
Fundamenta Informaticae XX (2010) 1–18 1

IOS Press

A representation theorem for primitive recursive algorithms

Philippe Andary, Bruno Patrou
University of Rouen, Computer Scicence Dept.
LITIS, Technopole Madrillet
Philippe.Andary, Bruno.Patrou@univ-rouen.fr

Pierre Valarcher
Université Paris Est Créteil, LACL
IUT Fontainebleau/Senart
pierre.valarcher@u-pec.fr

Abstract. We formalize the algorithms computing primitive recursive (PR) functions as the abstract
state machines (ASMs) whose running length is computable by a PR function. Then we show that
there exists a programming language (implementing only PR functions) by which it is possible to
implement any one of the previously defined algorithms for the PR functions in such a way that their
complexity is preserved.

Keywords: primitive recursion, algorithms, abstract state machines, structural complexity.

1. Introduction

In [3, 18], Colson and Moschovakis have obtained interesting results on the limitation of the algorithmic
expressivity of a large class of primitive recursive languages. They have shown that even the imperative
or functional programming languages do not allow to implement some very simple algorithms. These
results have motivated our attempt to construct a more expressive language and prove that it captures a
very large class of algorithms that specify primitive recursive functions (shortly: PR functions).

Let F be a set of computable functions and AF a set of algorithms for F . A programming language
LF is called AF –complete if it permits to implement every algorithm A ∈ AF by a program P ∈ LF in
such a way that the number TP of commands executed by P and the number c(A) of updates executed
by A during their respective computations is related by TP = O(c(A)).

Our aim is to find such anAF –complete programming language LF for the set F of the PR functions
and the arithmetical abstract state machines (AASMs) taken as the set AF of algorithms for F . (cf.
[16, 12]). Moreover, the complexity c(A) of every algorithm A ∈ AF (the number of updates executed
by A during the computation) is required to be computable by a PR function.

The construction of the required programming language LF that we are going to propose is based
on a simple LOOP language whose variables and expressions have either integer or boolean type, and
the statements are reduced to assignments and conditional or bounded loops. This language is known

2 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

not to be expressive enough (cf. [7]). In order to enhance its expressive power, we add a simple escape
statement (exit1). The resulting language LOOPexit is the required one. We are ready to state this as the
main result of this paper.

Theorem 1.1. (Representation)
Let f be a primitive recursive function and Af be an algorithm for f such that c(Af) is a primitive
recursive function. Then one can construct a program P in LOOPexit such that TP = O(c(Af)).

Historical context One of the first relevant works has been done by L. Colson [3]. Using the denota-
tional semantics (in which the used domain is that of the lazy natural integers [14]), he has proved that,
though the function min which computes the minimum of two integers is obviously a primitive recur-
sive function (see [20] for a formal definition), there is no way to represent, in the model of primitive
recursive programs (which are called PR-combinators), the good algorithm for min , i.e. the one that
decreases alternatively both arguments. The main reason is an ultimate obstinacy theorem showing that
every PR-combinator must choose one (and only one) of its arguments and thus the alternation between
the two arguments is impossible. A constructive proof of this property can be found in [5].

This work has been continued by R. David (see [10]) who developed a new semantics (the trace
of computation) allowing him to prove a new property (the so called backtracking property) for any
primitive recursive program using any kind of data types.

The third author of this paper has shown some new results on intensional behavior (now called
structural complexity) of some other primitive recursive schemes (in [22]).

In the same framework, L. Colson and D. Fredholm (see [15] and [4]) have shown that even the call-
by-value strategy (with primitive recursion over lists of integers and with primitive recursion in higher
types, called the system T of Goedel) does not allow to implement the good algorithm for the min
function.

Similar questions have been studied by S. Brookes and D. Dancanet, in [2] and [8], with the non-
determinism and the CDS languages.

Recently, in [18], Y. Moschovakis has established a linear lower bound for the complexity of a non-
trivial primitive recursive program from given piecewise linear functions. His main result is that the
logtime programs for the greatest common divisor from such given functions (such as Stein’s) cannot be
matched in efficiency by the primitive recursive programs from the same given functions. He ended by
an open problem relative to the classical Euclidean algorithm (L. Van Den Dries gives a partial answer
in [13]).

In [7], the min problem has been studied in an imperative framework of a LOOP language which
computes only primitive recursive functions ([17]). Even there no good program for the min function can
be produced. This result has been extended in the framework of a language with higher-order procedural
variables ([6]).

Organization of the paper. Section 2 presents the LOOPexit programming language. Sections 3 and
4 describe the notion of primitive recursive algorithm within the ASM framework. The two remaining
sections are devoted to the proof of the main theorem.

1The escape command is very simple; it stops the computation (like in C). It can be replaced by a more sophisticated behavior,
as exception or escape from the named block, for instance.

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 3

2. Imperative LOOP languages

2.1. Syntax

Let us start with the version of LOOP language that has first been described in [17], and slightly modify it
by a more recent syntax. This modification is done by adjoining to it the boolean expressions, conditional
statements, the predecessor function, and a special expression for undefined values:

exprint ::= var | pred(exprint) | succ(exprint) | natural
exprbool ::= var = exprint | ¬exprbool | exprbool ∧ exprbool

| exprbool ∨ exprbool | true | false
com ::= var := exprint;

| if exprbool then comlist else comlist endif;

| loop exprint do comlist endloop;

comlist ::= com comlist

| ε

prog ::= comlist

Remark 2.1. We include in this LOOP language also all the natural numbers though our language allows
to get all of them from 0.

All variables are of the natural integer type int and identified by strings. For a program P , we denote
by V ar(P), V arin(P), and V arout(P) the variables, the input variables, and the output variables of P ,
respectively. Those in V arin(P) must be explicitly initialized before the execution of P .

Remark 2.2. Our imperative LOOP language has more basic functions and relations than that in [3, 7].
But as Moschovakis has shown in [18], the lack of expressivity is due to the recursion schema rather than
to the chosen set of basic functions.

For the sake of simplicity, we will write e + 1 (resp. e − 1) instead of succ(e) (resp. pred(e)) and
if e then c endif; when the else part of the if command is an empty list of commands. Furthermore,
we will allow the use of the elsif keyword when the conditional commands are nested, as in:

if e then
com

elsif e then
com

endif;

The semantics is the usual one, we just want to point out the fact that the integer expression in the
loop command is evaluated as the first one and only once.

2.1.1. The min example

All along the paper we will illustrate our purpose with the min problem (see the Introduction for motiva-
tions). It is the usual one, with pred(0) = 0. Consider the following LOOP program (let us call it inf)
which computes the minimum of two natural integers n and m.

4 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

An inf LOOP program :

res := x1;
loop x1 do

x′2 := x′2 − 1;
if x′2 = 0 then

res := x2;
endif;

endloop;

where x1 and x2 are the input variables initialized by n andm, respectively, and res is the output variable.

Lemma 2.1. The inf LOOP program computes the min function with the time complexity O(x1) (see
further for the formal definition of time complexity).

In the sequel we will extend our LOOP language in such a way that we can implement new algorithms
(still computing only primitive recursive functions).

2.2. A conservative extension LOOPexit

We extend the language with the exit command which stops the program execution in the moment it
arrives at it:

com ::= exit;

For a real programming language we might have choosen a more subtle behavior (see Section 4 for a
discussion on this subject).

2.3. Operational semantics

The operational semantics of LOOPexit is given by a simple abstract machine which is described by a
set of rewriting rules. A rule has the form ((α, env), com) ⇒ ((α′, env′), com′), where α and α′ lie in
{0, 1}, env and env′ denote environments, and com and com′ are programs (such a rule is called a one
step reduction or one step rewriting). The ⊕ operation on environments resolves clashes by choosing the
value given by its second argument. Let com1, com2 and coms be lists of commands:

((0, env), x := e; coms)⇒ ((0, env ⊕ {(x, valueOf (e))}), coms)

((0, env), if e then com1 else com2 endif; coms)
⇒ ((0, env), com1 coms) if valueOf (e) = true

((0, env), if e then com1 else com2 endif; coms)
⇒ ((0, env), com2 coms) if valueOf (e) = false

((0, env), loop exprint do com endloop; coms)
⇒ ((0, env), coms) if valueOf (exprint) = 0

((0, env), loop exprint do com endloop; coms)
⇒ ((0, env), com loop n do com endloop; coms)
if valueOf (exprint) = n+ 1

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 5

((0, env), exit; coms)⇒ ((1, env), coms)

Here, as usual, an environment is a mapping of variables onto values (natural numbers) which can be
seen as a set of couples. We say that an environment env is adequate to a program P if all variables of
P appear in the domain of env.

Let y be a variable and env an environment. If env = env′⊕{(x, v)} for some variable x and value
v, then env(y) = v or env(y) = env′(y), according to whether we have y = x or not.

If e is an expression (boolean or natural), then valueOf (e) is defined as usual. We just want to stress
that valueOf (e) = 0 whenever e = pred(e′) with valueOf(e′) = 0.

Remark 2.3. In our operational semantics, the cost of the equality test and of the evaluation of a condi-
tional (valueOf) is for free, regardless of the complexity of the boolean formula.

Let us call ((α, env), P) a state. A state is terminal if no (reduction) rule is applicable to it (there is
no rule from ((1, env), P) neither from the empty sequence). A run of a program P is a sequence of one
step reductions⇒ which leads from a state ((α, env), P) to a terminal state ((α′, env′), P ′). We denote
by⇒n the nth iteration (power) of⇒ and⇒∗ its reflexive and transitive closure.

Remark 2.4. The above reduction rules are deterministic.

2.4. Some theoretical results

Theorem 2.1. A function f is primitive recursive if and only if it is computable by a LOOP program.

Proof:
See [11] for a proof. ut

Theorem 2.2. No LOOP program computes min(x, y) in O(min(x, y)) steps.

Proof:
See [7] for a proof. ut

Lemma 2.2. If Pe is a LOOPexit program and ((0, env1), Pe) ⇒∗ ((α, env2), P ′e) (α ∈ {0, 1}) then
there exists a LOOP program P such that ((0, env3), P) ⇒∗ ((0, env4), P ′) with env1 ⊂ env3 and
env2 ⊂ env4.

Proof:
Use a new variable vexit initialized by 0 and substitute vexit := 1; for all the exit commands in Pe.
Finally, in order to get P , replace each command com in Pe by if vexit = 0 then com endif;. ut

Corollary 2.1. A function f is primitive recursive if and only if it is computable by a LOOPexit program.

6 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

2.4.1. The min example (continued)

The inf′ LOOPexit program :

res := x1;
loop x1 do

x′2 := x′2 − 1;
if x′2 = 0 then

res := x2;
exit;

endif;
endloop;

Definition 2.1. The computation time of a LOOPexit program P is the map TP : N|V arin(P)| 7→ N
giving the number of one step rules executed during the computation of P for each concrete initialization.

Proposition 2.1. There exists a LOOPexit program which computes the min function in O(min) time.

From this result we notice that the LOOPexit programming language is more powerful than the LOOP

language. Indeed, one can also prove that the Stein’s algorithm is programmable in the LOOPexit lan-
guage with the good time complexity (O(log2(x) + log2(y))). See the program in Annex A. Moreover,
functions with piecewise linear complexity from [18] are also programmable with the good time com-
plexity in LOOPexit .

Put otherwise, LOOPexit allows us to implement more efficient algorithms for primitive recursive
functions than LOOP does. In order to formalize this comparison in the following sections, we shall have
to define and use very carefully the notion of primitive recursive algorithm.

We end this section with the following simple fact about the LOOP programs.

Lemma 2.3. For every primitive recursive function f : Nk → N, there exists a LOOP program Q such
that TQ ≥ f .

Proof:
Let P be a LOOP program computing f and r a variable whose value is f(v1, . . . , vk) at the end of
execution of P , where (v1, . . . , vk) are the values of the input variables of P . Just add the loop

loop r do endloop;

to the end of P to get Q. ut

3. Primitive recursive algorithms

We first recall some of the main concepts defined in [16], then we add some new definitions for later use.

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 7

3.1. Gurevich algorithms

A vocabulary Υ is a finite collection of function names, each one with a fixed arity. The terms over a
given vocabulary Υ (or Υ-terms) are defined by induction: a nullary function name is a term; if f ∈ Υ
has arity k and u = (u1, ..., uk) a k-tuple of terms, then f(u) = f(u1, ..., uk) is a term. A Υ-structureX
is a nonempty set S (the base set ofX) together with an interpretation of the function names over S. The
elements of S are also considered as the elements of X . The value val(u,X) of a term u in a structure
X is also defined by induction: if u is a nulary function name, then val(u,X) is the interpretation of u
over the base set of X; if u = f(u1, ..., un), then val(u,X) is the value of the interpretation of f on the
n-tuple of arguments (val(u1, X), ..., val(un, X)). Some function names can be marked as relational,
their values always belonging to the boolean universe {true, false}. A term is boolean if the outermost
function name is relational.

Let X be a Υ-structure. If f is a j-ary function name over Υ and a is a j-tuple of elements of X ,
then the pair (f, a) is a location of X and we denote by contentX(f, a) the element f(a) of X . If
(f, a) is a location of X and b is an element of X , then (f, a, b) is an update of X , which is trivial if
b = contentX(f, a). To execute an update (f, a, b) means to replace the current content of the location
(f, a) with b. Two updates clash if they refer to the same location but are distinct. A set of updates
is consistent if it has no clashing updates. To execute a consistent set of updates means to execute
simultaneously all the updates in the set; to execute an inconsistent one means to do nothing. The result
of the execution of an update set ∆ over X will be denoted by X + ∆. It is proved in [16] that for any
couple (X,Y) of Υ-structures with the same base set there is a unique consistent set ∆ of nontrivial
updates of X such that Y = X + ∆.

The so called (ASM) programs by which we are going to manipulate the Υ-structures will be con-
structed as the rules over Υ according to the following definition of the three fundamental rule forms:

Definition 3.1. A rule over a vocabulary Υ has one of the three following forms:

1. f(u1, ..., un) := u0

2. par
R1
...
Rk

endpar

3. if g then
R

endif

where f ∈ Υ has arity n, u0, u1, ..., un are Υ-terms, R,R1, ..., Rk are rules and g (the guard of the third
rule) is a boolean Υ-term.

To fire over a structure X a rule of the first form, called an update rule, compute the values
ai = val(ui, X) for i = 0, ..., n and then obtain a structure Y by executing the associated update
(f, (a1, ..., an), a0).

8 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

To fire over X a rule of the second form , called a par rule, fire simultaneously over X all the rules
in the block. If the block is empty, then the rule is also called a skip rule and it has no effect when fired.

To fire over X a rule of the third form , called a conditional rule, first evaluate the guard g, and, if it
is true then fire R, else do nothing.

The result of firing a rule R over a structure X is a structure denoted by ∆(R,X). An (ASM)
program Π is a rule and the mapping τΠ is defined for any Υ-structure X by: τΠ(X) = ∆(Π, X).

Definition 3.2. An Abstract State Machine A (say ASM for short) of vocabulary ΥA is given by:

• a program ΠA of vocabulary ΥA

• a set S(A) of ΥA-structures (also called states) closed under isomorphisms and under the map
τΠA

• a subset I(A) ⊆ S(A) closed under isomorphisms.

The restriction of τΠA
to S(A) is usually denoted by τA. For every X0 ∈ I(A) the sequence

X0, τA(X0), τ2
A(X0), ... is called a run of A. Two ASMs A and A′ are equivalent if S(A) = S(A′),

I(A) = I(A′), and if they have the same runs.
It is convenient to specify the functions of the vocabulary as dynamic or static, depending wether

they can be modified by the ASM or not. Another distinction is made over dynamic functions: some
of them are called in functions or out functions, in order to precise where to find the input data and the
output results in the ASM. In the sequel we will essentially consider ASMs relatively to the function they
compute. In such cases it is essential to specify the sequences of in and out functions used by an ASM,
denoted by in(A) and out(A). Y. Gurevich says also that the vocabulary of an ASM always contains the
nulary function names true, false, undef , the names of usual boolean operations, the unary function
name boole, and the binary function name denoted by the equality sign =. This set of function names is
called the logic part of the vocabulary.

We extend in a natural way the val notation to the sequences of terms

val(U,X) = (val(u1, X), ..., val(un, X)) if T = (u1, ..., un),

and to the sets of states

val(U, {X1, ..., Xk}) = {val(U,X1), . . . , val(U,Xk)}.

Considering a state X of an ASM A, any other state of A is reachable or not from X by τA. We
measure this reachability using the following definition:

Definition 3.3. Let A be an ASM and X be a state in S(A). We define the partial map #stepX :
S(A)→ N by

#stepX(Y)= 0 if Y = X
= k if ∃Y ′ ∈ S(A) such that Y = τA(Y ′) and #stepX(Y ′) = k − 1

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 9

Notice that #stepX is undefined on the set of states unreachable from X , while well-defined elsewhere,
since τA is a map.

Y. Gurevich stipulates that an ASM A stops when a state X verifies τA(X) = X . We will explicitly
qualify such a state as terminal. Since τA is a map, any state of an ASM A can be associated to at most
one terminal state (depending on whether the runs it belongs to are finite or not).

Another important fact from [16] that we need to recall here is the existence, for any ASM A, of an
equivalence relation of finite index dividing S(A) into the classes C1, . . . , Cn recognizable by suitable
corresponding boolean expressions g1, . . . , gn as follows:

∀X ∈ S(A), ∃i ∈ {1, n} such that (val(gj , X) holds ⇔ j = i)

Y. Gurevich has proved that then there always exists an equivalent ASM A′ whose program ΠA′ has the
form

par
if g1 then
R1

endif
...
if gn then
Rn

endif
endpar

where each Ri is a par rule containing only update rules, and such that for any X ∈ Ci, ∆(Ri, X) is the
unique consistent set of non-trivial updates verifying X + ∆(Ri, X) = τA(X).

Remark 3.1. One can always extend the previous ASM inserting at the end a rule with a guard comple-
mentary of the previous guards, and a skip rule. This is feasible for normal form ASM at least.

The ASM A′ will be called a partitionned ASM since S(A′) is partitionned by the guards of ΠA′ . From
these observations we can state, for any partitionned ASM A, that:

• for all X ∈ S(A), ∆(ΠA, X) contains no trivial update,

• for any state X ∈ S(A), the rule Ri, executed when ΠA is fired on X , is a skip rule iff X is a
terminal state.

Definition 3.4. Let A be an ASM and T a finite sequence of terms defined over ΥA. We say that T is
characteristic for I(A) if

∀X0, X
′
0 ∈ I(A), val(U,X0) = val(U,X ′0)⇒ X0 = X ′0

We constrain the sequence in(A) of an ASM A to be characteristic for I(A). Indeed, if in(A) is not
characteristic, then the ASM is non-deterministic and we do not want to deal with such algorithms impos-
sible to implement with LOOP language. An ASM whose definition is accompanied by the specification
of a sequence in(A) characteristic for I(A) and of a sequence out(A) is called an F-ASM.

10 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

3.2. Primitive recursive ASMs

The aim of this section is to give a formal definition of a class of algorithms we call primitive recursive
algorithms. The following presentation is similar to that of the arithmetical ASMs ([12]).

According to Y. Gurevich’s thesis (ASMs are algorithms, [16]) it is sufficient to define the concept
of primitive recursive ASM.

The first thing to define is the vocabulary for the primitive recursive ASMs. Since we want them to
treat the primitive recursive functions, and these take their values in N, we will restrict the interpretations
of the vocabulary for the ASMs so as to render them N-typed.

Remark 3.2. We restrict the set of static functions to the constants, the successor and the predecessor
functions. If we extend the vocabulary in the ASM framework, we need to associate the same functions
(and same extensional semantics) in the framework of the LOOP language. We recall, as noticed by Y.
Gurevich and Y. Moschovakis [19], that the notion of algorithm is not absolute but relative to a given set
of functions.

Of course, one may construct algorithms that use some extra data types, like lists, to be efficient
(an example is given by R. David in [9]). If the data type is used to store some partial results (it’s then
representable by a set of dynamics functions) we need to construct its counterpart in the LOOP language
and to give an operational semantics for their evaluation; the operational semantics needs to be closed to
the one of the ASM (where any evaluation is given for free).

In the sequel we will only focus on primitive arithmetical functions.

Definition 3.5. The N-typed ASMs are the ASMs whose non-logic part of the vocabulary is interpretable
only by functions taking their values in N.

Definition 3.6. An N-typed ASMA is called basic or arithmetical if the non-logic part of its vocabulary
is reduced to:

{n1, . . . , nj , pred, succ, x1, . . . , xk}

where:

• n1, . . . , nj , pred and succ are static and represent, respectively, natural constant operations which
belong to N, the unary predecessor and successor functions on N,

• x1, . . . , xk are nulary functions defined over N and the only dynamic functions of the ASM; as
usual we can identify them with variables, further denoted by V ar(A).

One can notice that (see [12]):

Proposition 3.1. The basic ASMs are Turing-complete.

In order to specify among the arithmetical ASM the primitive recursive ones, we need an adequate
notion of complexity:

Definition 3.7. Let A be a basic ASM. The complexity cA of A is a function defined over the set

{val(in(A), X0) | X0 ∈ I(A) and its associated run is finite}

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 11

by
cA(val(in(A), X0)) = #stepX0(Z0),

where Z0 is the terminal state of the finite run of A initiated with X0.

Remark 3.3. A PR function is necessarily defined as a function from Nn to N. So, to be PR, cA must
be defined over Nn, and, imposing A to be N-typed ensures val(in(A), I(A)) to be completely defined
over N.

Hence a primitive recursive ASM is an arithmetical ASM whose complexity is a primitive recursive
function.

Definition 3.8. A basic or arithmetical ASM A is PR if cA is PR. We denote by PR-ASM the set of
primitive recursive ASMs.

3.3. The min problem

An inf ASM-PR :
if x = 0 then

res := n
if ¬(x = 0) ∧ y = 0 then

res := m
if ¬(x = 0) ∧ ¬(y = 0) then
x := x− 1
y := y − 1

Remark 3.4. We could have defined the PR-ASMs as the set of couples (A, f), where A is a basic
ASM, f ∈ PR, and f is the greatest running time of A. For instance, we can define (AAck,min

2) to
be an PR-ASM (AAck(n,m) is a basic ASM computing the Ackerman function on n,m and we run it
with at most min2(n,m) steps).

3.4. LOOPexit programs compute Basic PR-ASM

The objective of this section is to build from a basic PR ASM A computing a function f a LOOPexit
program P for f which simulates A and respects its complexity in some sense.

Since an ASM is being executed until it reaches a fixed point, we must choose a length of run that is
consistent with our programming language (which is limited to primitive recursive functions).

The solution is, intuitively, to consider two processes in parallel, one of which implements the algo-
rithm, while the other one counts the number of times the algorithm is executed.

ASM rules are sometimes far from usual commands in programming language. The most important
difference is the simultaneous execution of rules. We also consider only the number of update rules fired
as complexity; evaluation of expressions has no cost (nor in update rule nor in condition of guards).
Recall that the number of updates is bounded (in ASM the cost of fire is only one).

We consider in the following two kinds of complexity: the one due to the simulation of the simulta-
neous execution of rules and the second due to usual complexity of algorithms TA (the number of updates
at each step).

12 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

We denote T seq
A the cost of the process that allows to simulate the features of an ASM A (simultane-

ous execution and test for a fix point) into a sequential programming language.
In what follows, d denotes the number of dynamic variables and g the number of guards in the ASM

in question.

3.4.1. The heart of a program

The basic ASM programs allow us to construct certain LOOPexit programs without loops which will
be called heart-programs. A heart-program is a piece of code that will be executed as many times as
necessary later in the whole program.

If A is an ASM and P is a LOOPexit program, we denote by env(X) the set {(v, val(v,X)) | v ∈
V ar(A)}. In this way, env allows us to associate environments of P from a state.

Proposition 3.2. Let τA be a basic ASM program with d dynamic variables. Then there exists a LOOPexit
program PA with 2d variables such that, for any two distinct states X,Y ∈ S(A) with τA(X) = Y and
m variables updated, it holds that

((0, env), PA)⇒≤2d+g ((α, env′), ε) with env(Y) ⊆ env′ and α ∈ {0, 1}

and g is the number of guards of τA. With T seq
A = d + g + d (with the first d for saving old values of

variables and the second d for the test of fix point) and TA = d (the maximum number of updates), we
have T ≤ TA + T seq

A .

Proof:
For any basic ASM A (with ΠA as described in section 3) we define a LOOPexit program PA, with
V arin(PA) = in(A) and V arout(PA) = out(A) by:

1. For each rule:

if gi then
x1 := e1
...
xk := ek

endif

we have the program:

if gi then
x′1 := x1; x′2 := x2; . . . x′k := xk;

x1 := e1[~x′/~x];

x2 := e2[~x′/~x];
...
xk := ek[~x′/~x];

endif

2. if the rule is if g then skip endif then P is if g then exit endif.

3. and finally the whole P program is encapsulated by

if ¬(x1 = x′1 ∧ · · · ∧ xn = x′n) then
P;

else

exit;
endif

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 13

for all xi ∈ V ar(A).

Remark 3.5. Some auxiliary variables are needed to simulate a simultaneous execution of a set of up-
dates. The expression xi := ei[x

′
1/x1][x′2/x2] . . . [x′k/xk]; denotes sequential substitutions.

Remark 3.6. We may have several true guards fired in the ASM; in our case we can not have any clashes
in a set of updates. Then, since there is n variables in ΠA, there are at most 2n assignments executed by
the LOOPexit program.

Remark 3.7. The complexity is preserved due to our model of computation: the cost of the equality test
is neglected.

ut

3.4.2. The min example

Following the previous transformation we obtain the LOOPexit program (without loop)

The Pinf heart-program :

if ¬(x = x′ ∧ y = y′ ∧ res = res′) then
if x = 0 then

res′ := res;
res := n;

endif;
if ¬(x = 0) ∧ y = 0 then

res′ := res;
res := m;

endif;
if ¬(x = 0) ∧ ¬(y = 0) then
x′ := x;
y′ := y;
x := x′ − 1;
y := y′ − 1;

endif;
else

exit;
endif

We have constructed the first one of the two intended processes, that which must be iterated suffi-
ciently many times.

3.4.3. Insertion of LOOP in LOOPexit

We are now ready to consider the second process, whose role is to execute the heart-program in a bounded
time. In order to do this, we inject in a program P that heart-program.

14 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

Definition 3.9. Let P be a LOOP program and Q be a LOOPexit program. We define the insertion of Q
in P (denoted by P [Q]) by the induction on the length of P :

• if P is x := e; coms then

P [Q] is Q x := e; coms[Q]

• if P is if e then com1 else com2 endif; coms then

P [Q] is Q if e then com1[Q] else com2[Q] endif; coms[Q]

• if P is loop exprint do com endloop; coms then

P [Q] is Q loop exprint do com[Q] Q endloop; coms[Q]

The following lemma points out the fact that, when inserting PA in P , the execution of each rewriting
rule of P is preceded by an execution of PA.

Lemma 3.1. Let A be a PR-ASM and X,Y be two distinct states of S(A) with τA(X) = Y . Let envPA

be an environment for PA containing env(X). Let P be a LOOP program and envP an environment for
P disjoint from envPA

. If
((0, envP), P)⇒ ((0, env′P), P ′)

then
((0, envP ∪ envPA

), P [PA])⇒l+1 ((0, env′P ∪ env′PA
), P ′[PA])

with env(Y) ⊆ env′PA
and l ≤ 2d+g+1 (where d is the number of variables of PA and g is the number

of guards).

Proof:
Consider the following five distinct cases for P , using Proposition 3.2:

• if ((0, envP), v := e; coms)
⇒ ((0, envP ⊕ {(v, valueOf(e))}), coms)

then ((0, envP ∪ envPA
), PA v := e; coms[PA])

⇒l ((0, envP ⊕ {(v, valueOf(e))} ∪ env′PA
), coms[PA])

• with valueOf(b) = true,
if ((0, envP), if b then com1 else com2 endif; coms)

⇒ ((0, envP), com1 coms)
then ((0, envP ∪ envPA

), PA if b then com1[PA] else com2[PA] endif; coms[PA])
⇒l ((0, envP ∪ env′PA

), com1[PA] coms[PA])

• with valueOf(b) = false,
if ((0, envP), if b then com1 else com2 endif; coms)

⇒ ((0, envP), com2 coms)
then ((0, envP ∪ envPA

), PA if b then com1[PA] else com2[PA] endif; coms[PA])
⇒l+1 ((0, envP ∪ env′PA

), com2[PA] coms[PA])

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 15

• with valueOf(e) = 0,
if ((0, envP), loop e do com endloop; coms)

⇒ ((0, envP), coms)
then ((0, envP ∪ envPA

), PA loop e do com[PA] PA endloop; coms[PA])
⇒l+1 ((0, envP ∪ env′PA

), coms[PA])

• with valueOf(e) = n+ 1,
if ((0, envP), loop e do com endloop; coms)

⇒ ((0, envP), com loop n do com endloop; coms)
then ((0, envP ∪ envPA

), PA loop e do com[PA] PA endloop; coms[PA])⇒l+1

((0, envP ∪ env′PA
), com[PA] PA loop n do com[PA] PA endloop; coms[PA])

ut

Therefore, starting with an algorithm one can construct a program in LOOPexit that preserves the com-
plexity.

Theorem 3.1. Let f be a function from Nk to N and A be a PR-ASM which computes f . Then there
exists a LOOPexit program computing f whose complexity belongs to O(cA) (≤ cA × (3d+ g + 1)).

Proof:
By Lemma 3.2, each execution of PA simulates (in at most 2n + c + 1 steps) one run step of A. From
Lemma 3.1, we know that the inclusion of PA in a LOOP program P induces an execution of PA before
each rewriting rule of P . So, we just have to find a LOOP program with reductions of size greater than
the length of A runs, that is to say, TP ≥ cA (such an inequality induces V arin(P) = in(A)). The
existence of such a program is ensured by Lemma 2.3, since A being a PR ASM implies that cA is a PR
function. Now it is easy to conclude that the desired LOOPexit program PA,f is:

V arin(P) := V arin(PA);
P [PA]

with V arin(PA,f) = V arin(PA) and V arout(PA,f) = V arout(PA).
Clearly TPA,f

≤ (3d+ g + 1)× cA ∈ O(cA) since the exit command stops the program as soon as the
run is simulated. ut

4. Conclusion and comments

This article is devoted to the problem of implementing good algorithms by restricted programming lan-
guages.

Inspired by the idea of Y. Gurevich to identify algorithms as abstract state machines (ASMs), we
have constructed a large class of algorithms that we call primitive recursive algorithms, identifying them
with a special class of AMSs.

As a counterpart of this class, we have specified a programming language (LOOPexit) that captures
all algorithms previously defined. This leads us to a concept that may be called algorithmic completeness:

Definition 4.1. Given a classA of algorithms, a programming language P is A-complete if all algorithms
in A may be adequately implemented in P with respect to their the complexity.

16 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

One can notice that our class of algorithms includes the good algorithm for the min function and the
Stein algorithm for the gcd function. We recall that those two algorithms have no adequate implementa-
tion in certain programming languages (see [3, 4, 10, 15, 18, 13, 7] for some particular results).

This suggests that LOOPexit is a good programming language (from a complexity point of view). As
for our definition of primitive recursive algorithms, it still may be discussed. The most obvious problem
left open by this paper is the following:

Open problem 1. Is there an algorithm for a primitive recursive function which can not be implemented
in LOOPexit ?

As mentioned in section 3.4, an algorithm can use more sophisticated data types than natural numbers
and ASM model has no problem to represent them by n-ary dynamics functions. But they are very
difficult to represent in usual programming language except for data type representable by array indexed
by integer. Usually, those functions are represented by Map but, as far as we know, there is no way to
initialized them but constants.

Moreover, this work was done in an imperative framework, but using [7, 6], it may be interesting to
define a total functional language which matches in efficiency the LOOPexit programming language.

References

[1] Börger Egon and Stärk Robert. Abstract State Machines. Springer-Verlag (2003).

[2] Brookes Stephen and Dancanet Denis. Sequential Algorithms, Deterministic Parallelism, and Intensional Ex-
pressiveness. POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, ACM Press (1995) 13–24.

[3] Colson Loı̈c. About primitive recursive algorithms. Theoretical Computer Science 83 (1991) 57–69.

[4] Colson Loı̈c and Fredholm Daniel. System T, call-by-value and the minimum problem. Theoretical Computer
Science 206 (1998) 301–315.

[5] Coquand Thierry. Une preuve directe du Théorème d’ultime obstination. Comptes rendus de l’Académie des
sciences 314(série I) (1992).

[6] Crolard Tristan, Polonovski Emmanuel and Valarcher Pierre. Extending the LOOP language with Higher-
Order Procedural variables in ACM-Transactions on Computational Logic, (2008)

[7] Crolard Tristan, Lacas Samuel and Valarcher Pierre. On the expressive power of the For-language in Nordic
Journal of Computing 13, (2006)

[8] Dancanet Denis and Brookes Stephen. Programming language expressiveness and circuit complexity. In: In-
ternational Conference on the Mathematical Foundations of Programming Semantics (1996).

[9] David René. Un algorithme primitif récursif pour la fonction Inf. Compte rendu á l’académie des Sciences 317
(1993).

[10] David René. On the asymptotic behaviour of primitive recursive algorithms. Theoretical Computer Science
266(1-2) (2001) 159–193.

[11] Davis Martin D., Sigal Ron and Weyuker Elaine J. Computability, Complexity and Languages: Fundamentals
of Theoretical Computer Science. Academic Press (2nd edition) (1994).

P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms 17

[12] Dershowitz Nachum and Gurevich Yuri. A Natural Axiomatization of Church’s Thesis Microsoft Research
Technical Report MSR-TR-2007-85, July 2007.

[13] van den Dries Lou. Generating the greatest common divisor, and limitations of primitive recursive algorithms.
Found. Comput. Math. 3 (2003) 297-3224.

[14] Escardo Martin H. On Lazy Natural Numbers with Applications to Computability Theory and Functional
Programming. SIGACT News 24(1) (1993) 60–67.

[15] Fredholm Daniel. Computing Minimum with Primitive Recursion over Lists. Theoretical Computer Science
163(1-2) (1996) 269–276.

[16] Gurevich Yuri. Sequential Abstract State Machines capture sequential algorithms. ACM Trans. Computa-
tional Logic 1(1) (2000) 77–111.

[17] Meyer Albert R. and Ritchie Dennis M. The complexity of loop programs. Proceedings of the ACM 22nd
National Conference, ACM Press (1967) 465–469.

[18] Moschovakis Yannis N. On primitive recursive algorithms and the greatest common divisor function. Theo-
retical Computer Science 301(1-3) (2003) 1–30.

[19] Moschovakis Yannis N. and Paschalis V. Elementary algorithms and their implementations. New Computa-
tional Paradigms, ed. S. B. Cooper, Benedikt Lowe and Andrea Sorbi, Springer, (2008), pp. 81 - 118.

[20] Peter Roza. Recursive Functions. Academic Press (1968).

[21] Roberts Eric S. Loop exits and structured programming: reopening the debate. SIGCSE ’95: Proceedings of
the twenty-sixth SIGCSE technical symposium on Computer science education (1995) 268–272.

[22] Valarcher Pierre. Intensionality vs Extensionality and Primitive Recursion. Proceedings of the Second Asian
Computing Science Conference on Concurrency and Parallelism, Programming, Networking, and Security,
LNCS 1179 (1996) 142–151.

18 P. Andary, B. Patrou, P. Valarcher / A representation theorem for primitive recursive algorithms

A. Stein’s program
x′ := x;
y′ := y;
loop x′ do
if x = y ∨ x = 0 ∨ y = 0 then

res := res ∗ x;
exit;

endif;
if even(x) ∧ even(y) then
x := x/2; y := y/2;
res := res ∗ 2;

endif;
if even(x) ∧ ¬even(y) then
x := x/2;

endif;
if ¬even(x) ∧ even(y) then
y := y/2;

endif;
if ¬even(x) ∧ ¬even(y) ∧ (x > y) then
x := x− y;

endif;
if ¬even(x) ∧ ¬even(y) ∧ (x < y) then
y := y − x;

endif;
endloop;
loop y′ do
if x = y ∨ x = 0 ∨ y = 0 then

res := res ∗ x;
exit;

endif;
if even(x) ∧ even(y) then
x := x/2; y := y/2;
res := res ∗ 2;

endif;
if even(x) ∧ ¬even(y) then
x := x/2;

endif;
if ¬even(x) ∧ even(y) then
y := y/2;

endif;
if ¬even(x) ∧ ¬even(y) ∧ (x > y) then
x := x− y;

endif;
if ¬even(x) ∧ ¬even(y) ∧ (x < y) then
y := y − x;

endif;
endloop;

