
1-splicing vs. 2-splicing: separating results

Sergey Verlan1 Rosalba Zizza2

1 Laboratoire d’Informatique Théorique et Appliquée

Université de Metz, France

E-mail: verlan@sciences.univ-metz.fr

2 Dipartimento di Informatica ed Applicazioni

Università di Salerno, 84081 Baronissi (SA), Italy

E-mail: zizza@unisa.it

Abstract

Splicing is a binary operation on strings defined by T. Head in 1987 which is inspired
by the cut and paste phenomenon on DNA molecules [2]. Based on this operation, splicing
systems, or H systems, were proposed as a generative device of languages: starting from a
set of words, by repeated application of the splicing operation, new words may be generated.
When we consider Păun’s definition, two types of H systems may be defined, according to
the fact that one word or two words are produced as a result of the splicing operation, called
1-splicing and 2-splicing operation, respectively. While the power of splicing languages was
investegated in comparison with classes of Chomsky hierarchy it wasn’t known if 1-splicing
and 2-splicing languages represent the same class. In this paper we present non trivial classes
of regular languages which are generated by using the 1-splicing operation (over a finite H
system) but which cannot be generated by using the 2-splicing operation. Thus, we show
that 1-splicing operation is more powerful than the 2-splicing operation.

1 Introduction

Splicing systems were proposed by T. Head in 1987 as a generative device of languages, formal
counterpart of the recombinant process of DNA molecules (splicing) [2]. Two strands of DNA
are cut at specified substrings (sites) recognized by restriction enzymes and then the fragments
are pasted by ligase enzymes, so new molecules may be produced. Head was concerned with the
structure of the languages of those DNA molecules (strings) which could be produced through
the splicing operation performed by a splicing system consisting of a finite set of initial DNA
molecules (axioms) and a finite set of enzymes (splicing rules). He showed that, under some
conditions, the language generated by the repeated applications of splicing rules starting with a
(finite) set of axioms is strictly locally testable [3]. From his pioneering work, several variants of
the splicing operation were proposed and different variants of splicing systems were introduced
as well as a more general model of a splicing system having an infinite number of axioms and
an infinite set of rules (see [4, 9] for a complete survey).

In this paper we deal with H systems, i.e., triples H = (V,A,R), where V is a finite alphabet,
A is a set of axioms (words) and R is a set of rules. The (splicing) language generated by an H
system is the smallest language containing A which is closed under the application of rules from
R (see Section 2 for definitions). The computational power of H systems depends on which level
in the Chomsky hierarchy A and R are situated. It can reach the power of Turing machines

1

[4, 9]. At the lowest level, the languages generated by a regular set of axioms and a finite set of
rules are proved to be regular [7]. This result was extended to a set of axioms which belong to
a full AFL [8]. On the other hand, it is known that the class of languages generated by finite H
systems, i.e., H systems where both A and R are finite sets, is a proper subclass of the family
of regular languages, but its structure is still unknown [4, 9].

In the literature, two types of the splicing operation have been considered: the 1-splicing
operation, when only one word is generated when a rule is applied to two words and the 2-
splicing operation, when two words are generated as a result. It is worthy of note that the
membership of the splicing language to the family of Chomsky hierarchy does not depend on
this choice, i.e., if we fix two families of languages for axioms and splicing rules then H1-systems
(H systems generating languages through the 1-splicing operation) are at the same level as
H2-systems (H systems generating languages through the 2-splicing operation) with respect to
Chomsky hierarchy. In particular, let us denote by Fin the class of finite languages and by
H1(Fin, F in) (resp. H2(Fin, F in)) the class of languages generated by finite H1-systems (resp.
H2-systems). Both classes H1(Fin, F in) and H2(Fin, F in) are proper subclasses of the class of
regular languages [9].

As a consequence, it is interesting to investigate the relation between H1(Fin, F in) and
H2(Fin, F in). It is already known that H2(Fin, F in) is a subset of H1(Fin, F in) which is in
turn a proper subset of the class of regular languages. The main aim of this paper is to show
that the first inclusion is also strict. Precisely, by using combinatorics on words, we construct
non trivial classes of regular languages which can be generated by using the 1-splicing operation
(over a finite H system) but which cannot be generated using the 2-splicing operation (over a
finite H system). As a result we obtain that in the case of finite H systems 1-splicing operation
is more powerful than the 2-splicing operation.

The paper is organized as follows. Section 2 contains some basics on words and all the neces-
sary definitions and notations for the splicing operation. Known results are presented in Section
3 and last sections are devoted to our contributions. More precisely, in Section 4 we present
classes of 2-splicing languages and conjectures for more general classes of languages. Regular
languages which are 1-splicing languages but not 2-splicing languages are given in Section 5.
Finally, in Section 6, we prove that some regular languages are not 1-splicing languages, i.e.,
they cannot be generated by any finite H system.

2 Basics on words and splicing operation

2.1 Words

For definitions on languages we will refer to [5]. We denote by V ∗ be the free monoid over a
finite alphabet V and V + = V ∗ \ ε, where ε is the empty word. If it is not differently supposed
L will always be a regular language over V . Let a ∈ V and w ∈ V ∗. The number of occurrences
of a in w is denoted by |w|a. Given V ′ a finite alphabet, we set |w|V ′ =

∑
a∈V ′ |w|a the sum of

occurrences of letters from V ′ in w.
For a word w ∈ V ∗, we denote by Fact(w) = {x ∈ V +|w = w1xw2, w1, w2 ∈ V ∗} the set of

all factors of w. We recall the important notion of a constant for a regular language L given by
Schützenberger in [10]. We report an equivalent, but simpler definition given in [2, 3].

Definition 2.1. [2, 3] A word w ∈ V ∗ is a constant for a regular language L if whenever the
words xwy, uwv ∈ L, then the words xwv, uwy ∈ L.

The following observation will be frequently used in the sequel.

2

Remark 2.1. Let L ⊆ V ∗ be a regular language. It is clear that if c ̸∈ V then c is a constant
for the languages Lc, cL and LcL. It is also not too difficult to prove that if c, d ̸∈ V then c, d
are constants for the language cL+ Ld. Finally {ca | a ∈ V } is a finite set of constants for the
language cLc.

2.2 Splicing operation

An (abstract) molecule is simply a word over a finite alphabet. A splicing rule (over alphabet
V) is a quadruple (u1, u2, u3, u4) of words u1, u2, u3, u4 ∈ V ∗ which is often written as follows:
u1#u2$u3#u4 where # and $ are special symbols which are not in V .

A splicing rule r = u1#u2$u3#u4 is applicable to two molecules x, y if there are words
x1, x2, y1, y2 ∈ V ∗ with x = x1u1u2x2 and y = y1u3u4y2, and produces two new molecules
w1 = x1u1u4y2 and w2 = y1u3u2x2. In this case we write (x, y) ⊢r (w1, w2). This operation is
also called 2-splicing. We can take only w1 as a result instead of w1 and w2. In this case the
corresponding operation is called 1-splicing and we denote it by (x, y) ⊢r w1. We also say that
r is applied in 1-splicing mode in this case and in 2-splicing mode in the previous case.

A pair σ = (V,R), where V is an alphabet and R is a set of splicing rules, is called a splicing
scheme or an H scheme.

For an H scheme σ = (V,R) and a language L ⊆ V ∗ we define:

σ1(L)
def
= {w1 ∈ V ∗|∃x, y ∈ L, r ∈ R : (x, y) ⊢r w1}

σ2(L)
def
= {w1, w2 ∈ V ∗|∃x, y ∈ L, r ∈ R : (x, y) ⊢r (w1, w2)}

where x, y, w1, w2 and r are specified above. We also define:

σ0
1(L) = L,

σi+1
1 (L) = σi

1(L) ∪ σ1(σ
i
1(L)),

σ∗
1(L) = ∪i≥0σ

i
1(L).

We define σ∗
2(L) similarly.

Definition 2.2. [2, 4] A Head splicing system, or H system, is a construct H = (σ,A) =
((V,R), A), simply denoted H = (V,A,R), where V is a finite alphabet, A ⊆ V ∗ is a set of
initial words over V , called axioms, and R ⊆ V ∗#V ∗$V ∗#V ∗ is a set of splicing rules.

The language generated by H = (V,A,R) is L(H)
def
= σ∗

1(A) (resp. L(H)
def
= σ∗

2(A)).
Thus the language generated by the H system H is the set of all molecules that can be

generated starting with A, as initial molecules, by iteratively applying splicing rules from R in
one of the splicing modes to copies of the molecules already generated. If we use rules from R in
1-splicing mode (resp. 2-splicing mode) then H is also called an H1-system (resp. H2-system).

Remark 2.2. Consider two H1-systems (resp. H2-systems) S = (V,A,R) and S′ = (V,A,R′)
having R′ ⊆ R. It is easy to observe that L(S′) ⊆ L(S).

We denote by H1(Fin, F in) (or simply H1) the family of languages generated by finite H1-
systems, i.e., H systems with a finite set of axioms, a finite set of rules and which uses the
1-splicing operation for producing words. Similarly, we denote by H2(Fin, F in) (or H2) the
family of languages generated by finite H2-systems i.e., H systems with a finite set of axioms, a
finite set of rules and which use the 2-splicing operation for producing words. The language L
generated by a finite H1-system (resp. H2-system) S, i.e., L = L(S), is called a 1-splicing (resp.
2-splicing) language.

3

In what follows we shall consider only non-finite regular languages, as well as only finite H
systems.

3 1-splicing and 2-splicing: known results

The aim of this paper is to compare two classes of regular languages: H2(Fin, F in) and
H1(Fin, F in). Below we report an already known result.

Proposition 3.1. [4, 9] H2(Fin, F in) ⊆ H1(Fin, F in).

This proposition is based on the following reasoning. An H system is called symmetric if for
any rule r = u1#u2$u3#u4 ∈ R, R contain the rule r′ = u3#u4$u1#u2. It is easy to observe
that an H system based on 2-splicing is implicitly supposed to be symmetric. Consequently,
every language produced by a system from the family H2(FIN,FIN) can be produced by a
system in H1(FIN,FIN) which is symmetric. This argument was used in [4].

This property is one of the reasons why 2-splicing is used mainly in the literature: all results
obtained for 2-splicing can be easily reformulated in terms of 1-splicing.

We shall concentrate below on languages obtained by union of a regular language L ⊆ V ∗

with the languages Lc, cL, LcL and cLc, where c ̸∈ V , i.e. c is a constant for L. We shall call
these languages constant languages. The next theorem is a corollary of a more general result
proved by T. Head in [3]. It shows that some of the languages above are splicing languages.

Theorem 3.1. [3] Let L ⊆ V ∗ be a regular language and c, d ̸∈ V . Then the languages Lc,
cL, LcL, cLc and cL + Ld are in H2(FIN,FIN). Moreover, each rule of the H system which
generates Lc, respectively cL, LcL, cLc and cL + Ld, is of form m#ε$m′#ε or ε#m$ε#m′,
where m and m′ are constants for Lc, respectively cL, LcL, cLc and cL+Ld. The words m and
m′ contain also c in the case of languages Lc, cL, LcL and cLc.

Remark 3.1. We note that the author used 1-splicing in [3]. But, as it was shown in [1], this
result holds in case of 2-splicing.

4 2-splicing languages

Now we present some classes of 2-splicing languages that can be obtained starting from the
languages described above.

Proposition 4.1. Let L ⊆ V ∗ be a regular language and c ̸∈ V . Then the regular languages
L = L+ Lc∗ and L′ = L+ c∗L are 2-splicing languages.

Proof. Let us consider the language L. From Theorem 3.1 we obtain that there is an H system
S = (V ∪{c}, A,R) based on 2-splicing which generates Lc. Let S̄ = (V ∪{c}, A,R∪{r}), where
r = ε#c$c#ε. It is clear that L(S) ⊆ L(S̄), see Remark 2.2.

It is easy to see that L(S̄) = L. If we apply r to lc and to lc, l ∈ L, we obtain l and lcc. If
we apply once more r to lc and to lcc, we obtain lccc and so on.

More formally, at first we shall show by induction that L ⊆ L(S̄). Let w be in L. If w is in
Lc, we obtain that w is in L(S) which is a subset of L(S̄). If w is in L, then there is a word wc in
Lc and we can generate it in S̄. After that we can apply r to wc and itself: (wc,wc) ⊢r (w,wcc)
obtaining w.

Now, let us suppose that w is in Lci, i > 0, i.e. w = w′ci, where w′ ∈ L. Let us show that
w′ci+1 ∈ L(S̄). As wc and wci are in L(S̄) by the induction hypothesis, we obtain wci+1 by
applying r to these two words: (wc,wci−1) ⊢r (w,wc

i).

4

Conversely, let w be in L(S̄). We use the induction on the number k of iterations of σ used
to produce w. If k = 0, then the word w is in A which is a part of L(S) which is equal to Lc.
Let us consider now a word w produced in k+1 iterations of σ. Let the last application of σ be
the following: (x, y) ⊢r′ (w1, w2) and w ∈ {w1, w2}. By the induction hypothesis x and y are in
L. If r′ is a rule from R, we get that x and y are in Lc+, because the sites of r′ contain c, see
Theorem 3.1. Consequently, w is also in Lc+. If r′ = r, we obtain that x = x1x2, with x1 ∈ Lc∗

and x2 ∈ c+ and y = y1y2, with y1 ∈ Lc+ and y2 ∈ c∗. In this case w1 = x1y2 belongs to Lc∗

and w2 = y1x2 belongs to Lc+, i.e., w is in L.
We can show in a similar manner that L′ is a 2-splicing language.

Proposition 4.2. Let L ⊆ V ∗ be a regular language and c ̸∈ V . Then, regular languages
L = L+ Lc and L′ = L+ cL are 1-splicing languages.

Proof. We use the same construction as in the previous proposition.
As c ̸∈ V , c is a constant for Lc. Therefore, there an H system based on 1-splicing S =

(V ∪{c}, A,R) such that Lc = L(S) (Theorem 3.1). Similarly to Proposition 4.1, we consider the
rule r = ε#c$c#ε and the system S̄ = (V ∪ {c}, A,R ∪ {r}). It is obvious that L+ Lc = L(S̄),
because rules of R permit to produce Lc, while r permits to produce L. We note that it is
important to use 1-splicing instead of 2-splicing in order to produce L.

We do not know if this result remains true if 2-splicing is used, but we suppose this.

Conjecture 4.1. Let L ⊆ V ∗ be a regular language and c ̸∈ V . Then, regular languages
L = L+ Lc and L′ = L+ cL are 2-splicing languages.

We shall show now one possibility to solve this conjecture. Let us suppose that it is possible to
find zi ∈ V ∗ and wi ∈ L such that for all xwiy ∈ L the following two conditions are satisfied:

a) xwi ∈ L
b) ∀w ∈ L : w = w′zi ⇒ wy = w′ziy ∈ L
If it is possible to find such zi and wi, then after adding words wi to axioms the rules

zi#c$wi#ε permit to generate L starting from Lc. Similar conditions may be formulated for
the generation of L from cL.

The motivation of the previous statement is the following. First we observe that we can
generate the language Lc, see Theorem 3.1. After that, the main idea is to produce a word x of
L from the word xc ∈ Lc by erasing c at the end. This may be done by using rules zi#c$wi#ε.
Conditions a) and b) guarantee the consistence of obtained words because both resulting words
must belong to L or Lc.

Example 4.1. Languages a∗ + a∗b and a∗ + ba∗ are examples, which confirm the conjecture
above. For the first language it is sufficient to take i = 1, w1 = a and z1 = ε in order to satisfy
both conditions above. The rule ε#b$a#ε then permits to produce a∗ from a∗b. We note that
the language a∗b may be produced by an H system based on 2-splicing (Theorem 3.1).

Example 4.2. Let us consider the regular language L recognised by the following finite au-
tomata:

// ?>=<89:;1
a // ?>=<89:;2

b ** ?>=<89:;765401233
a

44
b

jj ?>=<89:;765401234btt
ahh

If we take i = 2 and z1 = a, z2 = b, w1 = ababa, w2 = abbb, then both previous conditions
are satisfied. In this case the rules a#c$ababa#ε and b#c$abbb#ε permit to produce L from
Lc. We note that Lc may be generated by an H system based on 2-splicing (Theorem 3.1).

5

Example 4.3. Let us consider the regular language L recognised by the following finite au-
tomata:

// ?>=<89:;1
a // ?>=<89:;2

b ** ?>=<89:;765401233
a

44
b

jj ?>=<89:;765401234b,a
tt

In this case i = 4 and the following 4 rules ba#c$ababa#ε, aa#c$abbb#ε, ab#c$abbb#ε and
bb#c$abbb#ε satisfy both previous conditions. Therefore, they permit to produce L from Lc.
We note that Lc may be generated by an H system based on 2-splicing (Theorem 3.1).

5 Classes of 1-splicing languages which are not 2-splicing lan-
guages

The next proposition shows a class of regular languages which cannot be 2-splicing languages.

Proposition 5.1. Let L ⊆ V ∗ be a regular language and c, d ̸∈ V . Then, the language L =
L+ cL+ Ld cannot be a 2-splicing language.

Proof. We shall prove this result by contradiction. We suppose that there is an H system based
on 2-splicing S = (V,A,R) such that L(S) = L. We consider any rule r ∈ R and we show
that using this rule we obtain either a word which does not belong to L as it will contain two
occurrences of letters from V ′, where V ′ = {c, d}, or both resulting words will contain one
occurrence of c or d, i.e., we cannot produce words from L by using this rule. We also notice
the closure property of L: L = σ2(L) where σ is the H scheme (V,R).

Now let us consider a rule r = u1#u2$u3#u4 ∈ R and let x = x1u1u2x2, y = y1u3u4y2,
w1 = x1u1u4y2, w2 = y1u3u2x2 be such that we can have the following application of r: (x, y) ⊢r

(w1, w2).
It is clear that |u1u2|V ′ ≤ 1 and |u3u4|V ′ ≤ 1. We have the following cases with respect to

the number of c and d in the components ui of the rule r, 1 ≤ i ≤ 4:

1. |ui|V ′ = 0. We obtain a contradiction if we take x in cL and y in Ld, as w1 will contain c
and d in the same time.

2. |u1u2|V ′ = 0 and u3u4 ∈ Fact(cL). We have two subcases:

(a) u3 ̸= ε. If we take x in Ld and y in cL, then we obtain that |w2|V ′ = 2, which is a
contradiction.

(b) u3 = ε. If we take x and y in cL, we have a contradiction, as the resulting word w1

will contain two letters c.

3. We can reason in a similar way for other combinations for which one of sites contain a
letter from V ′ and another one does not contain any letter of V ′.

4. u1u2 ∈ Fact(cL) and u3u4 ∈ Fact(cL). We have 3 subcases:

(a) u3 = ε and u1 ̸= ε (or u1 = ε and u3 ̸= ε). If we take x and y in cL, then we obtain
a resulting word containing two occurrences of c.

(b) u1, u3 = ε. Both resulting words are identical to the initial ones.

6

(c) u1, u3 ̸= ε. Both resulting words belong to cL.

We see that we cannot produce a word from L by using rules of last two types.

5. We can reason in a similar manner for the case when u1u2 ∈ Fact(Ld) and u3u4 ∈
Fact(Ld).

6. u1u2 ∈ Fact(cL) and u3u4 ∈ Fact(Ld). We have 4 subcases:

(a) u1, u4 ̸= ε. We obtain a contradiction if we take x in cL and y in Ld, as w1 contains
both c and d.

(b) u1 ̸= ε, u4 = ε. We obtain that |w1|c = 1 and |w2|d = 1.

(c) u1 = ε, u4 ̸= ε. We obtain that |w1|d = 1 and |w2|c = 1.

We see that we cannot produce a word from L by using rules of last two types.

(d) u1, u4 = ε. A contradiction is obtained if we take x in cL and y in Ld, as the resulting
word w2 contains both c and d.

Shortly speaking, we have rules of two types. Rules of the first type produce words having
one occurrence of c or d. Consequently, these words cannot belong to L. If we suppose that
we can generate L by using rules of another type, then we can show for each rule of this type
an example of words such that by applying this rule to them we will produce a word having
two occurrences of letters from V ′. This means that the corresponding word does not belong
to L. But this contradicts to the fact that L is closed with respect to the splicing operation.
Consequently, we obtain a contradiction with the fact that L = L + cL + Ld is a 2-splicing
language.

We can easily derive the same result in the case when |V ′| = 1, i.e., c = d.

Corollary 5.1. Let L ⊆ V ∗ be a regular language and c ̸∈ V . Then, the language L′ =
L+ cL+ Lc cannot be a 2-splicing language.

The following theorems show that the languages above belong to the family H1(FIN,FIN).
This means that they are in H1(FIN,FIN) \H2(FIN,FIN).

Theorem 5.1. Let L ⊆ V ∗ be a regular language and c, d ̸∈ V . Then, the language L =
L+ cL+ Ld is in H1(FIN,FIN) \H2(FIN,FIN).

Proof. Proposition 5.1 gives us that the language L = L+cL+Ld cannot be in H2(FIN,FIN).
Now it is enough to show that L is in H1(FIN,FIN). Since c is a constant for cL and since d
is a constant for Ld, cL and Ld are 2-splicing languages, see Theorem 3.1, and, consequently,
1-splicing languages, see Proposition 3.1. Let Sc = (V ∪ {c}, Ac, Rc) be the H system which
generates cL, i.e., L(Sc) = cL, and let Sd = (V ∪ {d}, Ad, Rd) be the H system which generates
Ld, i.e. L(Sd) = Ld. The language cL+Ld is a 2-splicing language as well, see Theorem 3.1. We
affirm that the system S = (V ∪ {c, d}, Ac ∪Ad, Rc ∪Rd ∪ {r}), where r = ε#d$d#ε, generates
L, i.e. L = L(S). We note that we can also use the rule r = ε#c$c#ε. Indeed, we can generate
cL and Ld by using rules from Rc and Rd. Finally, the rule r = ε#d$d#ε which may be applied
to a pair of words from Ld only, permits to generate words from L by 1-splicing. We note that
the obtained system S is based on 1-splicing, since r cannot be used to perform a 2-splicing.

7

The previous result remain true if we take L′ = L+ cL+Lc. More exactly, we observe that
the proof that L = L+ cL+Ld is a 1-splicing language uses the hypothesis that c and d are two
constants for L. From the other side, it is possible to show that L′ = L+ cL+Lc is a 1-splicing
language because the sets {ca | a ∈ V } and {ac | a ∈ V } are two finite sets of constants for
L′. In this case, in order to generate L we can use the set of rules ra = a#c$ac#ε, respectively
ra = ε#ca$c#a, for all a ∈ V in order to generate L. Such a rule ra is applied to two words
from Lc, respectively cL, and produce a word from L.

Theorem 5.2. Let L ⊆ V ∗ be a regular language and c ̸∈ V . Then the language L = L+ LcL
cannot be a 2-splicing language.

Proof. We shall prove this result by contradiction. We suppose that there is an H system based
on 2-splicing S = (V,A,R) such that L(S) = L. We consider any rule r ∈ R and we show
that using this rule we obtain either a word which does not belong to L as it will contain two
occurrences of c, or both resulting words will contain one occurrence of c. This means that
we cannot produce words from L by using this rule. We also notice the closure property of L:
L = σ2(L) where σ is the H scheme (V,R).

Now let us consider a rule r = u1#u2$u3#u4 ∈ R and let x = x1u1u2x2, y = y1u3u4y2,
w1 = x1u1u4y2, w2 = y1u3u2x2 such that we can have the following application of r: (x, y) ⊢r

(w1, w2).
It is clear that |u1u2|c ≤ 1 and |u3u4|c ≤ 1. Therefore, we have the following cases with

respect to the number of c in components ui of the rule r, 1 ≤ i ≤ 4:

1. |ui|c = 0, i = 1, . . . , 4.
We obtain a contradiction if we take x, y such that |x1|c = |y2|c = 1, because |w1|c = 2.

We affirm that it is possible to find such x and y because of the form of L. More precisely,
if we can apply r to x and to y and if |x1|c = 0, then necessarily x = x1u1u2w

′cw′′. Since
x1u1u2w

′ ∈ L, there is a word x′ = w3cx1u1u2w
′ ∈ LcL having |x′1|c = |w3cx1|c = 1. Then

the rule r may be applied to x′ and to y.

2. |u1|c = |u2|c = 0 and |u3u4|c = 1

(a) |u3|c = 1 (|u4|c = 0): if we take x such that |x2|c = 1, we obtain a contradiction, as
|w2|c = 2.

(b) |u3|c = 0 (|u4|c = 1): if we take x such that |x1|c = 1, we obtain a contradiction
again, as this time |w1|c = 2.

2′. Similarly, we obtain a contradiction in the case when |u3|c = |u4|c = 0 and then |u1u2|c = 1.

3. |u1|c = 1 (|u2|c = 0 and |u3u4|c = 1). We have two subcases:

(a) |u3|c = 1 (|u4|c = 0): then |w1|c = |w2|c = 1, and we cannot produce a word in L
using this rule.

(b) |u4|c = 1 (|u3|c = 0): we have a contradiction, as |w1|c = 2.

3′. Similarly if |u2|c = 1 (|u1|c = 0 and |u3u4|c = 1).

Shortly, we have rules of two types. Rules of the first type produce words having one
occurrence of c. Therefore, these words cannot belong to L. If we suppose that we can generate
L by using rules of another type, then we can present for each rule of this type an example of

8

words such that by applying this rule to them we will produce a word having two occurrences of
c. This means that the corresponding word does not belong to L. But this contradicts the fact
that L is closed with respect to the splicing operation. Consequently, we obtain a contradiction
with the fact that L = L+ LcL is a 2-splicing language.

We do not know if the above language is a 1-splicing language, but we suppose that it is the
case.

Conjecture 5.1. Let L ⊆ V ∗ be a regular language and c ̸∈ V . Then the language L+ LcL is
in H1(FIN,FIN), but not in H2(FIN,FIN).

One of the possibilities to solve this conjecture, i.e., whether the language L + LcL is in
H1(FIN,FIN), is directly related to the solution proposed for Conjecture 4.1 whether L+Lc ∈
H2(FIN,FIN). We recall that Conjecture 4.1 is true if we can find zi ∈ V ∗ and wi ∈ L such
that for all xwiy in L the following two conditions are satisfied:

a) xwi ∈ L,
b) ∀w ∈ L : w = w′zi ⇒ wy = w′ziy ∈ L.
In our case, rules zi#c$cwi#ε permit to produce L from LcL. The motivation of this

assertion is the same as for Conjecture 4.1, but in this case the problem is even simpler as
condition a) is always true.

Example 5.1. L = a∗ + a∗ba∗ ∈ H1(FIN,FIN) \H2(FIN,FIN).
From Theorem 5.2 we obtain that L ̸∈ H2(FIN,FIN). Now we use the previous remark

and put w1 = a and z1 = ε. It is easy to see that condition b) is satisfied. The rule ε#b$ba#ε
permits to generate a∗ from a∗ba∗. To finish the proof we note that a∗ba∗ is a 2-splicing language
and, consequently, a 1-splicing language, see Theorem 3.1.

Example 5.2. If we consider the language L from example 4.2, we obtain immediately that
L+ LcL is a 1-splicing language. The same result holds for the language L from example 4.3.

6 Examples of regular languages which are not 1-splicing lan-
guages

We present in this section a class of regular languages which cannot be 1-splicing languages.
This class is constructed from the language cLc, L ⊆ V ∗, c ̸∈ V .

Theorem 6.1. Let L ⊆ V ∗ be a regular language and c ̸∈ V . Then, the language L = L+ cLc
cannot be a 1-splicing language.

Proof. We shall prove this result by contradiction. We suppose that there is an H system based
on 1-splicing S = (V,A,R) such that L(S) = L. We consider any rule r of R and we show
that using this rule we obtain either a word which does not belong to L as it will contain one
occurrence of c, or both resulting words will contain two occurrences of c. This means that
we cannot produce words from L by using this rule. We also notice the closure property of L:
L = σ1(L) where σ is the H scheme (V,R).

Now let us consider a rule r = u1#u2$u3#u4 ∈ R and let x = x1u1u2x2 ∈ L and y =
y1u3u4y2 ∈ L. We denote by w the result of the application of r to these two words.

We note that |u1u2|c ≤ 2 et |u3u4|c ≤ 2. Therefore, we have to consider only the cases when
every |ui|c, i = 1 . . . 4, varies between 0 and 2. We can throw away cases where |u1|c > 0 or
|u4|c > 0, because in these cases we cannot produce a word from L.

9

Then we fix |u1|c = |u4|c = 0 and we consider 0 ≤ |u2|c, |u3|c ≤ 2. This gives us 9 cases. We
number cases by two digits; the first digit indicates the number of c in u2 and the second digit
indicates the number of c in u3.

Case 00: (i.e., |u2|c = 0 = |u3|c). Then there are x′, y′ in L such that (cx′c, y′) ⊢r w and
|w|c = 1, therefore w ̸∈ L.

Case 01: (i.e., |u2|c = 0 et |u3|c = 1). We take an y which contains the site u3u4 of the rule r.
If u4y2 ̸= ε, then there is x′ in L such that (x′, y) ⊢r w and |w|c = 1 as |u4y2|c = 1.
If u4y2 = ε, then there is x′ in L such that (cx′c, y) ⊢r w as w = x1u1 and |w|c = 1.

In both cases w ̸∈ L.

Case 02: (i.e., u4 = ε). Then there is x′ in L such that (cx′c, y) ⊢r w and |w|c = 1 as w = x1u1.
Hence, w ̸∈ L.

Case 10: This case is similar to case 01. We take y′ in L and we choose y′ or cy′c depending
on x and we obtain that |w|c = 1, i.e., w ̸∈ L.

Case 11: we have 4 subcases (x, y ∈ L):
a) x1u1 = u4y2 = ε: we obtain w = ε.

b) x1u1, u4y2 ̸= ε: as |u2|c = |u3|c = 1 we obtain that |x1u1|c = |x1|c = 1 and |u4y2|c =
|y2|c = 1. Then, |w|c = 2 and w cannot be in L.

c,d) either x1u1 = ε, or u4y2 = ε. If x1u1 = ε, we have w = u4y2 and |w|c = 1. If u4y2 = ε,
we have w = x1u1 et |w|c = 1. In both cases w ̸∈ L.

Case 12: (i.e., u4 = ε). Then there is an x′ in L such that (cx′c, y) ⊢r w and either w = ε (if
x1u1 = ε), or |w|c = 1.

Case 20: (i.e., u1 = ε). Similarly to case 02 we can find an y′ in L such that (x, cy′c) ⊢r w and
|w|c = 1.

Case 21: (i.e., u1 = ε). Similarly to case 12, we obtain that there is an y′ in L such that
(x, cy′c) ⊢r w and either w = ε (if u4y2 = ε), or |w|c = 1.

Case 22: We produce ε.

Shortly speaking, rules are of three types. Rules of the first type permit to produce only
ε; rules of the second type permit to obtain words w such that |w|c = 2. Consequently, these
words cannot belong to L. Rules of the third type permit to obtain different words, but if we
suppose that we can generate L by using rules of this type, then we can find for each rule of
this type an example of words from L and cLc such that by applying this rule to them we will
produce a word having one occurrence of c. This means that the corresponding word does not
belong to L. This contradicts the fact that L is closed under splicing. Consequently, we obtain
a contradiction with the fact that L = L+ cLc is 1-splicing language.

7 Conclusions

In this paper we compared the generating power of H systems based on 1-splicing and of H
systems based on 2-splicing and we have shown that the set H1(FIN,FIN) \H2(FIN,FIN)
is not empty. The languages which we used to obtain this result are constructed from constant

10

languages where the constant is defined by a letter c ̸∈ V . We note that we can replace this letter
by words which are constants for the considered language. Even if these languages seem to be
more interesting, their underlying structure is identical to the structure of languages presented
before. We also think that the proposal for solution of conjectures suggested for Conjecture 4.1
may be useful for more general cases.

Acknowledgments The first author wants to thank M. Margenstern and Yu. Rogozhin for
their comments. The same author acknowledges the Ministry of Education of France for the
financial support of his PhD. The second author wants to thank C. De Felice for her encourage-
ment and supervision. Both authors acknowledge also the “MolCoNet” IST-2001-32008 project
which made possible their collaboration.

References

[1] P.Bonizzoni, C. De Felice, G. Mauri, R. Zizza, The structure of reflexive finite splicing
languages, submitted.

[2] T. Head, Formal Language Theory and DNA: an analysis of the generative capacity of
specific recombinant behaviours, Bull. Math. Biol. 49 (1987), 737− 759.

[3] T. Head, Splicing languages generated with one sided context, in “Computing with Bio-
molecules: Theory and Experiment (1998).

[4] T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics: generative mech-
anisms suggested by DNA recombination, in Rozenberg, G., Salomaa, A. (eds.): Handbook
of Formal Languages, Vol. 2. Springer-Verlag (1996), 295− 360.

[5] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages,
and Computation, 2nd ed., Addison-Wesley, Reading, Mass. (2001).

[6] Gh. Paun, On the splicing operation, Discrete Applied Math. 70 (1996), 57− 79.

[7] D. Pixton, Regularity of splicing languages, Discrete Applied Math. 69 (1996), 101− 124.

[8] D. Pixton, Splicing in abstract families of languages, Theoret. Comp. Science 234 (2000),
135− 166.

[9] Gh. Paun, G. Rozenberg, A. Salomaa, DNA computing, New Computing Paradigms.
Springer-Verlag (1998).

[10] M. P. Schützenberger, Sur certaines opérations de fermeture dans les langages rationnels,
Symposia Mathematica 15 (1975), 245− 253.

11

