
POO 1

 Cours 4

•Héritage

•Classe abstraite

•Interface

POO 2

On définit une classe dérivée à partir d’une classe existante

comme une extension de celle-ci :

super classe, classe de base, classe mère

• la classe dérivée possède toutes variables (attributs) et

 méthodes spécifiques de la classe de base

•les variables privées de la classe de base sont accessibles par

 les méthodes de cette classe

•la classe dérivée peut définir de nouvelles méthodes et

 variables

•la classe dérivée peut redéfinir les variables ou

 les méthodes de la classe de base

Réutiliser une classe existante en l’adaptant et factoriser

le code

POO 3

Définition d’une classe dérivée

class Point
{private int x,y;
public Point(int a, int b){x=a;y=b;}
public void modif(int coef){x=x*coef; y=y*coef;}
public void affiche_pt()
{System.out.println("coordonnees du point :"+x+" "+y);}
}
class Point_Couleur extends Point
{private String couleur;
public Point_Couleur(int a, int b, String c)
{super(a,b); couleur=c;}
public void affiche_pt(){super.affiche_pt();
System.out.println("et sa couleur " +couleur);}
}
public class point_heritage{
public static void main(String args[])
{ Point pt1=new Point (-44,6);
pt1.affiche_pt(); pt1.modif(2); pt1.affiche_pt();
Point_Couleur ptc=new Point_Couleur (3,4,"blue");
ptc.affiche_pt(); ptc.modif(2); ptc.affiche_pt();
}}

POO 4

Variables de la classe de base

class Point
{protected int x,y;
public Point(int a, int b){x=a;y=b;}
public void modif(int coef){x=x*coef; y=y*coef;}
public void affiche_pt()
{System.out.println("coordonnees du point :"+x+" "+y);}
}
class Point_Couleur extends Point
{private String couleur;
public Point_Couleur(int a, int b, String c)
{super(a,b); couleur=c;}
public void affiche_pt(){
System.out.println("coordonnees du point :"+x+" "+y);
System.out.println("et sa couleur " +couleur);}
}
public class point_heritage{
public static void main(String args[])
{ Point pt1=new Point (-44,6);
pt1.affiche_pt(); pt1.modif(2); pt1.affiche_pt();
Point_Couleur ptc=new Point_Couleur (3,4,"blue");
ptc.affiche_pt(); ptc.modif(2); ptc.affiche_pt();
}}

POO 5

•On peut définir plusieurs niveaux d’héritages et

 l’héritage est transitive

•Il peut y avoir une seule classe de base

•Toute classe est dérivée de la classe racine Objet

définie dans java.lang

•On peut interdire qu’une classe soit étendue

final class A{

}

•Tout constructeur autre que la classe Objet fait appel

•soit à un constructeur de sa classe de base (super ())

•soit à un autre constructeur de sa classe (this())

•si il n’y a pas ceci en première ligne, le compilateur ajoute

 super(); en première ligne du constructeur

POO 6

import java.io.*;
class A{
A()
{System.out.println("constructeur de A");}
}
class B extends A {
B()
{System.out.println("constructeur de B");}
B(int a)
{this();System.out.println("autre constructeur de B");}
}
class C extends B{
C()
{super(3);System.out.println("constructeur de C");}
}
public class Tst_const
{public static void main(String args[])
{ C c= new C();}
}

 constructeur de A

 constructeur de B

 autre constructeur de B

 constructeur de C

POO 7

import java.io.*;
class A{
public void affiche()
{System.out.println("je suis un A");}
}
class B extends A {}
class C extends A
{public void affiche()
{System.out.print("je suis un C");}
}
class D extends C{
public void affiche()
{System.out.print("je suis un D");}
}
class E extends B{}
class F extends C {}
public class deriv_heritage
{public static void main(String args[])
{ A a= new A(); a.affiche(); System.out.println();
 B b= new B(); b.affiche(); System.out.println();
 C c= new C(); c.affiche(); System.out.println();
 D d= new D(); d.affiche(); System.out.println();
 E e= new E(); e.affiche(); System.out.println();
 F f= new F(); f.affiche(); System.out.println();}
}

je suis un A

je suis un A

je suis un C

je suis un D

je suis un A

je suis un C

POO 8

Polymorphisme

Le polymorphisme est une notion liée à la redéfinition des méthodes

et la liaison dynamique.

public class deriv_heritage1
{public static void main(String args[]){
 A a= new A(); a.affiche(); System.out.println();
 B b= new B(); b.affiche();
 a=b; a.affiche(); System.out.println();
 C c= new C(); c.affiche();
 a=c; a.affiche(); System.out.println();
 D d= new D(); d.affiche();
 a=d; a.affiche();
 c=d; c.affiche(); System.out.println();
 E e= new E(); e.affiche();
 a=e; a.affiche();
 b=e; b.affiche(); System.out.println();
 F f= new F(); f.affiche();
 a=f; a.affiche();
 c=f; c.affiche(); System.out.println();
 }}

POO 9

class Orateur{
String action(){return "parle";}
}
class Grenouille extends Orateur{
String action(){return "coasse";}
}
class Fourmi extends Orateur{
String action(){return "croonde";}
}
public class Tst_Orateur{
public static void main(String args[]){
Orateur p = new Orateur();
System.out.println("orateur "+ p.action());
Grenouille q= new Grenouille();
System.out.println("grenouille "+ q.action());
p=q; System.out.println("orateur "+ p.action());
Orateur x= new Fourmi();
System.out.println("orateur "+ x.action());}
}

POO 10

Classes Abstraites

•Une méthode abstraite est définie uniquement par son intitulé

sans code

•Une classe abstraite est une classe dont au moins une méthode

 est abstraite

abstract class figure

{protected double long;

abstract void calcul_long();}

•Dans les classes dérivées, la méthode abstraite doit être décrite

POO 11

abstract class Figure{
protected double longueur;
abstract void calcul_long();
}
class Segment extends Figure
{private int xA, yA, xB, yB;
public Segment(int xAp,int yAp,int xBp,int yBp)
{xA=xAp; yA=yAp;xB=xBp; yB=yBp;longueur=0;}

public void calcul_long(){
longueur=Math.sqrt((xB-xA)*(xB-xA)+
(yA-yB)*(yA-yB));
System.out.println("long "+longueur);}
}
class Cercle extends Figure{private int rayon;
public Cercle(int r){rayon=r;longueur=0;}
public void calcul_long(){
longueur=2*3.14*rayon;System.out.println("long "+longueur);}
}public class Figabs{
public static void main(String args[]){
Segment s=new Segment(1,3,4,5);s.calcul_long();

Cercle c=new Cercle(3);c.calcul_long();}}

POO 12

Interface

Une interface est une classe abstraite ayant les caractéristiques

suivants:

•toutes les méthodes sont abstraites et public,

 alors qu’une classe abstraite peut avoir des méthodes non abstraites

•toutes les variables sont static et constantes déclarées par le modificateur

final, alors qu’une classe abstraite peut avoir des variables ordinaires

•toute classe peut hériter d’une seule classe mais elle

 peut hériter de plusieurs interfaces

•une interface peut hériter d’une ou plusieurs interfaces mais

elle ne peut pas hériter d’une classe

•il n’est pas nécessaire d’indiquer abstract pour les méthodes et

static final pour les variables

•une interface définie par le mot interface

• si une classe hérite d’une interface implements

