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Abstract - This article investigates languages generated by insertion-
deletion systems that insert or delete one symbol using only a left context.
We show that if the context of insertion or deletion is greater than one, then
the corresponding families are all equal to each other and properly include
the family of regular languages. We also show that the obtained family
contains non-context-free languages.
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1 Introduction

Context adjoining, an insertion operation on strings, was first considered by
S. Marcus in [20] with a linguistic motivation and later developed in [25].
These references investigate Marcus contextual grammars which capture
many interesting linguistic properties like ambiguity and duplication. Fol-
lowing these ideas the insertion operation was introduced in [6]. This is an
intermediate operation between context adjoining and string rewriting.

Another motivation for studying insertion can be found in [7, 8] where
this operation and its iterated variant are introduced as a generalization
of Kleene’s operations of concatenation and closure [17] which may happen
anywhere in the string. In [14] the deletion operation is defined as a right
quotient operation which does not necessarily happen at the rightmost end
of the string. Both operations were first considered together in [16].

Yet another inspiration for insertion and deletion operations comes from
the field of molecular biology: they correspond to mismatched annealing of
DNA sequences, see [26] for more details. Such operations are also present
in evolution processes under the form of point mutations as well as in RNA
editing, see the discussions in [2, 3, 26, 28]. This biological motivation of
insertion and deletion operations led to their study in the framework of
molecular computing, see, for example, [4, 15, 26, 29].

Intuitively, an insertion means adding a substring to a given string at a
site having a specified left, right, or both contexts, while a deletion means
removing a substring of a given string from a site having a specified left,

1



2

right, or both contexts. A finite set of insertion and deletion rules, together
with a set of axioms, provide a language-generating device: by starting
from a set of initial strings and iterating insertion and deletion operations
as defined by the supplied rules, one obtains a language.

Insertion-deletion systems with relatively small rules are already able to
produce all recursively enumerable languages; the works [1, 31] provide an
overview of known results. Furthermore, as it was shown in [21], context
dependence may be replaced by insertion and deletion of strings of sufficient
length, in a context-free manner. If, however, the length is not sufficient (less
than or equal to two), then such systems are not able to generate more than
context-free languages. A detailed characterization of context-free insertion-
deletion systems is given in [30].

In [18, 19, 22], similar investigations were continued on insertion-deletion
systems with one-sided contexts, in which the (insertion and deletion) rules
have all either a left or a right context, i.e., the asymmetry in context
dependence is system-wide. The cited papers give several computational
completeness results as a function of the size of the rules. We recall the
fact that certain of the discussed structures are not computationally com-
plete, i.e., there are recursively enumerable languages they cannot gener-
ate. For these variants, similarly to the case of context-free rewriting, it is
possible to consider regulated variants of insertion-deletion systems. The
papers [1, 5, 9, 10, 24] present results on insertion-deletion systems with
graph, matrix, semi-conditional, and random context controls.

In this paper we consider a particular variant of insertion-deletion sys-
tems, leftist systems, where only one symbol can be inserted or deleted using
only a left context. This model is closely related to the model of leftist gram-
mars used to express the accessibility problem in some general protection
systems [23]. We show that the hierarchy of corresponding systems with
respect to the context size collapses immediately and we show that it prop-
erly includes the family of regular languages. Using the results from [13]
we also show that leftist insertion-deletion systems contain non-context-free
languages.

2 Definitions

We do not present here definitions concerning standard concepts of the the-
ory of formal languages and we refer to [27] for more details. We denote
by |w| the length of a word w and by REG, CF , CS, and RE the fam-
ilies of regular, context-free, context-sensitive and recursively enumerable
languages, respectively.

An insertion-deletion system is a construct ID = (V, T,A, I,D), where:

• V is an alphabet;
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• T ⊆ V is the terminal alphabet (the symbols from V \ T are called
non-terminals);

• A ⊆ V ∗ is the set of axioms;

• I,D are finite sets of triples of the form (u, α, v), where u, α (α ̸= λ),
and v are strings over V .

The triples in I are insertion rules, and those in D are deletion rules. An
insertion rule (u, α, v)ins ∈ I indicates that the string α can be inserted
between u and v (which corresponds to the rewriting rule uv → uαv), while
a deletion rule (u, α, v)del ∈ D indicates that α can be removed from between
the contexts u and v (which corresponds to the rewriting rule uαv → uv).
By ⇒ we denote the relation defined by the insertion or deletion rules and
by ⇒∗ the reflexive and transitive closure of ⇒.

The language generated by ID = (V, T,A, I,D) is defined by

L(ID) = {w ∈ T ∗ | x⇒∗ w for some x ∈ A}.

The complexity of an insertion-deletion system ID = (V, T,A, I,D) is
described by the vector (n,m,m′; p, q, q′) called size, where

n = max{|α| | (u, α, v)ins ∈ I}, p = max{|α| | (u, α, v)del ∈ D},
m = max{|u| | (u, α, v)ins ∈ I}, q = max{|u| | (u, α, v)del ∈ D},
m′ = max{|v| | (u, α, v)ins ∈ I}, q′ = max{|v| | (u, α, v)del ∈ D}.

We also denote by INSm,m′
n DELq,q′

p all the languages generated by the
families of insertion-deletion systems of size at most (n,m,m′; p, q, q′). More-
over, we define the total size of the system as the sum of all numbers above:
ψ = n+m+m′ + p+ q + q′.

If some of the parameters n,m,m′, p, q, q′ is not bounded, then we write
instead the symbol ∗. If one of the numbers from the pairsm,m′ and/or q, q′

is equal to zero (while the other is not), then we say that the corresponding
families have a one-sided context.

We would like to note that the notion of leftist grammars [23] corresponds
to a semi-Thue system having rewriting rules of two types: a → ab and
ab → a. It is not difficult to see that this corresponds to an insertion-
deletion system of size (1, 1, 0; 1, 1, 0) having the terminal alphabet equal to
the alphabet of the system. We remark that most of the results from this
area [11, 12, 13] study the properties of the intersection of leftist languages
with a regular or a context-free language.

We also recall that the family of insertion-deletion languages of size
(1, 1, 0; 1, 1, 0) is incomparable with REG: (CF \REG)∩INS1,0

1 DEL0,0
0 ̸= ∅

and (ba)+ ̸∈ INS1,0
1 DEL1,0

1 [19].
In this article we use the following results from [22] (Lemmas 2 and 6):
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Lemma 2.1 For any insertion-deletion system ID = (V, T,A, I,D) of size
(n,m,m′; p, q, q′) there is a system ID′ = (V ∪ V ′, T, A ∪ A′, I ∪ I ′, D′)
having the same size such that L(ID′) = L(ID). Moreover, for any rule
(α, β, γ) ∈ D′ it holds that β does not contain letters from T .

Lemma 2.2 For any insertion-deletion system ID = (V, T,A, I,D) having
the size (n,m,m′; p, q, q′) it is possible to construct an insertion-deletion
system ID2 = (V ∪ {X,Y }, T, A2, I2, D2 ∪ D′

2) having the same size such
that L(ID2) = L(ID). Moreover, all rules from I2 have the form (u, α, v),
where |u| = m, |v| = m′, and all rules from D2 have the form (u′, α, v′),
where |u′| = q, |v′| = q′ and D′

2 = {(ε,X, ε), (ε, Y, ε)}.

3 Main Results

The first result from this section shows that REG is strictly included in the
family of insertion-deletion languages of size (1, 1, 0; 1, 2, 0).

Theorem 3.1 REG ( INS1,0
1 DEL2,0

1 .

Proof. Consider an arbitrary finite automaton FA = (Q,T, q0, F, δ). We
define the insertion-deletion system Γ = (V, T,A, I,D) in the following way:

V = {Qi | qi ∈ Q} ∪ {A,B,E} ∪ T,
A = {ABE},
I = {(B, Qi, λ)ins | qi ∈ Q}

∪ {(B, a, λ)ins | a ∈ T},
D = {(Qf , E, λ)del | qf ∈ F}

∪ {(Qia, Qj , λ)del | qj ∈ δ(qi, a)}
∪ {(A, B, λ)del, (A, Q0, λ)del, (λ, A, λ)del}.

We claim that the only way for Γ to generate a terminal string is to
correctly simulate a trajectory of FA. Indeed, in order to erase E, B has
to insert at least one Qf , for qf ∈ F . Then, for any Qj , j > 0, to be
erased, there must be such a subword Qia to its left that qj ∈ δ(qi, a). Note
that, while several instances of a state symbol Qj can be inserted one next
to the other, the contexts of deletion rules assure that there is exactly one
instance of a terminal symbol between two state symbols. Since Q0 is the
only state symbol whose deletion does not depend on other state symbols,
B is guaranteed to insert a sequence of the form Q∗

0ai0Q
∗
i1
ai1 . . . Q

∗
in
ainQ

∗
f

which corresponds to a trajectory of FA accepting the word ai0ai1 . . . ain .
Remark now that the only symbol which can erase Q0 is A, so if the

following derivation step occurs: αBQ0β ⇒ αBNQ0β, N ∈ V \ {Q0},
α, β ∈ V ∗, the highlighted instance of Q0 will never be erased. Indeed, Γ
deletes no terminals, and if N = Qj , j > 0, an insertion of a terminal will
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be later required to erase N . Furthermore, because A is situated to the left
of B, it will have to delete B before it can delete Q0, which means that,
after Q0 is deleted, no more insertions can happen and the only applicable
rule (λ, A, λ)del deletes the last non-terminal from the string.

We finish the proof by pointing out that, if A or B is deleted before a
complete trajectory of the automaton is generated, some of the state symbols
will never be erased. Therefore, deleting A or B too early yields derivations
which do not produce terminal strings.

The strictness of the inclusion follows from the fact that non-regular
languages can be generated by systems of size (1, 1, 0; 1, 1, 0) [18]. �

Next, we would like to show that the family of insertion-deletion sys-
tems of size (1, 1, 0; 1, 2, 0) can generate non-context-free languages. In or-
der to prove this we show that for any insertion-deletion system Γ of size
(1, 1, 0; 1, 1, 0) and a regular language R there exist an insertion-deletion
system Γ′ of size (1, 1, 0; 1, 2, 0) such that L(Γ′) = L(Γ)∩R. This, combined
with the result from [13] showing that there exists an insertion-deletion
system Γ of size (1, 1, 0; 1, 1, 0) such that L(Γ) ∩ (F1F0)

+(a0a1)
+ = L2n =

{(F1F0)
n(a0a1)

m | n ≥ 22m−2}, would trivially yield the statement. We
remark that we cannot use the result from [11], where a linear bounded au-
tomaton is simulated using leftist grammars, because an intersection with a
context-free language is performed. We start with the following lemma.

Lemma 3.1 For an arbitrary insertion-deletion system Γ = (V, T,A, I,D)
of size (1, 1, 0; 1, 1, 0) there exists an equivalent system Γ′ = (V ′, T, A′, I ′, D′)
of the same size such that L(Γ′) = L(Γ) and no insertion rule of Γ is of the
form (a, x, λ)del, with a ∈ T , x ∈ V .

Proof. We define the alphabet of Γ′ to contain additional non-terminal
symbols per each terminal: V ′ = V ∪ {Na, N

′
a}. The new set of axioms is

defined as A′ = {h(w0) | w0 ∈ A}, where h : V ′ → V ′ is a morphism given
by the following:

h(x) =

{
xN ′

x, if x ∈ T,

x, otherwise.

We will use the notation IT to refer to those insertion rules of Γ which
have a terminal symbol in their context: IT = {(a, x, λ)ins ∈ I | a ∈ T, x ∈
V }. The insertion and deletion rules of Γ′ are

I ′ = {(Na, x, λ)ins, (N
′
a, x, λ)ins | (a, x, λ)ins ∈ I}

∪ {(x, Na, λ)ins | (x, a, λ)ins ∈ I}
∪ I \ IT ,

D′ = {(Na, x, λ)del, (N
′
a, x, λ)del | (a, x, λ)del ∈ D}

∪ {(a, Na, λ)del, (a, N
′
a, λ)del | a ∈ T}

∪ D.
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Remember that it is with no loss of generality that we can consider that Γ
does not ever delete terminal symbols (Lemma 2.1).

Γ′ directly simulates a derivation of Γ by applying the rule (x, Na, λ)ins
right before any application of the rule (x, a, λ)ins, and by replacing all
insertions and deletions happening in the context of a by insertions and
deletions happening in the context of the corresponding Na or N ′

a. At the
very end, the rules (a, Na, λ)del and (a, N ′

a, λ)del are applied to finalise the
clean-up of the string.

To see how Γ can simulate any derivation of Γ′, remark that, to be erased,
a symbol Na requires the presence of a to its left, and consider the derivation

C : wv ⇒ wNav ⇒∗ w′aNav
′ ⇒ w′av′,

where w, v, w′, v′ ∈ V ∗. Because all contexts are of length at most 1 and are
all to the left, it holds that Nav ⇒∗ Nav

′, and w ⇒∗ w′a. But then it is
possible to reorder C in the following way:

wv ⇒ wNav ⇒∗ w′aNav ⇒∗ w′aNav
′ ⇒ w′av′.

Therefore, it suffices to consider those derivations of Γ′ in which all symbols
Na carry out operations only when there is a corresponding letter a to the
left of them. Remember also that, by the construction of Γ′, all symbols N ′

a,
are guaranteed to always be located immediately to the right of an instance
of a, too. This means that, to simulate any derivation of Γ′, Γ would just
need to directly repeat applications of the rules which do not involve symbols
Na and N ′

a, and perform the operations happening in the context of Na or
N ′

a in the context of the corresponding letters a.
We have therefore established that any terminal derivation of Γ can be

simulated by Γ′ and conversely, which implies that L(Γ) = L(Γ′) and proves
the statement of the lemma. �

The previous lemma together with Lemma 2.1 effectively state that, in
the case of insertion-deletion systems of size (1, 1, 0; 1, 1, 0), any contiguous
region of terminals is guaranteed to never change. This allows us to formu-
late the following lower bound for the power of systems of size (1, 1, 0; 1, 2, 0).

Theorem 3.2 Consider an insertion-deletion system Γ1 having the size
(1, 1, 0; 1, 1, 0) and a regular language L. Then there exists an insertion-
deletion system Γ2 of size (1, 1, 0; 1, 2, 0) such that L(Γ2) = L(Γ) ∩ L.

Proof. Consider an insertion-deletion system Γ1 = (V, T,A, I,D) with
rules of size (1, 1, 0; 1, 1, 0) and the finite automaton FA = (Q,T, q0, F, δ)
recognising the language L. Without losing generality, we may suppose
that Γ1 has no context-free rules (Lemma 2.2), never deletes terminal sym-
bols (Lemma 2.1), and never inserts anything in the context of a termi-
nal (Lemma 3.1). We will construct the insertion-deletion system Γ2 =
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(V2, T, A2, I2, D2) in the following way:

V2 = {Qi | qi ∈ Q} ∪ {B,E} ∪ V,
A2 = {BQ0w0E | w0 ∈ A},
I2 = {(a, Qi, λ)ins | a ∈ T, qi ∈ Q} ∪ I,
D2 = {(Qia, Qj , λ)del | qj ∈ δ(qi, a)}

∪ {(Qf , E, λ)del | qf ∈ F}
∪ {(B, Q0, λ)del, (λ, B, λ)del} ∪D.

A terminal derivation of Γ2 consists of two phases. In the first phase
the rules from I ∪ D are applied, possibly resulting in a word of the form
BQ0wE, where w ∈ T ∗. In the second phase, every terminal inserts a
state symbol, and the deletion rules of the form (Qia, Qj , λ)del check that a
trajectory of FA is correctly simulated. The rules of the form (Qf , E, λ)del
and (B, Q0, λ)del assure that complete accepting trajectories of FA are
generated (cf. the proof of Theorem 3.1).

To see that Γ2 cannot essentially deviate from this evolution scheme,
consider the word wQju, in which w ∈ V ∗

2 and u ∈ T ∗. According to our
initial assumptions about Γ1, the only symbols that may be inserted in u are
state symbols Qi. However, since these symbols do not insert anything, they
will only eventually get erased without influencing the form of the terminal
word u. Remark now that the only way to erase E is to insert Qf to the
left of it. We can now inductively apply our observation about the words
of the form wQju to conclude that, whenever Γ2 succeeds in erasing all
non-terminal symbols, the resulting terminal word belongs to the language
recognised by the finite automaton FA. �

The following statement can be now be directly deduced from [13, The-
orem 6].

Theorem 3.3 INS1,0
1 DEL2,0

1 contains non-context-free languages.

In what follows we will consider the relationship between families of
leftist insertion-deletion systems. First we show that the contexts of the
deletion do not add expressive power.

Lemma 3.2 INSk,0
1 DELk,0

1 ⊆ INSk,0
1 DEL1,0

1 , k ≥ 1.

Proof. Consider an insertion-deletion system Γ = (V, T,A, I,D) with
rules of size (1, k, 0; 1, k, 0). We construct the insertion-deletion system Γ =
(V ′, T, A, I ′, D′) of size (1, k, 0; 1, 1, 0) in the following way:

V ′ = {Xr | r ∈ D} ∪ V,
I ′ = {(u, Xr, λ)ins | (u, x, λ)del ∈ D} ∪ I,
D′ = {(Xr, x, λ)del, (t, Xr, λ)del | (u, x, λ)del ∈ D,u = u′t}.
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We immediately see that L(Γ) ⊆ L(Γ′), because any derivation step wi
r⇒Γ

wi+1 for r ∈ I can be directly reproduced in Γ′, while a step with r =
(u, x, λ)del can be simulated in three steps of Γ′:

w′
iuxw

′′
i ⇒Γ′ w′

iuXrxw
′′
i ⇒Γ′ w′

iuXrw
′′
i ⇒Γ′ w′

iuw
′′
i ,

To see that L(Γ′) ⊆ L(Γ), consider the derivation

w1uv1 ⇒ w1uXrv1 ⇒∗ w2Xrxv2,

where w1, v1, w2, v2 ∈ V ∗. Remember that one may require, without losing
generality, that all rules in Γ have contexts of length exactly k. This, to-
gether with the fact that Xr is not included in the context of any insertion
rule, implies that x can appear to the right of Xr in w2Xrxv2 only if it was
already there in w1uXrv1; in other words, v1 = xv′1. But then, to simulate
a derivation of Γ′, Γ has to directly reproduce the applications of the rules
not involving Xr, and, instead of carrying out deletions in the context of
Xr, perform them in the context of u directly. This means that any termi-
nal word produced by Γ′ can be also produced by Γ, which concludes the
proof. �

The following lemma captures a similar inclusion property for systems
having rules of size (1, 1, 0; 1, k, 0).

Lemma 3.3 INSk,0
1 DELk,0

1 ⊆ INS1,0
1 DELk,0

1 , k ≥ 1.

Proof. Consider an insertion-deletion system Γ = (V, T,A, I,D) with rules
of size (1, k, 0; 1, k, 0). We construct the system Γ′ = (V ′, T, A, I ′, D′) of size
(1, 1, 0; 1, k, 0) in the following way:

V ′ = {Xr | r ∈ I} ∪ V,
I ′ = {(t, Xr, λ)ins, (Xr, x, λ)ins | (u, x, λ)ins ∈ I, u = u′t},
D′ = {(u, Xr, λ)del | (u, x, λ)ins ∈ I} ∪D.

It is immediately clear that L(Γ) ⊆ L(Γ′), because all the rules from D are
included in D′ and the application of a rule r = (u, x, λ)ins ∈ I can be
simulated as follows:

wuv ⇒Γ′ wuXrv ⇒Γ′ wuXrxv ⇒Γ′ wuxv.

Consider now the following derivation of Γ′:

w1tv1 ⇒Γ′ w1tXrv1 ⇒∗
Γ′ w2Xrv2 ⇒Γ′ w2Xrxv2 ⇒∗

Γ′ w3uXrv3 ⇒Γ w3uv3,

where wi, vi ∈ V ∗, 1 ≤ i ≤ 3, and w2Xrv2 is the first sentential form in which
Xr inserts an x. In this derivation the applications of the rules (t, Xr, λ)ins,
(Xr, x, λ)ins, and (u, Xr, λ)del are interleaved with other operations. Yet,
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since Xr only appears in two other rules of Γ′ and because all rules in Γ′

only have left contexts, the following hold: w1t ⇒∗ w2 ⇒∗ w3u, v1 ⇒∗ v2,
and Xrxv2 ⇒∗ Xrv3. Therefore, the above derivation can be reordered as
follows:

w1tv1 ⇒∗ w3uv2 ⇒ w3uXrv2 ⇒ w3uXrxv2 ⇒ w3uXrv3 ⇒ w3uv3.

The possibility of such a reordering of any derivation involving Xr and the
fact that this symbol can only be erased in the context of a substring u
leads us to the conclusion that any such derivation can be reproduced in Γ
by performing the insertions of x directly in the context of the corresponding
substring u, and by directly carrying over the applications of other rules.
This indicates that L(Γ′) ⊆ L(Γ) and concludes the proof. �

Lemmas 3.2 and 3.3 immediately imply the following statement.

Theorem 3.4 INS1,0
1 DELk,0

1 = INSk,0
1 DEL1,0

1 = INSk,0
1 DELk,0

1 , k ≥ 1.

Contrary to what one might expect, increasing the length of the left
context in one-sided one-symbol insertion and deletion rules beyond 2 does
not add expressive power. To prove this statement, we will first show that
insertion-deletion systems of size (1, k, 0; 1, k, 0) can simulate systems of size
(1, k, 0; 1, k+1, 0), for k ≥ 2, and will then inductively apply this observation.

Lemma 3.4 INSk,0
1 DELk+1,0

1 ⊆ INSk,0
1 DELk,0

1 , k ≥ 2.

Proof. Consider the insertion-deletion system Γ = (V, T,A, I,D) with
rules of size (1, k, 0; 1, k + 1, 0). One can require without losing generality
that all deletion contexts in Γ are exactly of size k + 1 and all insertion
contexts are of size k. We will construct the system Γ′ = (V ′, T, A, I ′, D′) of
size (1, k, 0; 1, k, 0) in the following way:

V ′ = {Xr | r ∈ D} ∪ V,
I ′ = {(x1 . . . xk, Xr, λ)ins

| (x1 . . . xkxk+1, t, λ)del ∈ D} ∪ I,
D′ = {(x1 . . . xk, Xr, λ)del, (Xrxk+1, t, λ)del

| (x1 . . . xkxk+1, t, λ)del ∈ D}.

We obtain that L(Γ) ⊆ L(Γ′) because Γ′ can directly reproduce any appli-
cation of an insertion rule from I, while any application of a deletion rule
(x1 . . . xkxk+1, t, λ)del ∈ D can be simulated as follows:

wx1 . . . xkxk+1 t v ⇒ wx1 . . . xkXrxk+1 t v
⇒ wx1 . . . xkXrxk+1 v ⇒ wx1 . . . xkxk+1 v.

Remark now that, since Xr inserts no symbols, whenever it is inserted
the symbol xk+1 must already be present to the right of the insertion site.
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Moreover, the same is true for the erased instance of t, because we require
that all insertion rules in Γ have contexts of length k ≥ 2, and, on the other
hand, Xk+1 does not appear in the context of any insertion rule and can
only participate in the deletion of t. Therefore any derivation of Γ′ in which
Xr is inserted and triggers the deletion of at least a t has the following form:

C : w1x1 . . . xkxk+1 t v1 ⇒ w1x1 . . . xkXrxk+1 t v1 ⇒∗ w2Xrxk+1 t v2
⇒ w2Xrxk+1v2 ⇒∗ w3x1 . . . xkXrxk+1v3 ⇒ w3x1 . . . xkxk+1v3.

But then, because of the fact that the rules of Γ′ are one-sided and that Xr

only appears in the context of one rule, we know that w1x1 . . . xk ⇒∗ w2 ⇒∗

w3x1 . . . xk, Xrxk+1tv1 ⇒∗ Xrxk+1tv2, and Xrxk+1v2 ⇒∗ Xrxk+1v3. With
this in mind, one can reorder C in the following way:

w1x1 . . . xkxk+1 t v1 ⇒ w1x1 . . . xkXrxk+1 t v1 ⇒∗ w1x1 . . . xkXrxk+1 t v2

⇒ w1x1 . . . xkXrxk+1v2 ⇒∗ w1x1 . . . xkXrxk+1v3 ⇒ w1x1 . . . xkxk+1v3

⇒∗ w2xk+1v3 ⇒∗ w3x1 . . . xkxk+1v3.

In this new derivation Xr is inserted and deleted within the same substring
x1 . . . xkxk+1, which means that Γ can simulate a subderivation of Γ′ em-
ploying Xr by directly applying the deletion rule (x1 . . . xkxk+1, t, λ)del in
the corresponding context x1 . . . xkxk+1. Together with the fact that the
applications of all insertion rules from I can carried over to Γ directly, this
implies that Γ can generate any terminal word Γ′ can produce and concludes
the argument. �

Note that since all rules of deletion rules of size (1, k, 0) are also of
size (1, k + 1, 0), the previous lemma actually shows equality between the
two classes of languages, rather than inclusion. Inductively applying that
statement and using Theorem 3.4 yields the following result.

Theorem 3.5 For any m, q ∈ N the following relations hold:

INS1,0
1 DEL2,0

1 = INS2,0
1 DEL1,0

1 = INSm,0
1 DELq,0

1 .

4 Conclusions

In this paper we considered insertion-deletion systems of size (1,m, 0; 1, q, 0),
m, q ≥ 0. We showed that if m + q > 2 then the corresponding families
are all equal. We also showed that they properly include the family of
regular languages and that they contain non-context-free languages. The
characterization of the above family as well as its equality to RE is left as an
open question. However, even though the considered systems look powerful,
the fact that they can only check contexts on one side and that only one
symbol can be inserted or deleted at a time leads us to the supposition that
such systems cannot generate all recursively enumerable languages.
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