
P Automata with Controlled Use of Minimal

Communication Rules

Rudolf Freund1, Marian Kogler1, and Sergey Verlan2

1 Institute for Computer Languages, Faculty of Informatics
Vienna University of Technology

Favoritenstr. 9, 1040 Vienna, Austria
Email: {rudi,marian}@emcc.at

2 LACL, Département Informatique
UFR Sciences et Technologie, Université Paris XII
61, av. Général de Gaulle, 94010 Créteil, France

Email: verlan@univ-paris12.fr

Abstract

In this paper, we introduce new variants of transition modes for P
systems by adding rule control to the conventional transition modes used
so far. This formalism of rule control allows us to specify which rules have
to be applied together or not. We show that computational completeness
can be obtained by using either minimal symport rules or minimal antiport
rules together with uniport rules being applied in the maximally parallel
transition mode with rule control.

1 Introduction

In this paper we consider some new special variants of P automata – a variation
of P systems introduced in [3] which act as acceptors rather than producers;
a similar concept of analyzing P systems was considered in [6]. A multiset is
accepted by a P automaton if and only if the automaton halts.

In the original model of P systems introduced as membrane systems by Gh.
Păun (see [4], [11]), the objects evolve within a hierarchical membrane structure
in the maximally parallel transition mode. Here we extend this maximally
parallel transition mode by imposing an additional condition on the applicable
multisets of rules, i.e., we specify which rules have to be used together or not.
We show some computational completeness results for P automata with only one
membrane working in the maximally parallel transition mode with rule control
using either minimal symport rules or minimal antiport rules together with

1



uniport rules. The same results also hold for the minimally parallel transition
mode (see [1]) as well as for the k-bounded minimally parallel transition mode
(see [8]) with rule control.

The rest of this paper is organized as follows: In the second section, we recall
well-known definitions and notions. In the next section, we explain our model
of P automata working in different conventional transition modes together with
rule control and give an illustrative example. In the fourth section, by simulating
deterministic register machines, we establish computational completeness results
for P automata with only one membrane working in the maximally parallel
transition mode with rule control using either minimal symport rules or minimal
antiport rules together with uniport rules. A summary of the obtained results
and an outlook to future research conclude the paper.

2 Preliminaries

We recall some of the notions and the notations we use (see [15] for elements of
formal language theory) as in [8].

Let V be a (finite) alphabet; then V ∗ is the set of all strings (a language)
over V , and V + = V ∗−{λ} where λ denotes the empty string. By RE (RE (T ))
we denote the family of recursively enumerable languages (over the alphabet T ).
For any family of string languages F , PsF denotes the family of Parikh sets of
languages from F and NF the family of Parikh sets of languages from F over
a one-letter alphabet. By N we denote the set of all non-negative integers, by
Nk the set of all vectors of non-negative integers of size k. In the following,
we will not distinguish between NRE, which coincides with PsRE ({a}), and
RE ({a}).

Let V be a (finite) set, V = {a1, ..., ak}. A finite multiset M over V is a
mapping M : V −→ N, i.e., for each a ∈ V , M (a) specifies the number of
occurrences of a in M . The size of the multiset M is |M | =

∑
a∈V M (a). A

multiset M over V can also be represented by any string x that contains exactly
M (ai) symbols ai for all 1 ≤ i ≤ k, e.g., by a

M(a1)
1 ...a

M(ak)
k , or else by the set{

a
M(ai)
i | 1 ≤ i ≤ k

}
. The set of all finite multisets over the set V is denoted

by 〈V,N〉.
Throughout the rest of the paper, we will not distinguish between a multiset

from 〈V,N〉 and its representation by a string over V containing the correspond-
ing number of each symbol. Moreover, when we speak of a partitioning of a set R
into a set {Ri | 1 ≤ i ≤ h} of (non-empty) subsets of R, i.e., Ri ⊆ R, 1 ≤ i ≤ h,
the Ri are not necessarily disjoint.

A deterministic register machine is a construct M = (n,B, l0, lh, I), where
n is the number of registers, B is a set of instruction labels, l0 is the start label,
lh is the halt label (assigned to HALT only), and I is a set of instructions of the
following forms:

2



• li : (ADD(r), lj) add 1 to register r, and then go to the instruction
labeled by lj ;

• li : (SUB(r), lj , lk) if register r is non-empty (non-zero), then subtract
1 from it and go to the instruction labeled by lj , otherwise go to the
instruction labeled by lk;

• lh : HALT the halt instruction.

A register machine M accepts a set of (vectors of) natural numbers in the
following way: start with the instruction labeled by l0, with the first registers
containing the input as well as all other registers being empty, and proceed to
apply instructions as indicated by the labels and by the contents of the registers.
If we reach the HALT instruction, then the input number (vector) is accepted. It
is known (e.g., see [9]) that in this way we can accept all recursively enumerable
sets of (vectors of) natural numbers.

3 P Automata with Communication Rules and
Rule Control

For an introduction to the area of membrane computing we refer the interested
reader to the monograph [12], the current state of the art can be seen in the
web [16].

We first consider P automata using communication rules similar to the P
automata with communication rules as described in [3] and the analyzing P
systems introduced in [6], but utilize a different notation for the rules.

Definition 3.1. A communication P automaton is a construct

Π = (O, T, µ,E,w0, w1, ..., wd, i0, R)

where

1. O is a finite alphabet of objects;

2. T ⊆ O is the alphabet of terminal objects;

3. µ is a membrane structure of d membranes with labels i, 1 ≤ i ≤ d, written
as [i and ]i; the skin membrane always has the index 1; the environment
is indicated by 0;

4. E is the alphabet of objects occurring in an arbitrary number in the en-
vironment;

5. w0, w1, ..., wd are finite multisets of objects over O representing the initial
contents of the environment (w0 only contains objects from O−E) as well
as the membranes with labels 1, ..., d;

6. i0, 1 ≤ i0 ≤ d, is the input membrane;

3



7. R is a set of communication rules.

As special forms of communication rules, we consider symport rules and
antiport rules:

Definition 3.2. Symport rules in R are of the form

x[i→ [ix

meaning that the multiset x from outside membrane i is moved into the region
inside membrane i, or

[ix→ x[i

meaning that the multiset x from inside membrane i is moved into the region
surrounding membrane i, with x ∈ O+ and 1 ≤ i ≤ d. An additional condition
has to be added for symport rules that bring objects into a membrane from the
environment – in such cases, at least one symbol from x in x[1→ [1x has to
be from O − E. The weight of a symport rule is defined as |x|. If we consider
symport rules of any weight, we write sym∗; if we only consider symport rules
with weight ≤ n, we write symn; sym2 rules are also called minimal symport
rules; finally, sym1 rules are called uniport rules.

Definition 3.3. Antiport rules in R are of the form

x[iy → y[ix

with x, y ∈ O+ and 1 ≤ i ≤ d, meaning that the multiset x from outside
membrane i is exchanged with the multiset y in the region inside membrane i.
The weight of an antiport rule is defined as max(|x|, |y|). If we consider antiport
rules of any weight, we write anti∗; if we only consider antiport rules with
weights ≤ n, we write antin; anti1 rules are also called minimal antiport rules.

A configuration C of Π is an (n+ 1)-tuple of multisets over O (u0, u1 . . . , un);
the initial configuration of Π, C0, is described by w0,w1, ..., wd, i.e., C0 =
(w0, w1, . . . , wd). The set of all multisets of rules from R applicable to C is
denoted by Appl (Π, C).

To narrow the possible set of multisets of rules that can be applied to a given
configuration, we may apply different transition modes (for a formal definition
of transition modes see [7]); for example, the maximally parallel transition mode
was already introduced in the seeding paper for the P systems area, [11]. For the
transition mode ϑ, the selection of multisets of rules applicable to a configuration
C is denoted by Appl (Π, C, ϑ).

In the maximally parallel transition mode we only select multisets of rules
R′ that are not extensible, i.e., there is no other multiset of rules R′′ % R′

applicable to C.

Definition 3.4. For the maximally parallel transition mode (max), we define

Appl (Π, C,max) = {R′ | R′ ∈ Appl (Π, C) and there is
no R′′ ∈ Appl (Π,C) with R′′ % R′} .

4



For the minimally parallel mode, we need an additional feature for the set of
rulesR, i.e., we consider a partitioning ofR into (not necessarily disjoint) subsets
R1 to Rh. Usually, this partitioning of R may coincide with a specific assignment
of the rules to the membranes. There are several possible interpretations of this
minimally parallel mode which in an informal way can be described as applying
multisets such that from every set Rj , 1 ≤ j ≤ h, at least one rule – if possible
– has to be used (e.g., see [1] and [7]):

Definition 3.5. For the minimally parallel transition mode (min), we define

Appl (Π, C,min) = {R′ | R′ ∈ Appl (Π, C) and
there is no R′′ ∈ Appl (Π, C)
with R′′ % R′, (R′′ −R′) ∩Rj 6= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ h} .

We also consider a restricted variant of the minimally parallel mode allowing
only a bounded number of at most k rules to be taken from each set Rj , 1 ≤
j ≤ h, of the partitioning into a multiset of rules applicable in the minimally
parallel mode (see [8]):

Definition 3.6. For the k-restricted minimally parallel transition mode (mink),
we define

Appl (Π, C,mink) = {R′ | R′ ∈ Appl (Π, C,min) and
|R′ ∩Rj | ≤ k for all j, 1 ≤ j ≤ h} .

We finally introduce an additional control mechanism on the applicability
of rules within a multiset of rules from R operating as an “overlay” on the
transition modes.

Definition 3.7. A communication P automaton with rule control is a construct

Π′ = (O, T, µ,E,w0, w1, ..., wd, i0, R,R
′
1, ..., R

′
m,K)

where

1. Π = (O, T, µ,E,w0, w1, ..., wd, i0, R) is a communication P automaton
with O, T, µ,E,w0, w1, ..., wd, i0, and R being defined as before;

2. R′1, ..., R
′
m is a partitioning of R into (non-empty, but not necessarily dis-

joint) subsets;

3. K ⊆ {0, 1}m is a set of control vectors controlling the applicability of
multisets of rules from R.

We now are able to define the multisets of rules from R applicable in Π′ to
a configuration C under a given transition mode ϑ using the control sets from
K:

5



Definition 3.8. For some given transition mode ϑ,

Appl (Π′, C, ϑ) = {R′ | R′ ∈ Appl (Π, C, ϑ) and
there exists a vector v ∈ K such that
for all j with 1 ≤ j ≤ m it holds that
v (j) = 1 implies R′ ∩Rj 6= ∅ and
v (j) = 0 implies R′ ∩Rj = ∅ } .

The components with value 1 in a control vector v from K specify those rule
sets from which at least one rule has to be taken into a multiset R′ of rules from
R to be applicable to a configuration C in Π′, whereas from the components
with value 0 in the control vector v no rule is allowed to be taken into R′.

A computation in Π′ checking for the acceptance of (a multiset over O)
w consists of a sequence of transitions starting from the initial configuration
C ′0 = (w′0, w

′
1, . . . , w

′
d) with w′i = wi for 0 ≤ i ≤ m and i 6= i0 as well as

w′i = wi + w for i = i0; such a computation is called successful if and only if it
halts, i.e., it has reached a configuration Cf to which no multiset is applicable
anymore, Appl (Π′, Cf , ϑ) = ∅. A multiset w is accepted if and only if there
exists a successful computation of Π′ on C ′0.

The idea of this additional constraint for the applicability of multiset of
rules imposed on a transition mode in some sense resembles the idea of pre-
scribed teams of rules in grammar systems (e.g., see [13]) where the allowed
combinations of rules taken from given rule sets are specified.

Example 3.1. Let

Π′ = (O, T, [1 ]1, E, w0, w1, 1, R,R1, R2, R3, R4, R5,K)

be a communication P automaton with rule control with

O = {a, b, p1, p2} ,
T = {a} ,
E = {b} ,
w0 = {} ,
w1 = {p1p2} ,
R = R1 ∪R2 ∪R3 ∪R4 ∪R5;
R1 = {[1p1a→ p1a[1} ,
R2 = {[1p2a→ p2a[1} ,
R3 = {p1b[1→ [1p1b} ,
R4 = {p2[1→ [1p2} ,
R5 = {p1[1p2 → p2[1p1, p2[1p1 → p1[1p2} ,
K = {(1, 1, 0, 0, 0) , (1, 0, 0, 0, 0) , (0, 0, 1, 1, 0) , (0, 0, 0, 0, 1)} .

In the maximally parallel mode, this automaton starts with the multiset
p1p2a

n for some n ≥ 0 and first tries to apply the rules in R1 and R2 in parallel,
thereby fulfilling the control conditions given by the control vector (1, 1, 0, 0, 0),
and exporting two symbols a from the skin membrane into the environment, if

6



at least two symbols a are available in the skin membrane; if only one symbol
a is available, then only the first rule [1p1a→ p1a[1 is applied thereby fulfilling
the condition given by the control vector (1, 0, 0, 0, 0). If both p1 and p2 have
been moved out, then the rules in R3 and R4 are executed at the same time
according to the control vector (0, 0, 1, 1, 0); these two steps in fact have replaced
two symbols a by one symbol b. The P automaton Π′ repeats this process until at
most one symbol a is left in the skin membrane. If no a is left, i.e., n has been
an even number, the automaton terminates with having p1p2b

n/2 in the skin
membrane. If one a is left, i.e., n has been an odd number, then only the rule
in R1 is executed, leading to a situation where p1 is outside and p2 is inside. In
this case, the automaton never terminates (as the two rules p1[1p2 → p2[1p1 and
p2[1p1 → p1[1p2 comprise an infinite loop). The automaton therefore exactly
accepts a2m for any m ≥ 0.

Remark 3.1. We notice that the parallel application of the two rules p1b[1→
[1p1b from R3 and p2[1→ [1p2 from R4 in sum has the same effect as the sym3

rule p1p2b[1→ [1p1p2b; in that way, it is possible to simulate symport rules
of weight 3 using a combination of symport rules of weight 2 and 1 acting in
parallel, i.e., with a vector in K that allows rules from the sets these rules
come from to be applied in parallel. More general, consider a symport rule
abc[i→ [iabc, where a, c ∈ O−E are present in only one copy in the whole system
and b ∈ O; then such a rule abc[i→ [iabc can be simulated by a synchronized
application of the two rules ab[i→ [iab and c[i→ [ic, which can be obtained by
taking each of these two rules into different partitions and adding a vector to K
that enables these two partitions. In a similar way, symport rules of any weight
k can be simulated (provided that there are at least k/2 symbols present in only
one copy).

As for symport rules, it is possible to simulate antiport rules of weight 2
using a combination of minimal antiport rules and uniport rules. More exactly,
consider an antiport rule a[ibc → bc[ia, where a, c ∈ O − E are present in only
one copy in the whole system and b ∈ O. The single application of such a rule
can be simulated by a synchronized application of the two rules a[ib → b[ia
and [ic → c[i, which can be obtained by taking each of these two rules into
different partitions and adding a vector to K that enables these two partitions.
In a similar way antiport rules of any weight k can be simulated (provided that
there are at least k/2 symbols present in one copy).

Definition 3.9. For some given transition mode ϑ, by

NOlPdKm (ϑ) [rule types] (PsOlPdKm (ϑ) [rule types] )

we define the sets of (vectors of) natural numbers accepted by communication
P automata with rule control working in the transition mode ϑ in d membranes
using l objects and a partitioning with m rule sets, allowing rules of the types
specified in [rule types]; if any of the numbers d, m, l are unbounded, we write
∗ instead.

7



4 Computational Completeness

By simulating deterministic register machines, in this section we show that
communication P automata with rule control using only minimal symport rules
(sym2 rules) or minimal antiport rules (anti1 rules) together with uniport rules
(sym1 rules) in only one membrane are computationally complete.

4.1 Minimal Symport Rules

We first show that communication P automata with rule control using only
minimal symport rules (sym2 rules) can accept any recursively enumerable set
of (vectors of) natural numbers.

Theorem 4.1. For X ∈ {N,Ps},

XO∗P1K∗ (max) [sym2] = XRE.

Proof. Let M = (n,B, p0, ph, I) be a register machine with n registers accepting
L ∈ PsRE (T ); then we construct a communication P automaton with rule
control working with minimal symport rules in the maximally parallel transition
mode

Π′ = (O, T, [1 ]1, E, w0, w1, 1, R,R′1, ..., R
′
m,K)

which accepts L in the following way:

1. O = {ai | 1 ≤ i ≤ n}
∪ {pi, p

′
i, p
′′
i | pi ∈ B, pi : (ADD(r), pj) ∈ I}

∪ {pi, p
′
i, p
′′
i , p
′′′
i | pi ∈ B, pi : (SUB(r), pj , pk) ∈ I}

∪ {ph | ph : HALT ∈ I} ;

2. T = {ai | 1 ≤ i ≤ k} ;

3. E = {ai | 1 ≤ i ≤ n} ;

4. w0 = {pi | pi ∈ B} − {p0} ;
w1 = {p0} ∪ {p′i, p′′i | pi ∈ B, pi : (ADD(r), pj) ∈ I}

∪ {p′i, p′′i , p′′′i | pi ∈ B, pi : (SUB(r), pj , pk) ∈ I} ;

5. the set of rules R consists of all the rules specified in the following which
each of them represents a partition (containing one single rule) of the
partitioning of R into sets of rules R′1, ..., R

′
m; instead of specifying K we

specify which rules have to be used together, implicitly thereby assuming
that all other rules are not allowed to be used at the same moment:

• for pi ∈ B, pi : (ADD(r), pj) ∈ I we first take
[1pi → pi[1 and [1p′ip

′′
i → p′ip

′′
i [1;

these two rules applied in parallel prepare the simulation of the ADD
instruction: as ar is in E, a companion symbol is needed in order
not to violate the additional condition for symport rules that import
symbols from the environment;

8



• the simulation of the ADD instruction then is accomplished by apply-
ing in parallel the rules
p′ipj [1→ [1p′ipj and p′′i ar[1→ [1p′′i ar ,
i.e., the companion symbols p′i, p

′′
i have returned into the skin mem-

brane and an additional symbol ar (the number of symbols ar in the
skin membrane represents the contents of register r) as well as the
symbol pj for the next instruction have been imported;

• for pi ∈ B, pi : (SUB(r), pj , pk) ∈ I we first take the two rules
[1p′′i pi → p′′i pi[1 and [1p′iar → p′iar[1
with the second rule being applicable if and only if the current con-
tents of register r is not zero; after the execution of the first of these
two rules, the instruction symbol pi and the helper symbol p′′i are in
the environment; if the register is non-empty, p′i is in the environ-
ment, too, having been removed from the membrane together with
one symbol ar (which corresponds to having decremented register r);
on the other hand, if the current contents of register r is zero, then
only the first rule is applicable; hence, we have to include two vectors
in K for these two cases, one of them enabling both rules and another
one enabling the first rule alone;

• if the register has been non-empty, in which case p′i has been moved
into the environment, the simulation of the SUB instruction then is
accomplished by applying in parallel the rules
p′ipj [1→ [1p′ipj and p′′i [1→ [1p′′i ,
which sends back the helper symbols p′i, p

′′
i into the skin membrane

together with the label of the next instruction pj ;
• if the register r has been empty, only the rule [1p′′i pi → p′′i pi[1 has

been applied, whereas p′i has remained in the skin membrane and
then the two rules
p′′i [1→ [1p′′i and [1p′ip

′′′
i → p′ip

′′′
i [1

are enabled to be applied in parallel by a suitable vector in K, thereby
bringing back the helper symbol p′′i into the skin membrane first;
afterwards,

• the two rules
p′ipk[1→ [1p′ipk and p′′′i [1→ [1p′′′i
are applied in parallel in order to bring back the helper symbols p′i, p

′′′
i

together with the symbol pk for the next instruction.

When the P automaton Π′ reaches the final label ph (for ph : HALT ∈ I), the
computation terminates and, by definition, the input is accepted. On the other
hand, if the register machine never reaches the final label, the corresponding
computation in Π′ never terminates, too, i.e., the input is not accepted. �

We remark that the P automaton Π′ is an analyzing (accepting) P sys-
tem and not a generating P system, hence the “garbage” (the helper symbols

9



p′i, p
′′
i , p
′′′
i ) need not be removed from the skin membrane. Moreover, we could

also interpret all pairs of rules described above as prescribed teams of size 2
(e.g., see [13]) with the extra condition of maximality; actually, except for the
appearance checking executed by the pair

[1p′′i pi → p′′i pi[1 and [1p′iar → p′iar[1

where eventually only the rule [1p′′i pi → p′′i pi[1 alone can be applied, in all other
cases exactly two rules have to be applied in parallel.

4.2 Minimal Antiport Rules Together with Uniport Rules

We use a similar proof technique as in the preceding proof to show that minimal
antiport rules together with uniport rules allow for computational completeness,
too.

Theorem 4.2. For X ∈ {N,Ps},

XO∗P1K∗ (max) [anti1, sym1] = XRE.

Proof. Let M = (n,B, p0, ph, I) be a register machine with n registers accepting
L ∈ PsRE (T ); then we construct a communication P automaton with rule
control working with minimal antiport rules and uniport rules in the maximally
parallel transition mode

Π′ = (O, T, [1 ]1, E, w0, w1, 1, R,R′1, ..., R
′
m,K)

which accepts L in the following way:

1. O = {ai | 1 ≤ i ≤ n}
∪ {pi | pi ∈ B, pi : (ADD(r), pj) ∈ I}
∪ {pi, p

′
i, p
′′
i , p
′′′
i | pi ∈ B, pi : (SUB(r), pj , pk) ∈ I}

∪ {ph | ph : HALT ∈ I} ;

2. T = {ai | 1 ≤ i ≤ k} ;

3. E = {ai | 1 ≤ i ≤ n} ;

4. w0 = (B − {p0}) ∪ {p′i, p′′i , p′′′i | pi ∈ B, pi : (SUB(r), pj , pk) ∈ I} ,
w1 = {p0} ;

5. the set of rules R consists of all the rules specified in the following which
each of them represents a partition (containing one single rule) of the
partitioning of R into sets of rules R′1, ..., R

′
m; instead of specifying K we

specify which rules have to be used together, implicitly thereby assuming
that all other rules are not allowed to be used at the same moment:

10



• the simulation of the ADD instruction is accomplished by applying in
parallel the two rules
ar[1pi → pi[1ar and pj [1→ [1pj ;
the symbol for the next instruction pj enters the skin membrane and
the old instruction symbol pi is exchanged for an additional symbol
ar;

• for pi ∈ B, pi : (SUB(r), pj , pk) ∈ I we first take
p′′i [1pi → pi[1p′′i and p′i[1ar → ar[1p′i;
the rule p′i[1ar → ar[1p′i does the appearance checking – only if regis-
ter r is not empty (i.e., there is at least one ar in the skin membrane),
p′i enters the skin membrane; therefore, the first rule p′′i [1pi → pi[1p′′i
is also allowed to be applied alone, i.e., we have two vectors to be
included in K, the first one enabling both rules to be applied at the
same moment, the second one enabling the first rule only;

• if p′i is inside the skin membrane, we know that the register has
been non-empty; hence, we exchange p′′i with the label for the next
instruction pj and move out the helper symbol p′i again by using in
parallel the rules
pj [1p′′i → p′′i [1pj and [1p′i → p′i[1;

• in the case that p′i is still in the environment, i.e., the register is
empty, we exchange the helper symbols p′′′i and p′′i and now send the
helper symbol p′i into the skin membrane by applying the pair of rules
p′′′i [1p′′i → p′′i [1p′′′i and p′i[1→ [1p′i;

• finally we bring in the symbol pk for the next instruction and return
back the helper symbols p′i and p′′′i ; this is accomplished by applying
in parallel the pair of rules
pk[1p′′′i → p′′′i [1pk and [1p′i → p′i[1.

The input is accepted if and only if the P automaton Π′ reaches the final
label ph (for ph : HALT ∈ I), which observation completes the proof. �

We should like to mention that in the proof given above we accept with
only ph remaining in the skin membrane, which means that by adding the rule
[1ph → ph[1 we even end up with an empty skin membrane. In other words, we
could also consider these P automata with minimal antiport and uniport rules
as generating mechanisms yielding their results as the numbers of objects in the
skin membrane, without having any additional garbage.

4.3 Results Using (Restricted) Minimal Parallelism

Looking carefully into the proofs of the theorems elaborated in the preceding
subsections we immediately observe that always at most one rule is taken from
each partition of rules defined there. Hence, we can take the same partitioning of
rules R′1, ..., R

′
m as used for the control of the rules to be applied together for the

11



partitioning of rules R1, ..., Rd needed for the definition of minimal parallelism
as well as k-restricted minimal parallelism. Because all the rule sets in the
partitioning R′1, ..., R

′
m as constructed in the theorems above contain exactly

one rule, computations carried out in the maximally parallel transition mode
together with the control sets constructed there are also computations carried
out in the (1-restricted) minimally parallel transition mode together with the
same control sets. For the k-restricted minimally parallel transition mode with
k ≥ 2 we need a technical construction method known as the prolongation
technique used in the area of grammar systems (e.g., see [5] and [10]); we leave
a detailed proof to the interested reader.

5 Conclusion

We have explored the computational power of P automata working in the maxi-
mally parallel, the minimally parallel or the k-bounded minimally parallel tran-
sition mode with rule control and shown computational completeness with var-
ious minimal communication rules (minimal symport rules of weight at most
two as well as minimal antiport rules of weight one together with uniport rules)
working in only one membrane. For the case of analyzing models of P systems
as for the P automata described in this paper, the garbage symbols remaining in
the single membrane play no role, whereas for generating P systems the question
remains which results can be obtained for various transition modes, especially
with minimal symport rules, in the generating case. For sure, by adding an
additional membrane for collecting the output, the rather simple proofs elab-
orated in the preceding section also work for the generating case; hence, for
minimal symport rules, we either get a better result with respect to the number
of membranes (we only need one instead of two) in case we do not care about
garbage symbols or, if we take them into account, we at least get much simpler
proofs with adding rule control to the maximally parallel transition mode than
in the case of using the maximally parallel transition mode for its own, e.g.,
compare with the proofs given in [14].

Acknowledgements

Sergey Verlan acknowledges the Science and Technology Center in Ukraine,
project 4032.

References

[1] G. Ciobanu, L. Pan, Gh. Păun, M.J. Pérez-Jiménez, P systems with mini-
mal parallelism, Theoretical Computer Science 378 (1) (2007), 117–130.

[2] E. Csuhaj-Varjú, J. Dessow, J. Kelemen, Gh. Păun, Grammar Systems: A
Grammatical Approach to Distribution and Cooperation, Topics in Com-

12



puter Mathematics 5, Gordon and Breach Science Publishers, Amsterdam
1994.

[3] E. Csuhaj-Varjú, G. Vaszil, P automata or purely communicating accepting
P systems, in: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.),
Membrane Computing, International Workshop, WMC-CdeA 2002, Curteă
de Argeş, Romania, August 19–23, 2002, Revised Papers, Lecture Notes in
Computer Science 2597, Springer, 2003, 219–233.

[4] J. Dassow, Gh. Păun, On the power of membrane computing, Journal of
Universal Computer Science 5 (2) (1999), 33–49.

[5] H. Fernau, R. Freund, M. Holzer, Hybrid modes in cooperating distributed
grammar systems: internal versus external hybridization, Theoretical Com-
puter Science 259 (2001), 405–426.

[6] R. Freund, M. Oswald, A short note on analysing P systems with antiport
rules, Bulletin of the EATCS 78, 2002, 231–236.

[7] R. Freund, S. Verlan, A formal framework for P systems, in: G. Elefther-
akis, P. Kefalas, Gh. Păun (Eds.), Pre-proceedings of Membrane Comput-
ing, International Workshop – WMC8, Thessaloniki, Greece, 2007, 317–
330.

[8] R. Freund, S. Verlan, (Tissue) P systems working in the k-restricted mini-
mally parallel derivation mode, in: E. Csuhaj-Varjú, R. Freund, M. Oswald,
K. Salomaa (Eds.), Proceedings of the International Workshop on Comput-
ing with Biomolecules, Österreichische Computer Gesellschaft, 2008, 43–52.

[9] M.L. Minsky, Computation – Finite and Infinite Machines, Prentice Hall,
Englewood Cliffs, NJ, 1967.

[10] V. Mitrana, Hybrid cooperating/distributed grammar systems, Comput.
Artif. Intell. 12 (1993), 83–88.

[11] Gh. Păun, Computing with membranes, J. of Computer and System Sci-
ences 61, 1 (2000), 108–143, and TUCS Research Report 208 (1998)
(http://www.tucs.fi).

[12] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin
2002.

[13] Gh. Păun, G. Rozenberg, Prescribed teams of grammars, Acta Inf. 31 (6)
(1994), 525–537.

[14] Y. Rogozhin, A. Alhazov, R. Freund, Computational power of sym-
port/antiport: history, advances, and open problems, in: R. Freund, Gh.
Păun, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing. 6th Int.
Workshop WMC 2005, Lecture Notes in Computer Science 3850, Springer-
Verlag, 2006, 1–31.

13



[15] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages (3 vol-
umes), Springer-Verlag, Berlin, 1997.

[16] The P Systems Web Page: http://ppage.psystems.eu.

14


