after C3 appears in a leaf.

4. The branch chosen by C3 is not the longest (it has the depth d, d < h).

A possible evolution for the first unsuccessful case is given below.

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b SaC2 S̄a S S SC1

3 S2bb Saa# S′a S S S̄ SC1

A possible evolution for the second unsuccessful case is given below.

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S̄ba Sa Sa S̄aC2 SC1

4 S2bbb Saaa S̄bba Saa Saa S′a SC1C2

5 S3bbb Saaac S̄bbbc Saaa Saaa S′ab aSC3

6 S3bb S′′′aa #bbb Saaac Saaac S′bbcC3 Saa

A possible evolution for the third unsuccessful case is given below.

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S S SC1

3 S2bb Saa S′a S S S̄C2 SC1

4 S2bbb Saaa S′ba Sa Sa S̄a SC1C2

5 S2bbbb Saaaa S′bba Saa Saa S′a aSC3

6 S3bbbb Saaaac S′bbbc Saaa Saaa S′baC3 Sa

7 S3bbb S′′′aaa S′′bbbC3 Saaac Saaac S′bbc Saa

8 S3bbC3 S′′′aa S′′bb S′′′aa S′′′aa S′′bb Saac

9 S3b# S′′′a S′′b S′′a S′′′a S′′b S′′′a

3.3. THE SYNCHRONIZATION PROBLEM FOR P SYSTEMS 61

A possible evolution for the fourth unsuccessful case is given below.

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C2 S SC1

2 S2b Sa S̄aC2 S SC1 S

3 S2bb Saa S′a S SC1C2 S̄ S

4 S2bbb Saaa S′ba Sa SaC3 S̄a S

5 S3bbb Saaac S′bbcC3 Saa Saa S′a S

6 S3bbC3 S′′′aa S′′bb Saac Saac S′bc Sa

7 S3b# S′′′a S′′bC3 S′′′a S′′′a S′′b Sac

3.3.2 Deterministic case

Consider now the deterministic case. We take the class of P systems with pro-
moters and inhibitors and solve Problem 3.3.1 for this class. We recall that a
P system with promoters and inhibitors has a tree structure and rules of form
(u, i) → (v1, j1) . . . (vn, jn); (p, i); (f, i), where jk , 1 ≤ k ≤ n is either i, or a parent or
child membrane of i. We will write such rules as (u, i)→ (v1, j1) . . . (vn, jn) |p,¬f .

The idea of the algorithm is very simple. A symbol C2 is propagated down to the
leaves and at each step, being at a inner node, it sends back a signal C. At the root
a counter starts to compute the height of the tree and it stops if and only if there
are no more signals C. It is easy to compute that the last signal C will arrive at time
2h −1 (there are h inner nodes, and the last signal will continue for h −1 steps). At
the same time the height is propagated down the tree as in the non-deterministic
case.

The sets of rules used to implement this behavior are all equal and they are
described below.

Start:

S1 → (S2, here), (C′2, here), (S, in!), (C1, in!)

Propagation of S:

S → (S̄, here), (S, in!)

Propagation of C (height computing signal):

C1 → (C1, in!) C2 → (C, here), (C2, in!), (C, out)

C1C2 → λ C′2 → (C, here), (C2, in!)

C → (C, out)

Root counter:

S2 → (S3, here) S3 → (S′3, here), (b, here), (a, in!) |C
C → λ |S3 S′3 → (S3, here) |C
C → λ |S′3 S′3 → (S4, here), (a′, in!) |¬C

Propagation of a:

S̄a → (S′, here) a → (b, here), (a, in!) |S′

62 CHAPTER 3. STUDY OF P SYSTEMS

End propagate of a:

a′S′ → (S′′, here), (a′, in!) a′Sa → (S′′′, here)

Decrement:

S′′b → (S′′, here) S′′′a → (S′′′, here)

S′′ → (F, here) |¬b S′′′ → (F, here) |¬a

Root decrement:

S4b → (S4, here) S4 → (F, here) |¬b

The correctness of the construction can be argued as follows. It takes h + 1
steps for a symbol C2 to reach all leaves. All this time, symbols C are sent up the
tree. It takes further h − 1 steps for all symbols C to reach the root node, and one
more step until symbols C disappear. Therefore, symbols b appear in the root node
every odd step from step 3 until step 2h+1, so h copies will be made. Together with
the production of bh in the root node, this number propagates down the tree, being
decremented by one at each level. For the depth i, the number h − i is represented,
during propagation, by the multiplicity of symbols a (one additional copy of a is
made) in the leaves and by the multiplicity of symbols b in non-leaf nodes. After
2h+2 steps, the root node starts the propagation of the countdown (i.e., decrement
of symbols a or b). For a node of depth i, it takes i steps for the countdown signal
(a′) to reach it, another h − i steps to eliminate symbols a or b, so every node fires
after 2h + 2 + i + (h − i) + 1 = 3h + 3 steps after the synchronization has started.

Example 3.3.3.

Consider a P systemhaving samemembrane structure as the system from
Example 3.3.2. We present below the evolution of the system in this case.

Step w1 w2 w3 w4 w5 w6 w7

0 S1

1 S2C′2 SC1 SC1

2 S3C SC1C2 S̄C2 SC1 SC1 SC1

3 S′3bC Sa S̄aC SC1C2 SC1C2 S̄C2 SC1

4 S3bC Sa S′C S S S̄C SC1C2

5 S′3bbC Saa S′aC S S S̄ S

6 S3bbC Saa S′b Sa Sa S̄a S

7 S′3bbb Saaa S′ba Sa Sa S′ S

8 S4bbb a′Saaa a′S′bb Saa Saa S′a S

9 S4bb S′′′aa S′′bb a′Saa a′Saa a′S′b Sa

10 S4b S′′′a S′′b S′′′a S′′′a S′b a′Sa

11 S4 S′′′ S′′ S′′′ S′′′ S′ S′′′

12 F F F F F F F

For more details we refer to [10] and [6].

3.4. CONSTRUCTION OF SMALL UNIVERSAL P SYSTEMS 63

3.4 Construction of small universal P systems

Many variants of P systems generate all recursively enumerable sets of numbers.
This means that it is possible to construct a universal P system, i.e., a fixed
system that will compute any partially recursive function if a corresponding input
is provided. We consider below the case of symport/antiport P systems and provide
such a construction. In a similar way, there exist variants of P systems working
with strings instead of objects that generate or recognize all recursively enumerable
languages. We consider splicing P systems and construct a universal system of this
type.

Universal devices are usually studied from the descriptional complexity point
of view; in most of the cases the number of rules is taken as the main parameter,
as for example for Turing machines. We continue this line and provide not only
universal systems for the two classes mentioned before, but also minimize the
number of used rules.

3.4.1 Small universal splicing P systems

We should start with the definition of splicing P systems.

Definition 3.4.1. A splicing tissue P system of degree m ≥ 1 is a construct

Π = (V, T, G, A1, . . . , Am , R1, . . . , Rm),

where V is a finite alphabet, T ⊆ V is the terminal alphabet and G is the underlying
directed labeled graph of the system. The graph G has m nodes (cells) numbered
from 1 to m. Each node i contains a set of strings (a language) Ai over V . Symbols
Ri , 1 ≤ i ≤ m are finite sets of rules (associated to nodes) of the form (r; tar1, tar2),
where r is a splicing rule: r = u1#u2$u3#u4 and tar1, tar2 ∈ {here, goj, out}, 1 ≤ j ≤ m

are target indicators. We remark that the communication graph G can be deduced
from the sets of rules. More precisely, G contains an edge (i, j), iff there is a rule
(r; tar1, tar2) ∈ Ri with tark = goj, k ∈ {1, 2}. If one of tark is equal to here, then G

contains the loop (i, i).

A configuration of Π is the m-tuple (N1, . . . , Nm), where Ni ⊆ V ∗. A transition

between two configurations (N1, . . . , Nm) =⇒ (N ′1, . . . , N ′m) is defined as follows. In
order to pass from one configuration to another, splicing rules of each node are
applied in parallel to all possible words that belong to that node. After that, the
result of each splicing is distributed according to target indicators. More exactly, if
there are x, y in Ni and r = (u1#u2$u3#u4; tar1, tar2) in Ri , such that (x, y) ⊢r (w, z),
then words w and z are sent to nodes indicated by tar1, respectively tar2. We write
this as follows (x, y) ⊢r (w, z)(tar1, tar2). If tark = here, k = 1, 2 then the word
remains in node i (is added to N ′i); if tark = goj, then the word is sent to node j (is
added to N ′j); if tark = out, the word is sent outside of the system.

Since the words are present in an arbitrary number of copies, after the appli-
cation of rule r in node i, words x and y are still present in the same node.

A computation in a splicing tissue P system Π is a sequence of transitions
between configurations ofΠ which starts from the initial configuration (A1, . . . , Am).
The result of the computation consists of all words over terminal alphabet T which
are sent outside the system at some moment of the computation. We denote by
L(Π) the language generated by system Π.

64 CHAPTER 3. STUDY OF P SYSTEMS

We also define the notion of an input for the system above. An input word
for a system Π is simply a word w over the non-terminal alphabet of Π. The
computation of Π on input w is obtained by adding w to the axioms of A1 and after
that by evolving Π as usual. We denote by L(Π, w) the result of the computation of
Π on w.

We denote by ELStPm (spl, go) the family of languages generated by tissue splic-
ing P systems having a degree at most m.

We consider the following restricted variant of splicing tissue P systems. A
restricted splicing tissue P system is a special class of splicing tissue P systems
which has the property that for any rule (r; tar1, tar2) either tar1 = tar2 = goj, or
tar1 = tar2 = out or tar1 = tar2 = here. This means that both resulting strings are
moved over the same connection. In this case, we may associate splicing rules to
corresponding edges. If both targets are out, then we can associate the splicing
rule with an edge going to the special node called out.

The universality proof is based on a simulation of tag systems using the well
known rotate-and-simulate method [58, 61, 73]. We show that the functioning of
any tag system can be simulated using a restricted splicing tissue P system with 6
rules. Then its universality follows from the existence of universal tag systems.

Let V = {a1, . . . , an+1} be an alphabet. Consider coding morphisms c and c̄

defined as follows: c(ai) = αi̙, c̄(ai) = ̙αi , where 1 ≤ i ≤ n + 1.

Theorem 3.4.2. Let TS = (2, V, P) be a tag system and w ∈ V ∗. Then, there is

a restricted splicing tissue P system Π = (V ′, T, G, A1, A2, A3, R1, R2, R3), having 6

rules, which given the word X̙̙c(w)̙Y as input simulates TS on input w, i.e. such

that:

1. for any word w on which TS halts producing the result w′, the system Π

produces a unique result X ′c(w′)Y ′, i.e. L(Π) = {X ′c(w′)Y ′}.

2. for any word w on which TS does not halt, the system Π computes infinitely

without producing a result, i.e. L(Π) = ∅.

We construct the system Π as follows. Let |V | = n +1. Suppose that the halting
symbol of TS is a1. We use following alphabets V ′ and T .

V ′ = {α, ̙, X, X ′, Y, Y ′, Z, Z ′}, T = {X ′, Y ′, α, ̙}.

The initial languages Aj, j ∈ {1, 2, 3} are given as follows.

A1 = {Z
′c(Pi)c̄(ai)Y | ai → Pi ∈ P, 2 ≤ i ≤ n + 1} ∪ {X̙Z, ZY, Z ′Y ′},

A2 = {XZ},

A3 = {XZ, X ′Z}.

The set of rules Rj, j ∈ {1, 2, 3} are given as follows.

R1 = {1.1 : (ε#̙Y$Z ′#ε; go3,go3); 1.2 : (ε#αY$Z#Y ; go2,go2); 1.3 : (X̙α#ε$x̙#Z ; here,here)};

R2 = {2.1 : (Xα#ε$X#Z ; go1, go1)};

R3 = {3.1 : (X̙̙#αα$X#Z ; go1, go1); 3.2 : (X̙̙#α̙$X ′#Z ; out, out)}.

3.4. CONSTRUCTION OF SMALL UNIVERSAL P SYSTEMS 65

The graph G is represented on Fig. 3.7.

?>=<89:;1

1.3: X̙α ε

X̙ Z

��
1.1: ε ̙Y

Z ′ ε

((

1.2: ε αY

Z Y

��

out55

3.2: X̙̙ α̙

X ′ Z

jjjjjjjjj

?>=<89:;3

3.1: X̙̙ αα

X Z

hh

?>=<89:;2

2.1: Xα ε

X Z

VV

Figure 3.7: The communication graph G associated to the construction from The-
orem 3.4.2.

The simulation of TS is performed as follows. For every step of the derivation in
TS there is a sequence of several derivation steps in Π. The current configuration
w of TS is encoded by a string X̙̙c(w)̙Y present in node 1 of Π (the initial
configuration of Π satisfies this property). The simulation of a production ai → Pi ,
2 ≤ i ≤ n + 1 is performed using the rotate-and-simulate method used for many
proofs in this area. This method works as follows. First, suffixes c(Pj)c̄(aj), 1 ≤ j ≤ n

are attached to the string producing Xαi̙c(akw′)c(Pj)̙αjY . After that symbols α are
decreased at both ends simultaneously. Hence, only the string for which j = i will
remain at the end, producing X̙c(akw′)̙Y . After that the symbol ak is removed
(by removing corresponding α’s) and a new round begins. The simulation stops
when the first symbol is a1.

3.4.2 Small universal antiport P systems

In this section we construct a universal antiport system. For the sake of commodity
we use the representation of P systems in terms of maximally parallel multiset
rewriting. We start by introducing corresponding terms and after that we give the
construction.

Taking a antiport P system with one membrane Π = (V, R, T, [1]1,I,P) we call
R the alphabet of registers or the data alphabet. A state configuration is the
projection of a configuration of Π over O \ R (hence the symbols over the registers
alphabet are not included in the state configuration). A state configuration B is
reachable in one step from the state configuration A if there are multisets R′, R′′

over R such that there exists a maximally parallel transition AR′ =⇒ BR′′. We
will denote this by A ⇛ B. We remark that there might be several configurations
reachable in one step from a particular configuration A.

Since for systems with one membrane an antiport rule (u, in; v, out) corresponds
to a multiset rewriting rule v → u we use the latter notation for the rule specifica-
tion. We say that a rule u → v is a pure state rule if u contains no symbols from R,
otherwise we call it a register-dependent rule.

We call the obtained systems finite state maximally parallel multiset rewriting
systems (FsMPMRS). Such a system will be denoted as γ = (V, R, T,I,P), where

66 CHAPTER 3. STUDY OF P SYSTEMS

V , R, I and P are the same as for the antiport system, and T ⊆ R. The re-
sult of the computation is the multiset M(γ) defined as M(γ) = {prT (w) | I =⇒∗

w, and w cannot evolve anymore}.
For more precise details on the definition and the translation to and from an-

tiport P systems we refer to [8].

Graphical notation.

We introduce a graphical notation for FsMPMRS. We represent a state configu-
ration by a filled square with a dot attached to it and rules by arrows. We also
suppose that pure state rules (denoted by solid lines) precede register-dependent
rules (denoted by dashed lines). Now, in order to represent the relations between
state configurations we will depict the relation⇛. Without entering into technical
details, applying any maximally parallel transition to a configuration X means to
start from the square prO\R(X) and follow arrows to circles as long as possible,
keeping track of symbols from R; when it is no longer possible, consider the square
to which the last circle is attached.

Example 3.4.3.

Consider the system γ = ({A, B, C, D}, {E, F }, {F }, {AABEE},P), whereP con-
tains the following rules:

r1 : AB → C

r2 : AE → D

r3 : DC → AABF

Clearly, the system γ is a FsMPMRS that computes the multiset {FF}. Indeed,
there are three state configurations AAB, AC and CD and there are no rules
involving only E or F in the left-hand side. In a graphical way this system is
represented as follows:

For example, in order to compute the first step using the diagram we pro-
ceed as follows. The initial configuration AABEE corresponds to the state
configuration AAB. Now rule r1 can be applied bringing us to the circle at-
tached to the square AC. Since r2 is applicable we can continue to the circle
attached to the square DC and take into account that one E is removed. Fi-
nally, since there are no more outgoing arrows, we stop at the square DC and
our configuration is DCE.

We remark that the introduced graphical notation is different from the Molec-
ular Interactions Maps [44] or Kitano [42] notations, used for specifications in
systems biology, because it permits to follow the functioning of the system.

3.4. CONSTRUCTION OF SMALL UNIVERSAL P SYSTEMS 67

The Basic Simulation Technique

In this section we concentrate on a simple simulation of register machines by
FsMPMRS. This simulation is done as follows. We represent the current configura-
tion of a register machine M by a multiset (initially I). In particular, the contents
of a register Ri ∈ R is represented by the number of symbols Ri which are present.
The simulation of any incrementing or decrementing instruction of M is done by
an appropriate set of rules.

Our construction is based on a simulation of a special universal register ma-
chine U32 having 32 instructions taken from [45]. This construction may be rewrit-
ten in terms of [RiP] (increment) and 〈RiZM〉 (decrement) instructions, which gives
22 rules (9 incrementing instructions and 13 decrementing), see Fig. 3.8.

Figure 3.8: The universal register machine U32 with [RiP] and 〈RiZM〉 instructions.

The basic simulation strategy consists in a simulation of rules of an arbitrary
register machine by multiset rewriting rules using the smallest number of the
latter ones. Any incrementing rule (q, [RiP], q1) of register machine can be directly
simulated by the rule

q → Riq1, (3.1)

This corresponds to the following flowchart:

68 CHAPTER 3. STUDY OF P SYSTEMS

Any decrementing rule (q, 〈RiqZM〉, q1, q2) can be simulated using five rules:

q → q′Cq,

q′ → q′′, CqRiq → C′q, (3.2)

q′′Cq → q1, q′′C′q → q2

This corresponds to the following flowchart:

This simulation is done as follows. Symbol q introduces symbols q′ and Cq (the
last one is called the checker for the state q).

After that symbol Cq tries to decrease register Riq and if it succeeds then it
becomes C′q. Now, depending on this information symbol q′′, which replaced q′,
will choose the corresponding new state.

The choice between configurations q′′Cq and q′′C′q depends on the presence of
symbol Riq , i.e., if register Riq is zero.

Applied to U32 this translation gives an FsMPMRS with 73 rules. We remark
that these rules are of size at most 3. In the following sections we show different
techniques which reduce the number of rules for the price of increasing their size.

Basic minimization strategies

In the following we present two basic minimization strategies. One of them is based
on structural improvements and the other one is based on encodings. We present
them in a general form and after that we show how they apply to the system that
simulates U32.

State Elimination This minimization strategy performs an elimination of linear
fragments in the flow-chart (by performing a kind of speed-up). Suppose that there
are following two pure state rules, r1 = (q1 → q2) and r2 = (q2 → q3Ri). This
corresponds to the flowchart in the picture.

We observe that rules r1 and r2 may be combined and state q2 may be eliminated
by introducing a new rule r = (q1 → q3Ri). In a similar way, any linear chain of
pure state rules may be collapsed to a single rule (the size may be increased for
each additional rule). We shall further refer to this technique as intermediate state

elimination.
For U32 we observe that using intermediate state elimination technique we can

reduce (3.2) to following rules (we also renamed q′ to q and assume that the initial

3.4. CONSTRUCTION OF SMALL UNIVERSAL P SYSTEMS 69

state is encoded as qoCq0):

q → q′, CqRiq → C′q, (3.3)

q′Cq → q1Cq1 , q′C′q → q2Cq2

Graphically this can be represented as follows:

We observe that compared to the previous picture of the decrement simulation
the state q was eliminated and now the simulation starts with the state qCq.

Moreover, we observe that for U32 in a most of the cases a decrementing instruc-
tion (q, 〈RiZM〉, q1, q2) is followed by an incrementing instruction (q1, [Rk1P], q3) or
(q2, [Rk2P], q4). Hence, one can simulate the incrementing instruction during the
simulation of the previous decrementing instruction (by eliminating the unneeded
state in between). For example, last two rules from (3.3) become

q′Cq → q3Rk1Cq3 , q′C′q → q4Rk2Cq4 . (3.4)

Of course, this increases the size of rules up to 5.

Gluing rules Now we consider a technique that minimize the number of rules
by performing transitions between the configurations by fewer rules. Informally,

transitions c1
r1
→ c2 and d1

r2
→ d2 can be performed by the same rule X → Y if

the configurations are represented in a suitable way: c1 = cX , c2 = cY , d1 = dX ,
d2 = dY . In this case, we say that r1 and r2 may be glued. The following picture
illustrates this:

In a more formal way one must find a suitable encoding of state configurations
such that:

• No state configuration is a submultiset of another state configuration.

• There should be at least 2 transitions that may be glued.

We would like to remark that it is only possible to glue transitions that incre-
ment registers equivalently, in particular, transitions that do not increment any
register.

In what follows we apply the idea of gluing rules to the FsMPMRS system ob-
tained by the basic simulation technique.

70 CHAPTER 3. STUDY OF P SYSTEMS

Phases Consider now the rules (3.3). If we represent the state q by qS and the
state q′ by qS′ then the first rule from (3.3) may be glued for all states q, i.e.,
instead of |Q| rules q → q′ we obtain one rule S → S′. We call the symbol S the
phase, hence there will be two phases S and S′. The rules from (3.3) are replaced
by:

CqRiq → C′q, (3.5)

qS′Cq → q1Cq1S, qS′C′q → q2Cq2S

Independent Checkers Another minimization idea comes from the observation
that the information encoded in the checker Cq from (3.5) is redundant. If we
take the set of first rules from (3.5) for all q ∈ Q, we observe that it is possible to
glue rules that decrement the same register in the following way. We encode the
sequence qCq, respectively qC′q, by symbols qCiq , respectively qC′iq , where iq is the
number of the register decreased by the instruction q of M. Now we may eliminate
the first rule from (3.5) by introducing rules CiRi → C′i , 1 ≤ i ≤ |R|. By convention,
we will say that a state q of machine M is encoded by symbols qCiqS and we will
say that Ciq is the checker for the state q. This transforms (3.5) into the following:

qS′Ciq → q1Ciq1 S, qS′C′iq → q2Ciq2 S, (3.6)

where Ciq1 and Ciq2 represent checkers for states q1 and q2. Of course this
introduces |R| new rules, but finally we gain more because of the elimination of one
rule for each q ∈ Q from (3.5).

Graphically the above two transformations can be represented as follows (the
double-headed arrow represents the rule S → S′ common for all simulation blocks):

Further Minimization of U32 Simulation

In this section we show how to minimize the simulation of U32. We start with the
simulation using rules (3.6) and we do structural improvements based on some
observations on the functioning of the system. After that we show how to glue
most of the remaining rules by giving a suitable encoding of state configurations.

The structural improvements presented in this section are in some sense a
generalization of the intermediate state elimination technique.

Reducing decoder block The first important improvement may be done by con-
sidering the decoder part of the machine (see the flowchart on Fig. 3.8). In fact,
this block does a division of R5 by three. This behavior may be simulated by
5 rules which try to decrease register R5 by 3 and make the choice of the next
state depending on the result of this subtraction. The state q16 is now encoded by
q16C5C5C5S.

3.4. CONSTRUCTION OF SMALL UNIVERSAL P SYSTEMS 71

State Elimination for Decrementing Rules Using state elimination technique it
is possible to combine several rules corresponding to a decrement of registers 0−3
and 7, because these registers are decremented only once. However, for technical
reasons 3 phases should be introduced instead of 2. In this case, phase 2 (marked
by S′) will be treated analogously to phase 1 (marked by S) and the move to the
next state will be done in phase 3 (marked by S′′). Moreover, the phase change
may still be done by one rule. For this it is enough to replace S by XXX , S′ by XXT

and S′′ by XTT and the rules S → S′ and S′ → S′′ by the rule XX → XT .

The resulting flowchart can be seen at Fig. 3.9. We use following conventions.
The double-headed arrow represents the rule S → S′ (and S′ → S′′) that changes
the phase. Rules that decrement registers (CiRi → C′i) are represented by arrows
starting with a perpendicular bar and labeled by D0–D7 enclosed in circle. We
also do not depict in this case the corresponding decrementing register. Rules that
increment registers are depicted by arrows with a dashed line and the incremented
register(s) are depicted beside the line. These rules are labeled by a letter enclosed
in a diamond. All other rules (which do not increment/decrement registers) are
labeled by a number enclosed in a square.

Figure 3.9: The flowchart of the FsMPMRS simulating U32 after decoder block
reduction and state elimination for decrementing rules.

72 CHAPTER 3. STUDY OF P SYSTEMS

Encoding optimization Finally, the most substantial decrease can be obtained
by a proper encoding of the qiCq part of state configurations. The idea is that using
maximal parallelism some subparts of qiCq can be evolved by a small number of
common rules. Without entering into technical detail that can be consulted in [8],
we found an encoding of the part of the flowchart that permits to perform 9 rules by
only 3 new rules. This encoding is based on 2 phase changing rules A = (IS′′ → JS)
and B = (JJMS′′ → JJNS) and on one non-phase rule C = (LP → LQ). It is depicted
on Fig. 3.10.

Figure 3.10: Part of the flowchart of the FsMPMRS simulating U32 showing only
glued rules and the corresponding encoding.

Fig. 3.11 shows the flowchart obtained after applying all ideas mentioned before.
Arrows ending with a diamond correspond to rule C, while arrows ending with a
square correspond to rule A. The sparse arrow corresponds to rule B.

Formal Description of the System

In this section we give the formal description of the obtained system.

We constructed the system γ = (O, R, {R1},I,P), where

O = R ∪ {C3, C′5, C′6} ∪ {q16, q27} ∪ {T, I, J, K, L, M, N, O, P, Q, T, X},

R = {Ri | 0 ≤ i ≤ 7},

I = LQLQJJNXXXRi00 · · ·R
i7
7 .

Here i0, . . . , i7 is the contents of registers 0 to 7 of U32 and LQLQJJNXXX is the
encoding of the initial state q1C1S. The set of rules P is the following:

3.4. CONSTRUCTION OF SMALL UNIVERSAL P SYSTEMS 73

Figure 3.11: The flowchart of the FsMPMRS simulating U32 with glued rules.

No Rule No Rule

phase XX → XT

D0 IJKPQR0 → LQLQJJM a LQLQJJNTT → JJLOR6XX

D1 LQLQJJNR1 → LPLPJJMR7 b LC′5TT → JJLOR6XX

D2 IIKPQR2 → JJKPQ c OC′6TT → IILQLQNR5XX

D3 q27C3R3 → JJKPQ d QLQNC′6TT → JJKQQR6XX

D4 JJKR4 → JJLLM e q27C3TT → LQLQJJNR0XX

D5 JJOR5 → C′5 f q16JJOC′5C′5TT → LQLQJJNR2R3XX

D6 IJLR6 → C′6 g q16C′5C′5C′5TT → q16JJOJJOJJOXX

D7 IILQLQNR7 → IJLOR1

A ITT → JXX 1 JJLOTT → IJLOXX

B JJMTT → JJNXX 5 JJKQQTT → q16JJOJJOJJOXX

C LP → LQ 8 q16JJOJJOJJOTT → IIKPQMXX

12 q16JJOJJOC′5TT → q27C3XX

As a corollary of the previous discussion and the system above we obtain:

Theorem 3.4.4. There exists an universal antiport P system (or FsMPMRS system)

having 23 rules.

74 CHAPTER 3. STUDY OF P SYSTEMS

Chapter 4

Length-separation model

The motivation for the length separation model comes from a widely used laboratory
technique named gel electrophoresis. It is usually performed for analytical purposes
at the final stage of the experiment and permits to separate DNA molecules based on
their lengths. This technique is based on the fact that DNA molecules are negatively
charged. Thus, if they are placed in an electric field, they will move towards the
positive electrode. In an ideal solution all molecules will have same speed. If one
places molecules in a gel it will act as a molecular sieve, small molecules will move
easier (faster) through the gel than big ones, obviously groups of same length will
move with the same speed. When the first molecules reach the positive end of the
gel, the electric field is deactivated.

In laboratory DNA molecules are placed in several lanes. Thus several separa-
tions can be performed, see Fig. 4.1. Usually one of lanes contains molecules of a
known length and it is used for calibration. Hence, it is possible to find molecules
of a given length in a solution. The precision of this process depends on the gel
and the size of molecules. Finally, molecules can be excised from the gel and used
in other experiments.

Figure 4.1: Gel electrophoresis

We build our model around the idea of separation of strings (corresponding to
DNA molecules) by length, which becomes its main ingredient. In an informal way,
our model corresponds to the following experiment. Let us suppose that there is a
set of test tubes. Each of these test tubes can transform DNA molecules (cut, ligate,

75

76 CHAPTER 4. LENGTH-SEPARATION MODEL

multiply etc). The tubes are selective and they can do their transformations only on
specific molecules (for example, in a tube DNA molecules can be cut with a specific
enzyme, hence only molecules having a corresponding site will be modified). Taking
a tube, one can add some amount of DNA molecules to it. After the transformation,
all molecules from a tube are put in a gel electrophoresis. After the separation, the
gel is cut at some points corresponding to some predefined molecular lengths.
Hence, molecules will be grouped by length intervals. After that, molecules are
extracted from the gel and distributed among other test tubes depending on their
molecular length interval. The above process can be iterated and, since all tubes
are organized in a network, some interesting transformations may be done. The
initial DNA molecules are put in some fixed tube, and the transformed molecules
are collected in the output tube.

The translation to the formal language theory can be done as follows. Consider
a distributed computing system having the structure of a directed graph. The
nodes of this graph contain processing units that generate (in one step) a language
starting from a finite set of strings. The edges of the graph are labeled by simple
numeric predicates like = k, > k or < k. The computation in such a model consists
of a two-steps repeated procedure. During the evolution (first) step the set of strings
in all nodes is subjected to the corresponding operation and a new set of strings
is obtained in each node. During the communication (second) step, the strings are
redistributed in parallel between nodes according to numerical predicates. More
precisely, if an edge is labeled by the predicate = k, then all strings having length
k are moved from the initial node to the destination node.

The obtained model is similar to CD grammar systems [14] or networks of
language processors [17], where nodes are called components, and to test tube
systems [15], where nodes are called test tubes. However, the communication
mechanism which uses the length of the string is very different from previous
works, where some set inclusion conditions (like presence or absence of symbols)
are tested.

4.1 Formal definition

In the following we define the notion of length-separating splicing test tube systems.
This notion inherits the distributed architecture and most of the main features of
the known variants of test tube systems based on splicing, but the communication
among the splicing schemes (test tubes) is defined in a significantly different man-
ner, i.e., based on filtering by length. We chose splicing as an example. A similar
construction can be done with any other string operation.

Before turning to the model, we need some auxiliary notions. Let V be an
alphabet.

1. Let π=k : V ∗ → {true, false}, where k ≥ 1, be a mapping (a predicate) defined
by

π=k(w) =

{

true if |w| = k,

false otherwise.

Mappings (predicates) π≤k, π≥k, π>k, π<k, π,k are defined by modifying the
condition |w| = k to |w| ≤ k, |w| ≥ k, |w| > k, |w| < k, and |w| , k, respectively.

4.1. FORMAL DEFINITION 77

2. For the sake of completeness, we define π≥0 : V ∗ → {true, false} with π≥0(w) =
true for any w in V ∗.

3. Let πmax : V ∗ × 2V
∗

→ {true, false} where

πmax(w, L) =

{

true if w ∈ L and |w| ≥ |u|, for any u ∈ L

false otherwise.

4. Let πmin : V ∗ × 2V
∗

→ {true, false} where

πmin(w, L) =

true if w ∈ L and |w| = min
w′∈L
|w′|

false otherwise.

5. We define π¬max : V ∗ × 2V
∗

→ {true, false} and π¬min : V ∗ × 2V
∗

→ {true, false}

as the negations of predicates of πmax and πmin, respectively.

If no confusion arises, instead of π≤k , π≥k , π>k, π<k, π=k, π,k and πmax, πmin,

π¬max, π¬min, we might also use the notations ≤ k, ≥ k, > k, < k, = k, , k and max,
¬max, min, ¬min, respectively.

A length-separating splicing test tube system is a tuple ∆ = (n, V, T, G, A,R, i0),
where V is an alphabet, T ⊆ V is the terminal alphabet, G is a labeled graph, called
the communication graph of ∆, whose nodes are also called test tubes (tubes for
short), n is the size of the graph G, and i0 is a node of G, 1 ≤ i0 ≤ n, called the
output tube. A = (A1, . . . , An) is the initial configuration of ∆, where Ai is a finite
subset of V ∗, for 1 ≤ i ≤ n, called the set of axioms at node i, and R = (R1, . . . ,Rn),
where each Ri , 1 ≤ i ≤ n, is a finite set of splicing rules over V ∗, i.e., the set of rules
associated to node i of G.

Each edge from node i to node j of G, for 1 ≤ i, j ≤ n, denoted by (i, j),
is labeled by a mapping pi,j from the set {π≤k, π≥k, π>k, π<k, π=k , π,k | k ≥ 1} ∪
{π≥0, πmax, π¬max, πmin, π¬min}. (Notice that according to the definition, a direct cycle
from a node to itself is also possible.)

Furthermore, we require that no word in V ∗ can satisfy more than one predicate
associated to different edges going out from the same node. Thus, the labels define
a subpartition of the set of natural numbers.

The computation in ∆ is a sequence of two subsequent steps, a computation
step and a communication step, which are repeated iteratively and change the
configuration of the system.

By a configuration of ∆, above, we mean an n-tuple (L1, . . . ,Ln), where Li ∈ V ∗,

1 ≤ i ≤ n.

The computation step consists in an iterative application of Ri , σ∗
Ri

, at each node
i of G to strings found there.

We say that configuration (L′1, . . . ,L′n) is obtained from (L1, . . . ,Ln) by a com-
putation step in ∆, denoted by (L1, . . . ,Ln) =⇒comp (L′1, . . . ,L′n), if L′i = σ∗

Ri
(Li)

holds for 1 ≤ i ≤ n.

During the communication step, the actual contents of the test tubes, i.e., the
set of strings found at the nodes, is re-distributed according to the communication
graph G and to the labels of the edges, i.e., to the associated predicates.

In order to define this step more formally, we need an auxiliary notion. Let
(L1, . . . ,Ln) be a configuration of ∆. We say that w ∈ Li can be communicated
from node i to node j in ∆ if (i, j) is an edge in G such that

78 CHAPTER 4. LENGTH-SEPARATION MODEL

• pi,j(w) = true if pi,j ∈ {π≥0, π≤k , π≥k , π>k, π<k, π=k , π,k | k ≥ 1} and

• pi,j(w,Li) = true if pi,j ∈ {πmax, π¬max, πmin, π¬min}.

We say that configuration (L′1, . . . ,L′n) is obtained from (L1, . . . ,Ln) by a com-
munication step in ∆, denoted by (L1, . . . ,Ln) =⇒comm (L′1, . . . ,L′n), if L′i consists
of all words w ∈ V ∗ which satisfy one of the following conditions:

• w ∈ Lj and w can be communicated from node j to node i according to pj,i ,

• w ∈ Li and there is no edge (i, j), 1 ≤ i, j ≤ n, in G such that w can be
communicated to node j from node i according to pi,j.

Thus, after performing the corresponding iterated splicing, the words are com-
municated to other nodes such that each word is sent to exactly one node. For
example, if edge (i, j) is labeled by ≤ k (respectively, ≥ k, < k,> k,= k, , k), then a
word w at node i with |w| ≤ k (respectively, |w| ≥ k, |w| < k, |w| > k, |w| = k, |w| , k)
is sent to node j. Predicate pi,j(w,Li) where pi,j = max (respectively, pi,j = ¬max)
makes possible w to be communicated to node j if w is (respectively, is not) a string
of maximal length at node i. Similarly, predicate min (respectively ¬min) is for
communicating a string w to node j if w is (respectively, is not) a string of smallest
length at node i.

The result of a computation is the set of strings over the terminal alphabet
collected at the output tube, i0, after a communication step in ∆, i.e.,

L(∆) = {w ∈ T ∗ | (A1, . . . , An) =⇒comp (L(1)
1 , . . . ,L

(1)
n) =⇒comm

(L(2)
1 , . . . ,L

(2)
n) . . . =⇒comm (L(2s)

1 , . . . ,L
(2s)
n),

for somes ≥ 0 such thatw ∈ L(2s)
i0 }.

We illustrate the above notions by an example.

Example 4.1.1.

Let us define ∆ as follows. Consider the following communication graph G

and predicates associated to the edges. Notice that node 9 has only incoming
edges.

?>=<89:;/.-,()*+2
¬max //

max

��?
??

??
??

??
??

??
??

??
??

??
?>=<89:;3

max //

¬max

��

?>=<89:;4

max

����
��

��
��

��
��

��
��

��
��

�

¬max

��?
??

??
??

??
??

??
??

??
??

??

?>=<89:;9 ?>=<89:;8

≥0

OO

?>=<89:;5

¬max

��

max

nn?>=<89:;1

max

OO

¬max

??��������������������� ?>=<89:;7

=2

OO

,2

__????????????????????? ?>=<89:;6

=3

EE

,3
oo

4.2. RESULTS 79

Let T = {a, b, c}, let the output tube be 2, and let the axioms to be given as
A1 = {c

′ab, cab′}, A6 = {XXZ, ZYY } ∪ {c′Z, Zb′}, with all other axiom sets being
empty. Let us define the rule sets associated to the tubes as follows:

R1 =

{

a b′

c′ a

}

R2 =

{

c a

XX Z
,

a b

Z YY

}

.

R4 =

{

XX a

c′ Z
,

a YY

Z b′

}

.

All other rule sets are empty, thus no operation is performed in the corre-
sponding tubes.

Starting from c′ab and cab′ at tube 1, string caab is obtained which is sent
to tube 2 (satisfying communication condition max). At tube 2, it is trans-
formed to strings XXaab, caaYY and XXaaYY . Then, XXaaYY is sent to tube
9, and the other strings are sent to tube 3. After that, these latter strings
arrive at tube 4, since they satisfy condition max. In this latter tube we ob-
tain strings c′aab, caab′, XXaab and caaYY . As before, we send XXaab and
caaYY to the “trash” tube (9), and then strings c′aab and caab′ via tube 5,
arrive at tube 1. At the same time, strings XXZ , ZYY , c′Z and Zb′ return to
their original location. The above procedure can be repeated. Hence, we ob-
tain the language {ca2n

b | n > 0}, which is a well-known non-context-free
context-sensitive language.

4.2 Results on length-separating test tube systems based

on splicing

In this section we give the idea how length-separating splicing test tube systems
can simulate Turing machines.

We first define a coding function φ as follows. For any configuration w1qw2 of a
Turing machine M = (Q, T, a0, q0, FM , δ), we define φ(w1qw2) = X6w1qw2Y 6, where
X and Y are symbols not in T .

Theorem 4.2.1. Let M = (Q, T, a0, s0, FM , δ) be a Turing machine and w be an

input of M. Then, we can construct a length-separating splicing test tube system

∆ = (11, V, T ′, G, A,R, 10) which, given the axiom φ(w) at a distinguished tube,

simulates the behavior of M on input w, i.e., in the following sense:

1. For any word w on which M halts in configuration w1qw2, ∆ produces a unique

output φ(w1qw2).

2. For any word w, on which M does not halt, ∆ computes the empty language.

The proof of this theorem uses a system having the structure shown on Fig. 4.2.
Informally, system ∆ simulates each step of M as follows. Suppose that the cur-

rent configuration of M is w1qiakw2 and M contains an instruction (qi , ak, R, qj, al).
Firstly, the string X6w1qiakw2Y 6 (the “main” string) is split, in front of qi , into two
parts: X6w1L1 and R1q1akw2Y 6 which go to node 2. At this node qiak is replaced
by qjal and the two parts of the configuration are joined. If necessary, the tape can
be extended to the right. The resulting string X6w1qjalw2Y 6 goes to node 3 and
further to node 1, where a simulation of a new step of the Turing machine may
begin. The case of a move to the left is treated analogously. The elimination of the

80 CHAPTER 4. LENGTH-SEPARATION MODEL

incorrect strings is done in tubes 1 and 2 using max and ¬max predicates. Indeed,
after splitting the “main” string into two parts, the longest string (which is the main
string) is discarded by sending it to tube 8 and after that to tube 11. In tube 2, after
the replacement and joining, the longest string represents the new configuration
and it is preserved. The remaining of the system insures that all additional strings
used in rules return to their original places at the appropriate moment of time. The
system produces a result only if M halts on the initial string w.

GFED@ABC11 ?>=<89:;9

min

��

¬min
oo ?>=<89:;8

>8
oo

=8

xx ?>=<89:;1
maxoo

¬max

��

GFED@ABC?>=<89:;10 ?>=<89:;6

≤2

99

>2 // ?>=<89:;7

≥6

��

?>=<89:;5

≥0

ee

?>=<89:;4

≤6

OO

>6

VV

?>=<89:;2
¬maxoo max // ?>=<89:;3

≥0

OO

Figure 4.2: Communication graph for the system from Theorem 4.2.1

The construction used in this theorem is similar to certain constructions given
in [52] and [72]. Using max and ¬max predicates it is possible to filter out strings
which do not correspond to a correct simulation of the Turing machine. Hence,
only strings representing (through encoding) configurations of M will be kept.

4.3 Restricted Variants

In this section we consider some variants of the model by imposing restrictions on
the type of predicates. The first result shows that systems that use only πmax, πmin

and π≥0 predicates do not have a decrease of their computational power:

Theorem 4.3.1. It is possible to transform the length-separating splicing test tube

system ∆ = (11, V, T ′, G, A,R, 10) constructed as in Theorem 4.2.1 into a length-

separating splicing test tube system ∆′ = (13, V, T ′, G′, A,R, 10) having communica-

tion graph G′ labeled only by predicates from the set {π≥0, πmax, π¬max, πmin, π¬min}

such that L(∆) = L(∆′).

The construction given in Theorem 4.2.1 can be modified by taking into account
that a small number of strings transit tubes 2 and 4. In this case it is possible to
replace a number predicate by one or several consecutive min predicates.

The computational power of systems not using πmax or πmin predicates is an
open problem. We conjecture that these systems are not very powerful:

4.4. DISCUSSION 81

Conjecture 4.3.2. The language generated by any length-separating splicing test
tube system ∆ having communication graph labeled only by predicates from the
set Π = {π≥0, π≤k, π≥k , π>k, π<k, π=k, π,k | k ≥ 1} is regular.

Our conjecture is supported by the following observation. It is easy to see
that for any k ≥ 0, L(k)

i , i ∈ O is a regular language. Indeed, for any k, i ≥ 0 if
language L(k)

i is obtained by a computational step, then it is regular because the
splicing operation preserves the regularity of a language [61]. If L(k)

i is obtained
by a communication step, then it is also regular because any predicate performs a
regular partition of a language. Hence, each L(k)

i is the difference of the union of
the regular languages corresponding to the incoming edges of node i and the union
of the regular languages corresponding to the outgoing edges of node i. Since the
finite union and the finite difference of regular languages are regular languages,
language L(k)

i is regular.
Moreover, we can observe that for any finite combination of predicates from the

set Π, there is a constant l > 0 such that all words having length greater than l

cannot be distinguished by such a combination. This assertion does not hold in the
case of the πmax or the πmin predicate. By these observations, we guess that using
separation by fixed length, after some steps C there will be the following equality:
L

(k)
i = L

(k+h)
i for 1 ≤ i ≤ n, k > C and h > 0.

4.4 Discussion

The reader can observe that, in fact, the main ingredient of the presented model
is the communication controlled by the length of the words. Thus, the idea of
a length separating test tube system can also be given in a general form, i.e.,
using an arbitrary operation, γ, defined on words (or sets of words.) Moreover, we
may associate different operations to different test tubes, thus obtaining a hybrid

system. In this way, we need only to change the definition of the computing step.
The study and the comparison of length-separating test tube systems based on

different operations would be of interest.
It would also be interesting to investigate systems having different restrictions,

in particular, systems where only one elementary rule per test tube is allowed. In
the splicing case, this would mean that only one restriction enzyme is used. We
think that this restriction may better reflect the reality.

These systems can also be considered as transducers, which transform a set of
strings into another set. In this case, several systems may be chained one after
another and their actions can be combined. From a practical point of view, this
also means that V = T , i.e., because in this case no final filtering of the strings
(terminal strings) is done. Notice, that the distinction of the terminal alphabet is
traditionally used only for selecting some particular strings among the results of
the computation and it is not an inherent property of the construction.

Another important point for the definition of the model, especially if it is used
as a transducer, is the detection of a halting configuration. In most of the con-
structions from DNA computing the end of the computation is defined by halting.
Usually, this condition means that the system cannot evolve, i.e., there is no ap-
plicable rule in the system. However, from practical point of view, it is difficult
to detect the fulfillment of this condition. Therefore, we propose to use a special

82 CHAPTER 4. LENGTH-SEPARATION MODEL

acknowledgment test tube. When anything arrives in this tube, the computation is
considered to be finished and the result is read in the output test tube. It is also
possible to combine the acknowledgment and the output test tubes. In this case
the computation stops when a first molecule arrives in that tube.

Another idea is to permit that the strings satisfy more than one predicates
belonging to outgoing edges of the same node. According to this model, if a string
validates several predicates, then a copy of it is sent to all the corresponding tubes.
In the simplest case, when two connections with π≥0 predicate are present, this
corresponds to the duplication of the contents of the test tube.

We would like to remark that the length-driven communication principle of our
model may be also generalized by substituting the length parameter by some other
parameter depending on the word. In this case, in definitions from Section 4.1 the
length function |w| shall be replaced by an arbitrary function f (w), f : V ∗ → N.
This approach is very general, and several existing models, e.g. splicing test tube
systems [15], can be expressed in these terms.

The formalization that we provided can be further used to investigate differ-
ent properties of models based on gel electrophoresis. Moreover, since some ideas
from the previous section may be realized in practice, it can be used for engineer-
ing transducers (protocols) that will do some particular transformation on DNA
molecules in laboratory. However, in this case, size exclusion chromatography be-
comes more interesting as it permits to separate molecules much faster. We recall
that size exclusion chromatography uses a column filled with a porous material
and the molecules to be separated arrive at the top of the column and under the
pressure move towards the bottom. Bigger molecules go directly to the other end,
while smaller molecules enter the pores of the material and take more time to arrive
to the end, see Fig. 4.3. By doing a good time calibration it is possible to accurately
separate molecules of different length in very short period of time.

Column

Large

molecule

Small

molecule

Porous

particles

Figure 4.3: The principle of size exclusion chromatography

4.5. BIBLIOGRAPHICAL REMARKS 83

4.5 Bibliographical remarks

The idea of the length separation was used from the beginning of DNA computing.
For example, it is used in the third step of the Adleman’s experiment [1]. There
are also algorithms like in [32] based on the length separation which use it at the
end of the computation in order to confirm or select the result. In [41], a method
called length-only discrimination based on the generate-and-search approach but
relying on the length of the sequence is presented and experimentally confirmed.
However, in none of these places the length separation is considered as the main
ingredient of the model, but rather a subsidiary operation.

84 CHAPTER 4. LENGTH-SEPARATION MODEL

Chapter 5

Directions for further research

This chapter summarizes the most interesting open questions raised by the re-
search presented in this thesis. More suggestions can be found in the text of
previous chapters as well as in the proposed references.

Insertion-deletion

Our study of insertion-deletion systems raised new open problems, in particular,
related to the computational completeness of one-sided insertion-deletion systems
with different size parameters. We give below a list of systems not investigated so
far. In order to simplify the presentation we consider systems of size (i, j, k; 1, 1, 0),
i ∈ N+, j, k ∈ N i.e., having one-sided minimal deletion rules. The results from
tables 2.1 and 2.2 suggest that probably systems having i + j + k = 4 are com-
putationally complete, while systems having i + j + k = 3 are not. However, this
conjecture needs a further verification. In a similar way, we conjecture that sys-
tems of size (i, j, k; 2, 0, 0), i.e., having context-free deletion of two symbols are
computationally complete if i + j + k = 3 and not if i + j + k = 2. Since our results
are symmetric with respect to the size of the insertion and deletion, we conjecture
similar results for systems of size (1, 1, 0; i, j, k) and (2, 0, 0; i, j, k).

Another interesting topic is the computational power of same-side one-sided
insertion-deletion systems, for example, of size (m, n, 0; 1, 1, 0) or (1, 1, 0; m, n, 0),
m > 0, n ≥ 0. Our preliminary investigations on this type of systems show that the
ideas used for previous constructions cannot be applied in this case. Using different
type of arguments it is possible to show that systems of size (1, 1, 0; 3, 2, 0) strictly
include the family of regular languages, however their computational power is still
an open question.

The verification of above conjectures can be tedious and we think that in this
case the method of the direct simulation can be extremely useful.

For the graph-controlled case a special attention can be further drawn to the
number of used components. Our computational completeness results make use of
5 components, we suggest that this number can be reduced to 4 or 3 components.
In the case of systems with priorities it would be interesting to find a small bound
on the number of used components.

As in the case of graph-controlled insertion-deletion systems it would be inter-
esting to adapt the concept of matrix, ordered and random-context grammars to
insertion-deletion systems. We think that as in the graph-controlled case, the com-

85

86 CHAPTER 5. DIRECTIONS FOR FURTHER RESEARCH

putational power should strictly increase. Our preliminary investigations showed
that this is the case for the matrix insertion-deletion systems.

The unusual transformations of strings by insertion and deletion operations
can be further explored for the construction of random number generators or in
the area of genetic algorithms.

P systems

We give below some interesting research directions suggested by our research in
the area of P systems.

The first direction we suggest concerns the study of the generalized commu-
nicating P systems. In our opinion a particular attention shall be drawn to the
modularity of the concept. The given proofs and examples feature a set of primitive
building blocks which serve as a basis for the final construction. We think that it is
a very promising topic and that the research of more complex building blocks and
of ways of their assembly shall be continued. Such investigation will necessarily
involve concepts similar to the ones used in Petri Nets or Process Algebra and will
permit to nicely bridge these areas and P systems.

Another direction that can be explored is the fact that generalized communicat-
ing P systems can be seen as a computational model based on the synchronization
of signals (represented by objects) in a network. In the minimal case only two sig-
nals synchronize, this can be extended to a finite number. Such a viewpoint can
permit to model different properties of networks, for example, the computational or
informational flow.

The investigation of the semantics of P systems is a long-term project that can
permit to efficiently classify different variants of P systems and establish equiva-
lences between them. Our approach gives a very deep insight on the functioning
of various models, leading to their better understanding, giving the possibility to
express complicated behaviors in simpler terms. One of the promising directions
for further research is to consider non-disjoint partitions for derivation modes in-
volving partitions of rules. This would imply that one rule can be member of several
partitions, hence its selection can permit to fulfill derivation mode requirements for
several partitions at the same time. Such an approach allows all possibilities for a
rule application thus giving a full control on it.

It is also very important to give a similar formal definition for P systems having
a dynamic structure, i.e., where the number of membranes can evolve at each
computational step. This will permit to complete the picture and to start deeper
investigations on corresponding classes.

The study of small-size universal P systems is important from the philosophical
point of view. The quest for small universal devices gives us the possibility to
explore the borderline separating complicated and simple behaviors. It is amazing
to find out that simple, limited machines or processes can behave in the most
complex non-predictable way. We suggest reading the book [80] that explores such
kind of ideas. We remark that the universality results we obtained cannot be
directly compared to descriptional complexity results for Turing machines [63] or
register machines [45], but it seems that the mechanisms offered by the framework
of P systems allow a decrease of the number of rules.

Another important point that needs to be highlighted is the fact the antiport

87

P systems are universal for the family of recursively enumerable sets of numbers.
In contrast to the string case, the only investigation about the descriptional com-
plexity for this family was done using register machines, see [45]. Our approach
permits to complete these investigations and opens the possibility to improve the
aforementioned results on register machines, because our system has 23 rules,
while the universal register machine U32 has 25 branching points.

Finally, we think that, in the future, one of the main types of investigations in
the area of P systems will be the implementation and adaptation of different known
algorithms. This can give a different viewpoint on corresponding algorithms and
why not a more efficient implementation.

Length-separation model

By summarizing the discussion from Section 4.4 we would like to highlight several
directions for the future research. In our opinion the idea of hybrid systems shall
be explored further, in particular, using tube operations different from splicing.
We suggest, for example, the use of the operations of cut and recombination [28],
rewriting, or insertion-deletion.

The second fruitful idea is to use tubes dedicated to one operation. This per-
mits to bridge our investigations with real life and gives the possibility to plan
experiments in vitro.

The third research direction concerns the use of the length-separation idea
in the theory of formal languages. It would be interesting to investigate differ-
ent computational models where the control set conditions are replaced by the
length separation. A generalization of the concept to arbitrary functions is also
very promising. For example, the length function can be replaced by the mod-
ulo function of the string length, which can eventually permit not to use max and
min predicate. This generalization could also give a general framework for existing
models and the length-separation variants.

88 CHAPTER 5. DIRECTIONS FOR FURTHER RESEARCH

Conclusions

This thesis gives a summary of two of our main research activities during the last
5 years. The study of insertion-deletion systems is a typical study in the formal
language theory. Since insertion and deletion rules can be seen as restrictions of
rewriting rules, our results are relevant for the theory of formal languages, as they
propose new classes of grammars having (very) restricted types or rules. Beside the
fact that some of these classes are computationally complete, it is probably much
more interesting to find out that there are classes which are not. This introduces
additional levels in the Chomsky hierarchy and can further provide new ideas for
grammar and automata construction.

Our study of P systems is less unitary, since the underlying topic is very vast. In
this thesis we have chosen the subjects that, in our opinion, merit more attention.
We are convinced that the formal definition of P systems is an important achieve-
ment for the area that would further permit to rigorously define and compare new
models. Despite of its simplicity, the obtained result took about 2 years in order
to be formulated in a convenient way. The generalized communicating model is
the fruit of our observations on the minimal symport/antiport; its clear intuitive
definition, nice building properties and easy correspondence to Petri Nets make it
attractive for further research and applications. Finally, the study of universal P
systems is a kind of investigation that should be done by a researcher working in
the area of theoretical computer science. This gives an important understanding
of the fundamental concepts of the computability theory and permits to acquire
a strong intuition for this area, not taking into account interesting philosophic
questions raised by such kind of research.

Beside the above two activities, which count for most of our research efforts
during these years, we chose to present the length-separation model, which, in our
opinion, is extremely interesting. Two features of this model especially captured
our attention. The first one is that despite of its simplicity, surprisingly, the length-
separation mechanism was not considered in the theory of formal languages. The
second feature, confirmed by the discussions with specialists, is that the model
is not too abstract and can be implemented in laboratory, in vitro. This exciting
property is a strong argument for the further investigation of the model.

The preparation of this thesis gave a possibility to look back at the performed
research and to highlight the most interesting and important achievements. What
looks simple now, was not so trivial some time before. We can enjoy the results
only if we see the whole road leading to them. This is probably the most important
conclusion suggested by the writing of this thesis.

89

90 CONCLUSIONS

Bibliography

[1] L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266, (1994), 1021–1024.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular

Biology of the Cell, Fourth Edition. Garland, 2002.

[3] A. Alhazov, R. Freund, M. Oswald, and S. Verlan. Partial halting in P sys-
tems using membrane rules with permitting contexts. In J. O. Durand-Lose
and M. Margenstern, editors, Machines, Computations, and Universality, 5th

International Conference, MCU 2007, Orléans, France, September 10-13, 2007,

Proceedings. Springer, 2007, volume 4664 of Lecture Notes in Computer Sci-

ence, 110–121.

[4] A. Alhazov, A. Krassovitskiy, Y. Rogozhin, and S. Verlan. P systems with
minimal insertion and deletion. In R. Gutiérrez-Escudero, M. A. Gutiérrez-
Naranjo, G. Păun, I. Pérez-Hurtado, and A. Riscos-Nunez, editors, Proc. of

Seventh Brainstorming Week on Membrane Computing Sevilla, February 2–6,

2009. Fénix Editora, Sevilla, 2009, volume I, 9–21. Also accepted to Theoretical

Computer Science.

[5] A. Alhazov, A. Krassovitskiy, Y. Rogozhin, and S. Verlan. New Trends in For-

mal Language Theory Inspired by Natural Computing: Small Size Insertion and

Deletion Systems, Imperial College Press, chapter 1. Mathematics, Comput-
ing, Language, and Life: Frontiers in Mathematical Linguistics and Language
Theory. 2010, 459–524. In publication.

[6] A. Alhazov, M. Margenstern, and S. Verlan. Fast synchronization in P systems.
In D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing - 9th International Workshop, WMC 2008, Edinburgh,

UK, July 28-31, 2008, Revised Selected and Invited Papers. Springer, 2008,
volume 5391 of Lecture Notes in Computer Science, 118–128.

[7] A. Alhazov, Y. Rogozhin, and S. Verlan. Minimal cooperation in sym-
port/antiport tissue P systems. International Journal of Foundations of Com-

puter Science, 18(1), (2007), 163–180.

[8] A. Alhazov and S. Verlan. Minimization strategies for maximally parallel mul-
tiset rewriting systems. Technical Report 862, TUCS, 2008. Also accepted to
Theoretical Computer Science.

[9] R. Benne. RNA-Editing: The Alteration of Protein Coding Sequences of RNA.
Ellis Horwood, Chichester, West Sussex, 1993.

91

92 BIBLIOGRAPHY

[10] F. Bernardini, M. Gheorghe, M. Margenstern, and S. Verlan. How to synchro-
nize the activity of all components of a P system? International Journal of

Foundations of Computer Science., 19(5), (2008), 1183–1198.

[11] G. Ciobanu, L. Pan, G. Păun, and M. J. Pérez-Jiménez. P systems with minimal
parallelism. Theoretical Computer Science, 378(1), (2007), 117 – 130.

[12] G. Ciobanu, M. J. Pérez-Jiménez, and G. Păun, editors. Applications of Mem-

brane Computing. Natural Computing Series. Springer, 2006.

[13] J. Cocke and M. Minsky. Universality of tag systems with P=2. Journal of the

ACM, 11(1), (1964), 15–20.

[14] E. Csuhaj-Varjú and J. Dassow. On cooperating/distributed grammar sys-
tems. Elektronische Informationsverarbeitung und Kybernetik, 26(1/2), (1990),
49–63.

[15] E. Csuhaj-Varjú, L. Kari, and G. Păun. Test tube distributed systems based
on splicing. Computers and Artificial Intelligence, 15(2–3), (1996), 211–232.

[16] E. Csuhaj-Varjú, M. Margenstern, G. Vaszil, and S. Verlan. On small universal
antiport P systems. Theoretical Computer Science, 372(2-3), (2007), 152–164.

[17] E. Csuhaj-Varjú and A. Salomaa. Networks of parallel language processors. In
G. Păun and A. Salomaa, editors, New Trends in Formal Languages. Springer,
1997, volume 1218 of Lecture Notes in Computer Science, 299–318.

[18] E. Csuhaj-Varjú and S. Verlan. On length-separating test tube systems. Nat-

ural Computing, 7(2), (2008), 167–181.

[19] E. Csuhaj-Varjú and S. Verlan. On generalized communicating P systems with
minimal interaction rules. Theoretical Computer Science. 2010. In press.

[20] M. Daley, L. Kari, G. Gloor, and R. Siromoney. Circular contextual
insertions/deletions with applications to biomolecular computation. In
SPIRE/CRIWG. 1999, 47–54.

[21] M. Domaratzki and A. Okhotin. Representing recursively enumerable lan-
guages by iterated deletion. Theoretical Computer Science, 314(3), (2004),
451–457.

[22] R. Freund, A. Alhazov, Y. Rogozhin, and S. Verlan. Communication P systems.
In Păun et al. [62], 118–143.

[23] R. Freund, O. Ibarra, G. Păun, and H.-C. Yen. Matrix languages, register
machines, vector addition systems. In M. Gutiérrez-Naranjo, A. Riscos-Núñez,
F. R. Campero, and D. Sburlan, editors, Proceedings of the Third Brainstorming

Week on Membrane Computing. University of Sevilla, 2005, 155–168.

[24] R. Freund, M. Kogler, and S. Verlan. P automata with controlled use of mini-
mal communication rules. In H. Bordihn, R. Freund, M. Holzer, M. Kutrib, and
F. Otto, editors, Workshop on Non-Classical Models of Automata and Applica-

tions, NCMA 2009, Wroclaw, Poland. Oesterreichische Computer Gesellschaft,
2009, 107–120.

BIBLIOGRAPHY 93

[25] R. Freund and A. Păun. Membrane systems with symport/antiport rules: Uni-
versality results. In G. Păun, G. Rozenberg, A. Salomaa, and C. Zandron, edi-
tors, Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea

de Arges, Romania, August 19-23, 2002, Revised Papers. Springer, 2002, vol-
ume 2597 of Lecture Notes in Computer Science, 270–287.

[26] R. Freund and S. Verlan. A formal framework for static (tissue) P systems. In
G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, and A. Salomaa, editors,
Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki,

Greece, June 25-28, 2007 Revised Selected and Invited Papers. Springer, 2007,
volume 4860 of Lecture Notes in Computer Science, 271–284.

[27] R. Freund and S. Verlan. P systems working in the k-restricted minimally
parallel mode. In E. Csuhaj-Varjú, R. Freund, M. Oswald, and K. Salomaa,
editors, International Workshop on Computing with Biomolecules, August 27th,

2008, Wien, Austria. Oesterreichische Computer Gesellschaft, 2008, volume
244, 43–52.

[28] R. Freund and F. Wachtler. Universal systems with operations related to
splicing. Computers and Artificial Intelligence, 15(4), (1996), 273–294.

[29] P. Frisco and H. J. Hoogeboom. Simulating counter automata by P sys-
tems with symport/antiport. In G. Păun, G. Rozenberg, A. Salomaa, and
C. Zandron, editors, Membrane Computing, International Workshop, WMC-

CdeA 2002, Curtea de Arges, Romania, August 19-23, 2002, Revised Papers.
Springer, 2002, volume 2597 of Lecture Notes in Computer Science, 288–301.

[30] B. Galiukschov. Semicontextual grammars. Matem. Logica i Matem. Lingvis-

tika, (1981), 38–50. Tallin University, (in russian).

[31] E. Goto. A Minimum Time Solution of the Firing Squad Problem, volume 298 of
Course Notes for Applied Mathematics. Harvard University, 1962.

[32] F. Guarnieri, M. Fliss, and C. Bacroft. Making DNA add. Science, 273(12),
(1996), 220–223.

[33] D. Haussler. Insertion and Iterated Insertion as Operations on Formal Lan-

guages. Ph.D. thesis, Univ. of Colorado at Boulder, 1982.

[34] D. Haussler. Insertion languages. Information Sciences, 31(1), (1983), 77–89.

[35] T. Head. Formal language theory and DNA: an analysis of the generative
capacity of specific recombinant behaviors. Bulletin of Mathematical Biology,
49(6), (1987), 737–759.

[36] T. Head. Splicing languages generated with one sided context. In Computing

with Bio-Molecules. Theory and Experiments. 1998, 158–181.

[37] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory,

Languages, and Computation. Addison-Wesley, Reading, Mass., 2nd edition,
2001.

[38] L. Kari. On Insertion and Deletion in Formal Languages. Ph.D. thesis, Univer-
sity of Turku, 1991.

94 BIBLIOGRAPHY

[39] L. Kari, G. Păun, G. Thierrin, and S. Yu. At the crossroads of dna computing
and formal languages: Characterizing RE using insertion-deletion systems. In
Proc. of 3rd DIMACS Workshop on DNA Based Computing. Philadelphia, 1997,
318–333.

[40] L. Kari and G. Thierrin. Contextual insertions/deletions and computability.
Information and Computation, 131(1), (1996), 47–61.

[41] Y. Khodor, J. Khodor, and T. F. K. Jr. Experimental conformation of the basic
principles of length-only discrimination. In N. Jonoska and N. C. Seeman,
editors, DNA Computing, 7th International Workshop on DNA-Based Comput-

ers, DNA7, Tampa, Florida, USA, June 10-13, 2001, Revised Papers. Springer,
2001, volume 2340 of Lecture Notes in Computer Science, 223–230.

[42] H. Kitano. A graphical notation for biochemical networks. Biosilico, 1, (2003),
169–176.

[43] S. C. Kleene. Representation of events in nerve nets and finite automata. In
C. Shannon and J. McCarthy, editors, Automata Studies, Princeton University
Press, Princeton, NJ. 1956, 3–41.

[44] K. W. Kohn. Molecular interaction map of the mammalian cell cycle control
and DNA repair systems. Molecular Biology of the Cell, 10, (1999), 2703–2734.

[45] I. Korec. Small universal register machines. Theoretical Computer Science,
168(2), (1996), 267–301.

[46] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Computational power of
insertion-deletion (P) systems with rules of size two. Accepted to Natural Com-

puting. 2010, in publication.

[47] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Further results on insertion-
deletion systems with one-sided contexts. In C. Martín-Vide, F. Otto, and
H. Fernau, editors, Language and Automata Theory and Applications, Second

International Conference, LATA 2008, Tarragona, Spain, March 13-19, 2008.

Revised Papers. Springer, 2008, volume 5196 of Lecture Notes in Computer

Science, 333–344.

[48] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. One-sided insertion and dele-
tion: Traditional and P systems case. In E. Csuhaj-Varjú, R. Freund, M. Os-
wald, and K. Salomaa, editors, International Workshop on Computing with

Biomolecules, August 27th, 2008, Wien, Austria. Druckerei Riegelnik, 2008,
53–64.

[49] A. Krassovitskiy, Y. Rogozhin, and S. Verlan. Computational power of P sys-
tems with small size insertion and deletion rules. In T. Neary, D. Woods,
A. K. Seda, and N. Murphy, editors, Proceedings International Workshop on

The Complexity of Simple Programs, Cork, Ireland, 6-7th December 2008. 2009,
volume 1 of EPTCS, 108–117.

[50] S. Marcus. Contextual grammars. Revue Roumaine de Mathématique Pures et

Appliquées, 14, (1969), 1525–1534.

BIBLIOGRAPHY 95

[51] M. Margenstern, G. Păun, Y. Rogozhin, and S. Verlan. Context-free insertion-
deletion systems. Theoretical Computer Science, 330(2), (2005), 339–348.

[52] M. Margenstern and Y. Rogozhin. A universal time-varying distributed H sys-
tem of degree 2. Biosystems, 52, (1999), 73–80.

[53] C. Martín-Vide, G. Păun, and A. Salomaa. Characterizations of recursively
enumerable languages by means of insertion grammars. Theoretical Computer

Science, 205(1-2), (1998), 195–205.

[54] A. Matveevici, Y. Rogozhin, and S. Verlan. Insertion-deletion systems with one-
sided contexts. In J. O. Durand-Lose and M. Margenstern, editors, Machines,

Computations, and Universality, 5th International Conference, MCU 2007, Or-

léans, France, September 10-13, 2007, Proceedings. Springer, 2007, volume
4664 of Lecture Notes in Computer Science, 205–217.

[55] J. Mazoyer. A six-state minimal time solution to the firing squad synchroniza-
tion problem. Theoretical Computer Science, 50, (1987), 183–238.

[56] M. Minsky. Computations: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffts, NJ, 1967.

[57] E. Post. Formal reductions of the general combinatorial decision problem.
American Journal of Mathematics, 65(2), (1943), 197–215.

[58] G. Păun. Regular extended H systems are computationally universal. Journal

of Automata, Languages and Combinatorics, 1(1), (1996), 27–36.

[59] G. Păun. Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[60] G. Păun. Membrane Computing. An Introduction. Springer–Verlag, 2002.

[61] G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing

Paradigms. Springer, 1998.

[62] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook Of Membrane

Computing. Oxford University Press, 2009.

[63] Y. Rogozhin. Small universal turing machines. Theoretical Computer Science,
168(2), (1996), 215–240.

[64] Y. Rogozhin and S. Verlan. On the rule complexity of universal tissue P sys-
tems. In R. Freund, G. Păun, G. Rozenberg, and A. Salomaa, editors, Mem-

brane Computing, 6th International Workshop, WMC 2005, Vienna, Austria,

July 18-21, 2005, Revised Selected and Invited Papers. Springer, 2005, vol-
ume 3850 of Lecture Notes in Computer Science, 356–362.

[65] G. Rozenberg and A. Salomaa. Handbook of Formal Languages, 3 volumes.
Springer Verlag, Berlin, Heidelberg, New York, 1997.

[66] H. Schmid and T. Worsch. The firing squad synchronization problem with
many generals for one-dimensional ca. In J.-J. Lévy, E. W. Mayr, and J. C.
Mitchell, editors, Exploring New Frontiers of Theoretical Informatics, IFIP 18th

96 BIBLIOGRAPHY

World Computer Congress, TC1 3rd International Conference on Theoretical

Computer Science (TCS2004), 22-27 August 2004, Toulouse, France. Kluwer,
2004, 111–124.

[67] W. D. Smith. DNA computers in vitro and in vivo. In R. Lipton and E. Baum,
editors, Proceedings of DIMACS Workshop on DNA Based Computers. Amer.
Math. Society, 1996, DIMACS Series in Discrete Math. and Theoretical Com-
puter Science, 121–185.

[68] P. Spellman and G. Sherlock. Reply whole-cell synchronization – effective tools
for cell cycle studies. Trends in Biotechnology, 22(6), (2004), 270–273.

[69] A. Takahara and T. Yokomori. On the computational power of insertion-
deletion systems. In M. Hagiya and A. Ohuchi, editors, DNA Computing, 8th

International Workshop on DNA Based Computers, DNA8, Sapporo, Japan, June

10-13, 2002, Revised Papers. 2002, volume 2568 of Lecture Notes in Computer

Science, 269–280.

[70] A. Takahara and T. Yokomori. On the computational power of insertion-
deletion systems. Natural Computing, 2(4), (2003), 321–336.

[71] H. Umeo, M. Maeda, and N. Fujiwara. An efficient mapping scheme for embed-
ding any one-dimensional firing squad synchronization algorithm onto two-
dimensional arrays. In S. Bandini, B. Chopard, and M. Tomassini, editors,
Cellular Automata, 5th International Conference on Cellular Automata for Re-

search and Industry, ACRI 2002, Geneva, Switzerland, October 9-11, 2002,

Proceedings. Springer, 2002, volume 2493 of Lecture Notes in Computer Sci-

ence, 69–81.

[72] S. Verlan. Communicating distributed H systems with alternating filters. In
N. Jonoska, G. Păun, and G. Rozenberg, editors, Aspects of Molecular Com-

puting. Essays Dedicated to Tom Head on the Occasion of His 70th Birthday,
Springer, volume 2950 of Lecture Notes in Computer Science. 2004, 367–384.

[73] S. Verlan. Head Systems and Applications to Bioinformatics. Ph.D. thesis,
University of Metz, 2004.

[74] S. Verlan. On minimal context-free insertion-deletion systems. Journal of

Automata, Languages and Combinatorics, 12(1-2), (2007), 317–328.

[75] S. Verlan. Look-ahead evolution for P systems. In G. Păun, M. J. Pérez-
Jiménez, A. Riscos-Núñez, G. Rozenberg, and A. Salomaa, editors, Membrane

Computing, 10th International Workshop, WMC 2009, Curtea de Arges, Roma-

nia, August 24-27, 2009. Revised Selected and Invited Papers. Springer, 2009,
volume 5957 of Lecture Notes in Computer Science, 479–485.

[76] S. Verlan, F. Bernardini, M. Gheorghe, and M. Margenstern. Computational
completeness of tissue P systems with conditional uniport. In H. J. Hooge-
boom, G. Păun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing,

7th International Workshop, WMC 2006, Leiden, The Netherlands, July 17-21,

2006, Revised, Selected, and Invited Papers. Springer, 2006, volume 4361 of
Lecture Notes in Computer Science, 521–535.

BIBLIOGRAPHY 97

[77] S. Verlan, F. Bernardini, M. Gheorghe, and M. Margenstern. Generalized
communicating P systems. Theoretical Computer Science, 404(1-2), (2008),
170–184.

[78] S. Verlan and P. Frisco. Splicing P systems. In Păun et al. [62], 198–226.

[79] S. Verlan and Y. Rogozhin. New choice for small universal devices: Sym-
port/antiport P systems. In T. Neary, D. Woods, A. K. Seda, and N. Murphy,
editors, Proceedings International Workshop on The Complexity of Simple Pro-

grams, Cork, Ireland, 6-7th December 2008. 2008, volume 1 of EPTCS, 235–
241.

[80] S. Wolfram. A New Kind of Science. Wolfram Media Inc, 2002.

[81] J.-B. Yunès. Seven-state solutions to the firing squad synchronization prob-
lem. Theoretical Computer Science, 127(2), (1994), 313–332.

[82] The P systems web page: http://ppage.psystems.eu/.

