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LACL, Université Paris Est – Créteil Val de Marne
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ABSTRACT

In this article we consider universal networks of evolutionary processors (NEP) having
a small number of rules. We show that it is possible to construct a universal NEP with
5 rules when no input/output encoding is used, and a universal NEP with 4 rules in the
case in which such an encoding is allowed. We also give a construction of a universal
NEP with 7 rules that efficiently (in polynomial time) simulates any Turing machine.
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1. Introduction

The concept of universality was first formulated by A. Turing in [26]. He constructed
a universal (Turing) machine capable of simulating the computation of any other
(Turing) machine. This universal machine takes as input a description of the machine
to simulate, the contents of its input tape, and computes the result of its execution
on the given input.

More generally, the universality problem for a class of computing devices (or func-
tions) C consists in finding a fixed element M of C able to simulate the compu-
tation of any element M′ of C using an appropriate fixed encoding. More pre-
cisely, if M′ computes y on an input x (we will write this as M′(x) = y), then
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M′(x) = f(M(g(M′), h(x))), where h and f are the encoding and decoding func-
tions, respectively, and g is the function retrieving the number of M′ in some fixed
enumeration of C. These functions should not be too complicated, otherwise the
universal machine will be trivial, e.g. when f is partially recursive the machine can
contain only one instruction – stop. It is commonly admitted that general recursive
functions [15] can be used for encoding and decoding. We will use the terminology
considered by Korec [16] and call the element M (weakly) universal for C. We shall
call M strongly universal (for C) if the encoding and decoding functions are identi-
ties. Some authors [17, 16] implicitly consider only the strong notion of universality as
the encoding and decoding functions can perform quite complicated transformations,
which are not necessarily doable in the original devices. We refer to [16] for a more
detailed discussion of different variants of the universality and to [20] for a survey on
this topic. We remark that in the case of devices not working with integers directly,
some natural coding of integers should be used in order to consider the above notions.

Networks of language processors are finite collections of rewriting systems (language
processors) organized in a communicating system [11]. They are closely related to
grammar systems, more specifically to parallel communicating grammar systems [9].
The language processors are located at nodes of a virtual graph and operate over sets
or multisets of words. During the functioning of the network, they rewrite the cor-
responding collections of words and then redistribute the resulting strings according
to a communication protocol assigned to the system. In a derivation step, any node
derives from its language all possible words as its new language. In a communication
step, any node sends those words to other nodes that satisfy an output condition
given as a regular language, and any node takes those words sent by the other con-
nected nodes that satisfy an input condition also given by a regular language. The
language determined by the system is defined as the set of words which appear at
some distinguished node during the computation.

Networks of evolutionary processors (NEPs), introduced in [7], and also inspired
by cell biology, are special examples for these types of constructs. In this case, each
processor represents a cell performing point mutations of DNA and controlling its
passage inside and outside it through a filtering mechanism. The language processor
corresponds to the cell, the generated word to a DNA strand, and operations insertion,
deletion, or substitution of a symbol to the point mutations. Results on networks of
evolutionary processors can be found in [7, 8, 6, 4, 13, 3]. Most of these articles show
that networks of evolutionary processors are computationally complete or universal
using different number of nodes and eventually additional squeezing mechanisms. Yet,
the focus always remains on the number of nodes in the network rather than on the
number of rules. It turns out that in most of the cases this second parameter depends
on the size of the simulated computing device (e.g., the number of the rules in a type-0
grammar in Kuroda normal form [13]) and is rather large.

In the case of hybrid networks of evolutionary processors (HNEPs), each language
processor performs only one of the above operations at some position in the words
at that node. The filters are defined by some variants of random-context conditions.
The concept was introduced in [22, 21]. A series of papers showed the computational
completeness of this variant with different number of nodes [1, 10, 18, 2, 19, 5].
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In this article we also consider the problem of the universality for NEPs, but we
target another descriptional complexity parameter which was not considered so far in
this framework: the number of rules. The motivation for such a research is to find the
minimal ingredients needed to achieve a complex (universal) computation. A similar
approach is common for the area of small universal Turing or register machines where
the number of rules is the main descriptional complexity parameter. We refer to [24]
for an overview of recent results on this topic. In this paper we show that there exist
strongly universal NEPs with 5 rules and weakly universal NEPs with 4 rules. In these
cases we assume a unary encoding of integers in NEPs as described in Section 3. We
also show a universal NEP with 7 rules that is able to efficiently simulate any Turing
machine in polynomial time (since no integer encoding is used the above discussion
about strong and weak universality is not relevant in this case).

2. Preliminaries

2.1. Turing machines

In this paper we consider non-stationary deterministic Turing machines, i.e., those
in which at each step of the computation the head moves either to the left or to the
right. These machines are given as M = (Q,Σ, a1, q1, F, δ), where Q is the set of
states, Σ is the tape alphabet, a1 ∈ Σ is the blank symbol, q1 ∈ Q is the initial state,
F ⊆ Q is the set of final (halting) states, and δ denotes the set of instructions. Each
instruction is of the form (qi, ak, qj , al, D) which is interpreted as follows: if the head
of M being in state qi is scanning a cell which contains ak, then the contents of the
scanned cell is replaced by al, the head moves to the left (D = L) or to the right
(D = R) and the state of the machine changes to qj .

By a configuration of a Turing machine we mean a string w1qw2, where w1 ∈ Σ∗,
w2 ∈ Σ+ and q ∈ Q. A configuration represents the contents of non-empty cells of
the working tape of the machine and all the blank symbols in between them, from
left to right, (i.e. all other cells to the left and to the right are blank), its state,
and the position of the head on the tape. The machine head is assumed to read the
leftmost letter of w2. Initially all cells on the tape are blank except finitely many
cells. We denote by C ⊢ C ′ the passage from configuration C to C ′ by applying the
corresponding rule of the machine.

Note that the situation in which the tape is empty is represented by the string qa1,
where a1 ∈ Σ is the empty symbol. The cases in which the Turing machine leaves the
region of the tape occupied by the input are represented using the empty symbol a1
in a similar way.

A halting configuration of a Turing machine is a configuration in which no transition
rule is defined for the current state q ∈ F and the symbol ak the machine reads on
the tape. A computation of a Turing machine on the input word w is a sequence
of configurations C1, C2, . . . , Ct which starts in configuration C1 = q1w, ends in a
halting configuration Ct = w′qfw

′′ and in which Ci ⊢ Ci+1, 1 ≤ i < t. We will denote
this by M(w) = w′w′′.

It is known that non-stationary deterministic Turing machines are as powerful (in
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computational sense) as the generic (non-restricted) ones [25].
A Turing machine U is universal if there exist recursive functions h and f such

that M(c) = h(U(f(g(M, c)))), where M is any Turing machine, c is any input
of M , g(M, c) is the number of the ordered pair (M, c) in some enumeration, e.g.
Gödel numbering, f maps g(M, c) to a configuration of U , and h maps a terminal
configuration of U to a terminal configuration of M .

2.2. Register machines

A deterministic register machine is defined as a 5-tuple M = (Q,R, q0, qf , P ), where
Q is a set of states, R = {R1, . . . , Rk} is the set of registers, q0 ∈ Q is the initial
state, qf ∈ Q is the final state and P is a set of instructions (also called rules) of the
following form:

1. (Increment) (qi, Rt+, qj) ∈ P , qi, qj ∈ Q, qi ̸= qj , Rt ∈ R (being in state qi,
increment register Rt and go to state qj).

2. (Decrement) (qi, Ri−, qj) ∈ P , qi, qj ∈ Q, qi ̸= qj , Rt ∈ R (being in state qi,
decrement register Rt and go to state qj).

3. (Zero check) (qi, Rt, qj , qs) ∈ P , qi, qj , qs ∈ Q,Rt ∈ R (being in state qi, go to
qj if register Rt is not zero or to qs otherwise).

4. (Zero test and decrement) (qi, Rt−, qj , qs) ∈ P , qi, qj , qs ∈ Q,Rt ∈ R (being in
state qi, decrement register Rt and go to qj if successful or to qs otherwise).

5. (Stop) (qf , STOP ) (may only be associated with the final state qf ).

We note that for each state p there is only one instruction of one of the types above.
A configuration of a register machine is given by the (k + 1)-tuple (q, n1, . . . , nk),

where q ∈ Q and ni ∈ N, 1 ≤ i ≤ k, describing the current state of the machine
as well as the contents of all registers. A transition of the register machine consists
in updating/checking the value of a register according to an instruction of one of
the types above and in changing the current state to another one. We say that the
machine stops if it reaches the state qf . We say that M computes a value y ∈ N on
the input x1, . . . , xn, xi ∈ N, 1 ≤ i ≤ n ≤ k, if, starting from the initial configuration
(q0, x1, . . . , xn, 0, . . . , 0), it reaches the final configuration (qf , y, 0, . . . , 0). We will
denote this as M(x1, . . . , xn) = y.

It is well-known that register machines compute all partial recursive functions and
only them [23]. Therefore, every register machineM with n registers can be associated
with the function it computes: an m-ary partial recursive function Φm

M , where m ≤
n. Let Φ0,Φ1,Φ2, . . . , be a fixed enumeration of the set of unary partial recursive
functions. Then, a register machine M is said to be strongly universal [16] if there
exists a recursive function g such that Φx(y) = Φ2

M (g(x), y) holds for all x, y ∈ N. A
register machine M is said to be (weakly) universal if there exist recursive functions
f, g, h such that Φx(y) = f(Φ2

M (g(x), h(y))) holds for all x, y ∈ N. We remark that
here the meaning of the term weakly universal is different from the Turing machines
case, where it is commonly used to denote a universal machine working on a tape
that has an infinite initial configuration.
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We also note that the power and efficiency of a register machine M depend on
the set of used instructions. In [16] several sets of instructions are investigated. In
particular, it is shown that there are strongly universal register machines with 22
instructions of the forms (qi, Rt+, qj) and (qi, Rt−, qj , qs). Moreover, these machines
can be effectively constructed.

2.3. Networks of Evolutionary Processors

An evolution rule is a rule a → b, with a, b ∈ V ∪ {λ} and where a and b cannot be
both empty. We say that an evolution rule is a substitution rule if both a and b are
not λ; it is a deletion rule if a ̸= λ and b = λ; it is an insertion rule if a = λ and b ̸= λ.
The set of all evolution, substitution, deletion, and insertion rules over an alphabet
V are denoted by EvoV , SubV , DelV , and InsV , respectively.

Given a rule σ : a → b ∈ EvoV we define the result of the application of σ on a
word w ∈ V ∗:

σ(w) =

{
{ubv | w = uav, u, v ∈ V ∗}, if w contains a,

{w}, otherwise.

We can generalize this notation for a language and write σ(L) =
∪

w∈L

σ(w).

A network of evolutionary processors of size n is the tuple Γ = (V,N1, . . . , Nn, k,G),
where V is an alphabet, 1 ≤ k ≤ n designates the output node and Ni =
(Mi, Ai, IFi, OFi) is the i-th node (processor), 1 ≤ i ≤ n, in which:

• Mi ⊆ EvoV is a finite set of evolutionary rules,

• Ai is a finite set of strings over V (initial strings),

• IFi and OFi are regular languages over V specifying conditions for a string to
enter and to exit a node, respectively (input and output filters).

Finally, G = ({N1, · · · , Nn}, E) is an undirected graph specifying the underlying
communication network.

Sometimes the NEPs as we define them here are referred to as mixed NEPs, in
contrast with the classical definition of this computational model in which the pro-
cessors are only allowed to carry out one type of operation, i.e., a processor is only
allowed to execute either insertions, or deletions, or substitutions [4]. As it will be
visible later, allowing mixed processors is a convention that simplifies descriptions of
networks without essentially modifying their computational power.

The configuration C = (C1, . . . , Cn) of the system consists of the sets of strings
appearing in each node (each string appears in an arbitrary large number of copies).

The system evolves from a configuration C = (C1, . . . , Cn) to a configuration C ′ =
(C ′

1, . . . , C
′
n) in two kinds of alternating steps:

• evolution step (C ⇒ C ′): C ′
i =

∪
σ∈Mi
w∈Ci

σ(w),

• communication step (C ⊢ C ′): C ′
i = Ci \OFi ∪

∪
(Ni,Nj)∈E

Cj ∩OFj ∩ IFi.
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A computation consists of a sequence of configurations, where C0 = (A1, . . . , An),
C2i ⇒ C2i+1 and C2i+1 ⊢ C2i+2 for i ≥ 0. Remember that each string is present in an
arbitrarily large number of copies, which means that, after the rule applications of an
evolution step, we get arbitrarily many copies of each of the resulting strings in each of
the nodes of the network. The result of a (possibly infinite) computation is a language
collected in a designated node Nk called the output node. Thus, L(Γ) = ∪t≥0C

t
k.

For the purpose of our paper we define the computation of Γ on an input word w,
denoted by Γ(w). We assume that Γ has the property Ai = ∅, i ≥ 1. Then Γ(w) can
be computed by adding w to A1 (A1 = {w}, Ai = ∅, i ≥ 2), obtaining the NEP Γ′,
and having Γ′ evolve as usual; clearly, Γ(w) = L(Γ′).

In this paper we only consider NEPs performing deterministic computations, i.e.
Γ(w) is always a singleton language, and we say that the corresponding word is the
result of the computation of Γ on w.

3. Simulation of register machines

In this section we show that any register machine can be simulated by a NEP. Since
such machines deal with integer numbers, we need to modify the definitions of the
input and output of a NEP in order to accommodate to this property.

Let M = (k,Q, q1, q0, P ) be a register machine with k registers (we remark that
the initial state is q1 and the final state is q0).

We will use the unary encoding to represent a configuration (qi, n1, . . . , nk) of
M: 1i01n10 . . . 1nk0. In this encoding the number of symbols 1 in the first block
corresponds to the state and the size of each next block of 1’s corresponds to the
value of the respective register. Hence, the initial configuration is represented by
the string 101n10 . . . 1nk0, where n1, . . . , nk is the input of M. We assume that M
produces the result in the first register and empties all other registers before halting.

For a vector v = (n1, . . . , nk), ni ∈ N, k > 0, we define the result Γ(v) of the
computation of Γ on v as the length of the string Γ(101n10 . . . 1nk0).

We will construct a NEP ΓM = ({0, 1, 1̄, 0̄, ¯̄1}, N1, N2, N3, 3, G) with the following
communication graph G:

N3 N1
oo 33 N2

ss
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The processors of ΓM are defined as follows:

N1 : IF1 = {0, 1}∗,

M1 =
{
λ→ 1̄, 1 → ¯̄1

}
,

OF1 =
{
1̄j ¯̄1i0(1∗0)t−11∗1̄0(1∗0)k−t | (qi, Rt+, qj) ∈ P

}
∪
{
1̄j ¯̄1i0(1∗0)t−11∗¯̄10(1∗0)k−t | (qi, Rt−, qj , qs) ∈ P

}
∪
{
1̄s¯̄1i0(1∗0)t−10(1∗0)k−t | (qi, Rt−, qj , qs) ∈ P

}
,

A1 = ∅;

N2 : IF2 = {0, 1, 1̄, ¯̄1}∗,

M2 =
{
1̄ → 1, ¯̄1 → λ

}
,

OF2 =
{
(1∗0)k+1

}
,

A2 = ∅;

N3 : IF = {01∗00k−1},
M3 = ∅,
OF3 = ∅,
A3 = ∅.

The NEP ΓM simulates M as follows. The main idea is to use processor N1

to mark the symbols that should be deleted by ¯̄1 and the symbols that should be
added by 1̄. Since unary encoding is used, adding and deleting symbols permits
rewriting both the state and the values of registers using the same set of rules. In more
detail, suppose that M is in configuration (qi, n1, . . . , nt, . . . , nk) and there exists an
instruction (qi, Rt+, qj) ∈ P . Then ΓM will contain the string 1i01n10 . . . 1nt0 . . . 1nk0
in processor N1. The rules from M1 can now be repeatedly applied, yielding strings
over {0, 1, 1̄, ¯̄1}∗. However, only a string of the form 1̄j ¯̄1i01n10 . . . 1nt 1̄0 . . . 1nk0 can
pass the filters OF1 and IF2 and go to processor N2. We remind that the marking
of this string instructs to add j symbols and delete i symbols in the first block of
1’s, thus referring to the transition from qi to qj , and to add an additional symbol
1 to the (t + 1)-th block of 1’s, which corresponds to the increment of the register
Rt. Now, in order to pass OF2, all symbols ¯̄1 should be erased and all instances of 1̄
rewritten to 1. The only result of this transformation that can pass through OF2 and
IF1 is the string 1j01n10 . . . 1nt+10 . . . 1nk0 which corresponds to the configuration
(qj , n1, . . . , nt + 1, . . . , nk).

The simulation of a decrement instruction of M is done in a similar way: the new
state is marked and the corresponding register is decremented by marking one of its
1’s with a double bar. If there are no instances of 1 in the corresponding block, the
state corresponding to the empty register is selected.
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Theorem 3.1 There exist a weakly universal NEP with 4 rules and a strongly uni-
versal NEP with 5 rules.

Proof. The proof follows from the fact that there exist strongly universal register
machines, e.g. U22 from [16]. Hence, ΓU22 constructed as above will be weakly
universal because for any M it is true that ΓM(x) = M(x) + k + 1. It is possible to
achieve a strong universality by adding a new output processor connected to N3, a
rule 0 → λ to M3, and a filter 1∗ to OF3. This rule and the corresponding filter will
remove symbols 0 and only the value of the first register will be kept. 2

4. Simulation of Turing machines

In this section we will construct a NEP ΓT capable of simulating an arbitrary Turing
machine T = (Q,Σ, a1, q1, F, δ), i.e. such that for any word w ∈ Σ∗ the following
holds: T (w) = h′(ΓT (f

′(w))), where f ′ and h′ are the coding and decoding functions
correspondingly.

Let Σ = {a1, . . . , am} and consider the following (unary) coding: ϕ(ak) = 1k0,
k ≥ 0, so the empty symbol is coded as 10. We remark that this coding can be
extended to words in a standard way. Similarly, consider the coding ψ(qi) = 0i for
Q = {q1, . . . , qn}. We represent a configuration w′qiakw

′′ of T in the following way:
ϕ(w′)ψ(qi)ϕ(ak)ϕ(w

′′). Accordingly, we represent the initial configuration of T as
follows: 10 · 0 · ϕ(w), where w is the input of T and the highlighted instance of 0 is
the code of the initial state q1 of T . If w is empty, it is replaced by an instance of a1
to assure that there is at least one symbol to the left and to the right of the head.

Hence, the function f ′ is defined as f ′(x) = ϕ(a1)ψ(q1)ϕ(x) and the function h′ as
h′(x) = π(z−1(x)), where the functions z and π are defined as follows: z(x) = ψ(x) if
x ∈ Q and z(x) = ϕ(x) otherwise; π(x) = λ if x ∈ Q and π(x) = x if x ̸∈ Q.

We construct the NEP ΓT = ({0, 1, 1̄, 0̄, ¯̄1}, N1, N2, N3, N4, 4, G) with the following
communication graph G:

N1
// N2

// N3ii // N4
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The processors of this network are defined as follows:

N1 : IF1 =
{
(1+0)+0i(1+0)+ | qi ̸∈ F

}
,

M1 =
{
λ→ 1̄, 1 → ¯̄1, λ→ 0̄

}
,

OF1 =
{
(1+0)+ 0i 1k1̄l−k0 0̄j (1+0)+ | (qi, ak, qj , al, R) ∈ δ, l ≥ k

}
∪
{
(1+0)+ 0i 1k1̄l−k0 0̄j 1̄0̄ | (qi, ak, qj , al, R) ∈ δ, l ≥ k

}
∪
{
(1+0)+ 0i 1l¯̄1k−l0 0̄j (1+0)+ | (qi, ak, qj , al, R) ∈ δ, l < k

}
∪
{
(1+0)+ 0i 1l¯̄1k−l0 0̄j 1̄0̄ | (qi, ak, qj , al, R) ∈ δ, l < k

}
∪
{
(1+0)+ 0̄j (1+0) 0i 1k1̄l−k0 (1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l ≥ k

}
∪
{
1̄0̄ 0̄j (1+0) 0i 1k1̄l−k0 (1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l ≥ k

}
∪
{
(1+0)+ 0̄j(1+0)0i 1l¯̄1k−l0 (1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l < k

}
∪
{
1̄0̄ 0̄j (1+0) 0i1l ¯̄1k−l 0(1+0)∗ | (qi, ak, qj , al, L) ∈ δ, l < k

}
,

A1 = ∅;

N2 : IF2 =
{
0, 1, 0̄, 1̄, ¯̄1

}∗
,

M2 =
{
0 → ¯̄1

}
,

OF2 =
{
(1+0)+ ¯̄1+ 1+(1̄∗|¯̄1∗)0 0̄+

(
(1+0)+|1̄0̄

)}
∪
{(

(1+0)+|1̄0̄
)
0̄+ (1+0) ¯̄1+ 1+(1̄∗|¯̄1∗)0 (1+0)+

}
,

A2 = ∅;

N3 : IF3 =
{
0, 1, 0̄, 1̄, ¯̄1

}∗
,

M3 =
{
1̄ → 1, ¯̄1 → λ, 0̄ → 0

}
,

OF3 = {0, 1}∗,
A3 = ∅;

N4 : IF4 =
{
(1+0)+0i(1+0)+ | qi ∈ F

}
,

M4 = ∅,
OF4 = ∅,
A4 = ∅.

We recall that the result of the computation of ΓT is the (only) string that reaches
processor N4.

We will now describe how the network ΓT simulates the Turing machine T . The
main idea is essentially similar to what we have already shown in Section 3: processor
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N1 inserts 1̄’s to mark additions of 1’s to the string and rewrites certain 1’s into ¯̄1’s
to schedule them for subsequent deletion. To rewrite the substring ϕ(ak) into ϕ(al),
we either need to add some 1’s to the block of 1’s coding ak if l ≥ k, or to erase some
1’s otherwise. This exactly is the mission of N1, which also inserts a number of 0̄’s to
select the next state of T .

The output filter OF1 exercises very precise control over which strings are eventu-
ally allowed out of N1. The first line in the definition of OF1 allows the string out if
it corresponds to a transition of T during which the head moves to the right, ak is
rewritten into al, l ≥ k, and the sequences of 0’s and 0̄’s code the corresponding old
state qi and the new state qj . The second line in the definition of OF1 allows N1 to
deal with the situations in which ak is rewritten into al, l ≥ k, and the head is at the
right end of the string: a new empty cell 10 is scheduled for insertion by placing 1̄0̄
at the right end. The next two lines in the definition of OF1 have exactly the same
mission as the first two lines, but for the case in which l < k. Note how the first two
lines expect additions of 1’s by requiring the presence of 1̄’s, while the second two
lines expect removals of 1 by requiring the presence of double-barred instances of 1.
The next four lines handle the same special cases for leftward head moves.

The mission of N2 is to mark the previous state for deletion. This is done by
replacing the corresponding sequence of 0’s by a sequence of ¯̄1’s. We remark that due
to the form of the strings that can reach N2 (the ones which pass the filter OF1), only
those strings will be allowed out of N2 in which all the 0’s representing the old state
have been rewritten, and only those 0’s.

The role of N3 is to apply the operations scheduled by N1 and N2 by inserting
barred symbols and erasing double-barred 1’s. N3 forwards its output to both N1

and N4, but only one of these two processors will accept the string, since N4 only lets
in strings representing a configuration of T in one of its final states, while N1 will
only work on strings which contain the code of a non-final state.

Theorem 4.1 There exists a universal NEP with 7 rules that simulates any Turing
machine in polynomial time.

Proof. The proof follows from the existence of universal Turing machines that simu-
late the target machine in polynomial time, see [24] for more details. 2

Note that the simulation of each step of a Turing machine happens in a fixed
amount of amount of time depending on the codes of the implied symbols.

Finally, we remark that, while the universal Turing machines we need to simulate
do not rely on commands which only rewrite symbols without moving the head, it is
rather easy to apply the ideas we have just shown to simulate such instructions.

5. Conclusion

In this paper we gave 3 constructions for universal NEPs having a small number of
rules. The result from Theorem 3.1 is remarkable in the sense that it uses only 4
elementary rules in order to achieve universality. The constructions we give clearly
show that a large part of the computational power of NEPs is provided by filters.
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It could therefore be interesting and practical to investigate a similar universality
problem for systems in which the filtering components are restricted, e.g. NEPs
from [14, 12], which use subclasses of regular languages as filters, or HNEPs that use
random context filters.

We also remark that, in NEPs, one traditionally considers a single type of operation
(insertion, deletion or substitution) per processor. It is not difficult to see that the
constructions we give in this paper can be easily adapted to this condition without
modifying the number of rules just by increasing the number of nodes in the network.
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