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Abstract. The paper discusses some possible approaches to measuring security
of timed and probabilistic models of systems. We discuss problems concerning
the leak of information and the resistance of executions of security policies, and
propose quantitative characteristics of security. Algorithmic questions related to the
computation of these characteristics are formulated for finite transition models.
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1. Introduction

This paper is an invitation to discuss some algorithmic questions concerning the analy-
sis of computer system security. We will speak about probabilistic models and to some
amount about time. We are interested in computing quantitative characteristics of sys-
tem security, in particular, the quantity of leaked information or to what amount an en-
forcement of security policy is resistent to possible breaches, e.g., with what minimal
probability of breaking a forbidden access the loss is over a given bound.

One can distinguish two aspects in this set of questions: the first one, that has been
just mentioned above, is that of analysis of a given system, and the second one is that of
synthesis of a system with given characteristics. We dwell upon the first question. The
second one will be only mentioned.

The security is very probabilistic in its nature, and evolves in time rather rapidly.
Thus, involving probability and time into models seems necessary, especially when we
wish to ‘measure’ the security. Notice that it is a usual demand of security management
[1,2] to assess and estimate risk, and it implies implicitly or explicitly to say something
about probabilities and time.

The main objection against probabilities in our context is that we do not know them.
I would say, more precisely, we do not know them exactly. Moreover, usually we do not
have enough experimental observations that would suffice to evaluate probability distri-
butions on the basis of the theory of statistics. Our situation is quite different, from this
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point of view, from the analysis of signal transmission where we often have stationary
processes, and long series of observations are available. However, one can notice that
probabilistic and timed models can be very useful if we have reasonable approximate
ideas about probability and time, and this is the case when we have a sufficient experi-
ence in the domain.

If our probabilistic model is supplied with efficient procedures to compute security
characteristics formulated in probabilistic terms, we can use simulation with different
plausible distributions. And these simulations will give us a good material for practical
conclusions. Similar for time. Moreover, if our model is supplied with efficient algo-
rithms that can treat parametric descriptions of time and probability values, this may give
an ‘ideal’ result: a domain of probability distributions and time parameters for which our
model satisfies the desired properties.

The paper consists of two sections. Section 2 discusses a definition of quantity of
information leak based on the classical notion of information. This way of exploring in-
formation flow is well known. It goes back at least to the early eighties (e.g., [3]). Later
this approach was retaken again in papers [4,5] just to mention some. We consider in-
formation leakswith respect to a given propertyand concentrate onalgorithmic aspects
of its estimation. A comparison and a general framework of notions related to informa-
tion flow security, not only probabilistic, can be found in insightful [6] that also gives a
good list of bibliography related to the subject. The straightforward way presented here
is too abstract and more simplistic as compared to [6]. However, it gives hope to develop
efficient algorithms for the quantitative evaluation of security via simulation.

The approach we describe is based on abstract transition systems that has known
limits as a tool of modeling. The problem of computing the information leak is discussed
only for finite state transition systems. Even for this case many questions remain open.
Then we briefly discuss a complexity based approach. This approach may model other
aspects of information leak, theoretically closely related to the classical notion of infor-
mation. On the one hand, it seems harder to develop productive models within this com-
plexity based approach. On the other hand, such models may prove to be more adequate
to the reality.

Section 3 discusses a way to characterize theresistanceof security policy executions
against violations of access. As above, the model we introduce is simple, and computa-
tional questions are discussed only for finite state transition models. The model we con-
sider has some flavor of attack graphs (e.g., see [7]), however it is more sophisticated
and permits to elaborate models of various aspects of policy evaluation. The problem of
resistance rises two questions, that of analysis of a given system, and that of a synthesis
of a system with a given resistance. The question of synthesis of a system with a given
resistance is just mentioned.

As the paper is an invitation to discussion, it only outlines conceptual difficulties of
constructing feasible and useful models.

References to the literature are reduced to minimum. There may be very relevant
papers that I missed.

2. Measuring Information Leak

Consider a simple abstract state model of information flow (see, e.g., [8]). AsystemS is
defined as a subset of the set oftraces(finite and infinite words) over a vocabularyV . We
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assume thatV consists of 2 disjoint sub-vocabulariesL andH that will be referred to
aslow level eventsandhigh level eventsrespectively. Elements ofL andH will be also
calledL-events andH-events respectively. For technical reason we suppose that a finite
trace terminates in a special character that prevents further continuations of this trace.

A propertyP is a subset of traces ofS (for which it is true).
We are interested in hiding a propertyP over traces from low level observations.

2.1. Entropy of a Property over a Probabilistic System

Suppose there is an observer who knows the system, knows the property and observes
low level events. More precisely, ifτ ∈ S then the observer sees the‘projection’ τ

L
of

τ ontoL (there is more than one possibility to define ‘projection’; we discuss it later).
How this observation augments the observer’s information aboutP(τ)? How to measure
this information? To answer to this question we need a notion of information.

The classical information theory defines the information in a probabilistic manner.
We recall it in order to be self-contained. Letξ andη be 2 random variables with a finite
number of values, defined on 2 respective probabilistic spaces. Denote byk andl their
respective numbers of values, by{pi}1≤i≤k and{qj}1≤j≤l their probability distribu-
tions, and by{rij} their joint distribution (defined on the product of their probabilistic
spaces). The quantity of information inξ relative toη is given by the formula

I(ξ η) =
k∑

i=1

l∑

j=1

rij log
rij

piqj
. (1)

(Here all logarithms are to base 2.) A simpler version suffices for us as we consider
only one distribution over traces ofS. This simpler version isH(ξ) = I(ξ, ξ) that is the
entropyof ξ:

H(ξ) = −
k∑

i=1

pi log pi, (2)

(ask = l, pi = qi, rii = pi andrij = 0 for i 6= j).
The entropy is a measure of uncertainty: the less we know about a random variable,

the higher is the entropy of this variable. Consider an example in Table 1.

Table 1. Table

Distribution Pr(00) Pr(01) Pr(10) Pr(11) Entropy

A 1
4

1
4

1
4

1
4

2

B 7
8

1
24

1
24

1
24

≈ 0.77

C 1 0 0 0 0

In this example we have a random variable with 4 values00, 01, 10, 11. Table 1
shows 3 different probabilistic distributions A, B, C. We calculate their entropy according
to formula (2):
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for A: −(1/4log1/4 + 1/4log1/4 + 1/4log1/4 + 1/4log1/4) = 2,
for B: −(7/8log7/8 + 3(1/24log1/24)) ≈ 0.75,
for C: −(1 log 1 + 0 log 0 + 0 log 0 + 0 log 0) = 0 (we assume that0 log 0 = 0).
Distribution A in Table 1 is a uniform distribution. Imagine we observe this ran-

dom variable. In a sampling its value appears with probability1
4 . A priory we have no

possibility to guess what will be this value. This is the maximal uncertainty, and when
we see the value we get 2 bits of information. Distribution C of Table 1 is a trivial one
where the value00 appears with probability1. In this case we know a priory that we will
see this value, and thus when it appears we get no information. An intermediate case is
shown by distribution B. It is harder to interpret the value of entropy in terms of bits in
our context, but clearly, it measures the information and can be used to compare different
distributions.

The classical information theory was motivated by the analysis of information trans-
mission via non reliable channels. In the world of information transmission one deals
usually with stationary processes, and one can have long series of observations. These
data permit to really estimate probabilities on the basis of statistics, and thus, to model
the reliability of channels. In the world of computing, the processes we deal with, are
usually not stationary, and we do not have opportunity for sufficiently long sampling
(however, one can see that the behavior of sufficiently large intensively used networks
shows more and more signs of ’foreseeable behavior’). In spite of all this argumentation,
we may use probabilistic models along the lines mentioned in Introduction (section1):
either to take some plausible probability distributions, simulate the behavior and make a
conclusion, or to consider parametric probabilities and to try to compute the domains of
their values for which the system verifies the requirements.

Suppose that we have a probabilistic distribution over traces constitutingS. More-
over, we assume that the sets we will consider are measurable in our probability space.
This question demands an attention, but we do not address it. For our simplest mod-
els it is easy to ensure the measurability. The distribution overS defines the entropy of
propertyP:

H(P) = −(
p log p + (1− p) log(1− p)

)
, (3)

where p = Pr{P S} = Pr{τ ∈ S : P(τ)}. (In this notationP is considered as a
random variable overS with distributionPr.)

One can easily see that the behavior of the functionϕ(p) = −(p log p + (1 −
p) log(1 − p)) on [0, 1] is similar to the behavior of the indistinguishability function
ψ(p) = 1 − |(1 − p) − p| = 1 − |1 − 2p|, namely,ϕ(0) = ψ(0) = ϕ(1) = ψ(1) = 0,
the both monotonically increase on[0, 1

2 ], have their maximum atp = 1
2 , where

ϕ(1
2 ) = ψ( 1

2 ) = 1, and monotonically decrease on[ 12 , 1].
Below we will deal with probabilities of properties, thus with random variables with

two values. The just made remark says that if we can calculate the probability of the
property then we can calculate its entropy, and thus can quantitatively evaluate the infor-
mation.

2.2. A Measure of Quantity of Information leak

Now we are in position to introduce a measure of information leak. We have a system
S with a probability distribution over the set of its traces and a propertyP over traces.
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One can consider two types of projections of traces on low level events: without time and
with time. “With time” may mean, for example, that we do not see the high level events
but we can measure the time duration of these events.

Consider the first case. In this case the projection of a high level trace ontoL is
obtained by deleting characters ofH from the trace.

To define our measure of information leak we introduce notations:

(Timeless projection) Denote byw
L

, wherew ∈ V , the just mentioned projection ofw

ontoL, i.e., the word obtained fromw by deleting letters that are not inL.
(Property traces) SP=df {τ ∈ S : P(τ)}.
(Probability of the property) Recall the notation introduced in (3)

p = Pr{P} = Pr{SP}.
(Pre-image of an observation) B(λ)=df {τ ∈ S : τ

L
= λ}.

(Local observational probability) The conditional probability to have the propertyP
when observing a low level eventλ ∈ S

L
=df {λ ∈ L∗ : ∃ τ ∈ S (τ

L
= λ)}:

pλ=df Pr{P λ} =
Pr{τ ∈ B(λ) : P(τ)}

Pr{B(λ)} . (4)

(To avoid technical problems, we suppose thatPr{B(λ)} is always positive.)
(Minimum and maximum of local observational probabilities)

pmin=df inf{pλ : λ ∈ S
L
}, pmax=df sup{pλ : λ ∈ S

L
}. (5)

(Information leak in terms of probability: indistinguishability)

max{|p− pmin|, |p− pmax|}. (6)

(Information leak in terms of entropy: acquired information)

sup
λ∈S

L

{|H(P)− I(P λ)|}. (7)

This formula (7) can be rewritten in terms ofPr and Boolean operations overSP
andB(λ).

¤

2.3. Computing Information Leak for Finite State Transition Models

In the general setting not only computability but even correctness of the definitions above
is not evident as we can meet non measurable sets. Consider models where everything is
represented by finite transition systems, moreover, where the traces are finite. We assume
that in our setting the measurability is ensured for all the events that appears. Even this
case is not simple to analyze, and we only sketch some possibilities to go on, and diffi-
culties that we meet. The case of infinite traces in the same framework of finite transition
systems can be studies along similar lines.
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As a systemS we take a Markov chain with transitions labeled by letters ofV .
This chain has an absorbtion state that indicates the end of a trace. A propertyP is
represented by a deterministic finite automaton. The set of traces ofS for which P is
true can be represented in terms of a product of these two finite transition systems. If we
make a product, each transition will be labeled by a pair of letters and by a probability.
We leave only pairs with coinciding letters. To normalize probabilities for a given state
we introduce a ‘trap’ state — an absorbing state where the process goes to with the
probability that complements to1 the sum of probabilities of the kept transitions. Denote
the obtained systemSP.

Thus, we can computep defined in (3) as the probability to reach appropriately
defined final states ofSP.

Along similar lines one can computepλ defined by (4).
To compute the leak (6) we needpmin andpmax (5). I do not know how to calculate

these values exactly in the general case. Consider particular cases.

All B(λ) has the same probability.In this case we can take into account onlyp̃(λ) =
Pr{τ ∈ B(λ) : P(τ)}. Replace inSP all high level labels by a new letter, say>. Denote
the obtained systemSP>. We look atSP> as at a Markov Decision Process (MDP) with
actions (decisions) defined by labels, i.e., by letters of(L∪{>}). Minimal and maximal
policies are Markov policies. Such a policy gives for each state the same action to execute
independently of the previous ones. An action is a letter of(L ∪ {>}). A sequences of
actions gives a word whose projection ontoL represent a low level observation. However
a minimal or maximal policy does not give a concrete word in general as it describes a
limit behavior. It is well known that one can efficiently (with the complexity of general
linear programming that is polytime) computẽpmin and p̃max, as well as a minimal
and maximal policy (the total number of such policies can be exponential in the worst
theoretical case).

‘Small’ number of different probabilities of B(λ). Suppose that the setS
L

of low level

observations of traces ofS is divided intoν classesSLi such that allλ from a same
class have the same probability ofB(λ) and each

⋃
λ∈SLi

B(λ) can be represented by
a finite transition system. We can apply the construction of the previous caseν times to
find pmin(λ) andpmin(λ).

Computing pmin(λ) and pmax(λ) for Markov policies. I do not know whether Markov
policies are sufficient to computepmin(λ) andpmax(λ) in the general case. It is evident
that for Markov policies the values under discussion are computable because there are
only finite number of Markov policies, more precisely, the upper bound is the number of
states powered by the number of possible actions.

Computing approximate values ofpmin(λ) andpmax(λ). If in the general case there is
no maximal or minimal Markov policy to computepmin(λ) andpmax(λ), then one can
try to calculate them approximately. Il is feasible, for example on the basis of a technique
of linear inequalities similar to the technique that is used to describe maximal strategies.
The problem is to arrive at a reasonable complexity (this study is a work in progress).

Coming back to the first case, when allB(λ) have the same probability, we see
the following advantage dealing only with Markov policies. The valuespmin(λ) and
pmax(λ) are defined by some linear programming problem. This means that their calcu-
lation can be reduced to solving a system of linear inequalities. We can treat them sym-
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bolically. In particular we can put in this system symbolic or, in other words, parametric
probabilities. A question of practical interest is to describe the domain of probabilities
for which the leak is smaller than a givenε. This question can be described, even with
ε as parameter, as a formula of Tarski algebra. A quantifier elimination procedure gives
a quantifier free description of admissible values of parameters. This description is of
practical value — see Introduction.

Adding time. One model with a timed flavor is a model where projection of a high level
event keeps a trace of this high level event as a new symbol, sayι. The symbolι is the
same for allH-events. Projection ofτ ∈ S is obtained fromτ by replacing each letter
of H by ι. In fact, this is a rather informative model as it permits to count the number of
H-events. From computational viewpoint one finds a setting similar to the timeless one
discussed above. One may argue that the possibility to count high level events is a too
strong possibility.

Another way, that seems more adequate, is to take into account the duration of events
as an observable value. To represent the duration of events we attribute to each eventv
an interval of timeσv = [σl

v, σr
v]. If time is discrete we can eliminate it by introducing

intermediate states because the number of events is finite. However, if the intervals are
long, such an elimination augments the complexity too much. One can imagine other
ways to represent time abstractions in timeless models. For example, all durations are
partitioned into a finite number of classes, and we introduce for each class a special letter
to refer to it. But it is not a metric time that permits to speak about time distances and to
manipulate them.

If we use continuous time, this brings us to a domain whose computational com-
plexity has not been sufficiently studied as far as I know. However, continuous time is
adequate and it looks feasible.

Suppose that time is interpreted asR≥0. Ascribe to each event an interval of contin-
uous time. Formally we speak about real valued time. But the concrete values that we
can deal with, depend on admitted constants and arithmetical operations. If the constants
are rational numbers, and as operations we have addition and unary multiplications by
rational numbers, we are in the theory of real addition and deal only with rational num-
bers. If we admit binary multiplication, we are in the theory of real addition and multipli-
cation (Tarski algebra), and deal with algebraic numbers. Some interesting probabilistic
distributions involve exponential function; in this case we may confront a theory whose
decidability is a hard open question.

Suppose that, as before, we deal with finite transition systems. In a probabilistic
model each states has a stationary probability densitypv(s, s′, x) to go to states′ at
relative timex, wherev is the event labeling the transition(s, s′). “Relative” means the
following. If the system is ins at an instantt0 then with probability densitypv(s, s′, x)
the system passes tos′ at instant(t0 +x) for x ∈ σv. Thus, the probability to arrive from
s to s′ via this transition by time instantt1 ∈ (t0 + σv) is

∫ T

0
pv(s, s′, t)dt, whereT =

t1 − σl
v. Formally speaking the intervalσv is irrelevant as it means thatpv(s, s′, x) = 0

for x /∈ σv, however it is important for calculations. For example, if we know that allσv

are separated from zero and are finite (i.e.,0 < σl
v ≤ σr

v < ∞), we have at least some
decidability that is not evident otherwise. In particular, with such a separation we have
no Zeno paths. In the finite automata representation of systems that we used above, each
transition(s, s′) has only one labelv, so the subscriptv of pv is redundant in this case.
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A system just described above defines a stochastic process (if the measurability is
ensured, that we suppose). In the simplest case, when the probability of transition de-
pends only on the state (and not on time) we get a continuous time Markov chain. This
notion is too restrictive in our context as in this case we arrive at some kind of Poisson
distribution. A larger class that is of interest in our context is the class of semi-Markov
processes. Recall that a stochastic processX(t) with finite or enumerable set of states is
semi-Markov if it has stepwise trajectories such that each sequence of jumps defines a
Markov chain. More precisely, for some probability distributionFij(x) if the jumps are
at instants0 < t1 < t2 < . . . then

Pr{tn − tn−1 ≤ x ∧ X(tn) = j X(tn−1) = i} = pij · Fij(x),

wherepij = Pr{X(tn) = j X(tn−1) = i}.
These kind of processes, their generalizations and the respective decision processes

were studied from computational viewpoint (e.g., [9,10,11]), however many questions
related to computational complexity in our context remain open.

2.4. Complexity Based Approach to Measuring Information Leak.

Another way to model the quantity of information can be based on a notion of epsilon-
entropy of compact spaces introduced by Kolmogorov ([12]). This notion is related to
partition based view on entropy, and thus to the classical one (e.g., see [13]). We outline
an inference complexity approach based on the notion of entropy from [14,15] that was
inspired by epsilon-entropy and has also a flavor of Kolmogorov complexity [16].

The inference complexity is defined with respect to an inference system that is as-
sumed to be of very general nature: an inference rule transforms a proof into another
proof. LetF be such an inference system. A proof is a list of formulas that are marked
as assumptions and conclusions. Each conclusion contains information of its origin. A
proof inF will be also calledF-proof.

The length of a wordW is denoted by|W |. For a finite setE of words,|E| denotes
the sum of the lengths of the elements ofE. If S is a set of algorithms then we mean that
its elements are represented as words, and we treat|S| according to this representation.

By Assump(L) andConcl(L) we denote respectively the set of formulas of a listL
marked as assumptions and the set of formulas ofL marked as conclusions. These sets
may intersect, for example, an axiom may be marked as assumption and conclusion; this
gives a zero-length proof of the axiom. And as a measure of size of a proof we will use
lc(L) = |Concl(L)\Assump(L)|.

Let Φ andΓ be finite sets of formulas. Denote byProofsS(Φ | Γ) the set of all
F-proofsD such thatΦ ⊆ Concl(D) andAssump(D) ⊆ Γ.

A set of formulas or a formulaΦ is provable inF or F-provablefrom formulas
(assumptions)Γ if ProofsF (Φ |Γ) 6=∅, andΦ isF-provableif it is provable with empty
Γ.

The principal notion for the setting under consideration isproof complexityof a set
of formulasΦ under assumptionsΓ:

dF (Φ |Γ) = min{lc(D) : D ∈ ProofsF (Φ | Γ)}, dF (Φ) = dF (Φ | ∅).
Here we assume thatmin ∅ = ∞.

The functiondF can be treated as a one-directional metrics; a simple symmetrization
like dF (Φ |Ψ) + dF (Ψ |Φ) gives a genuinemetricson the set of finite sets of formu-
las. One can see thatdF is a generalization of known characteristics of complexity. An
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appropriate choice ofF can give, for example, time complexity as well as Kolmogorov
complexity.

One can prove the following properties ofdF :
dF (Φ |Γ) = 0, dF (Φ |Φ) = 0,
Φ ⊆ Ψ ⇒ dF (Φ |Γ) ≤ dF (Ψ |Γ), Γ ⊆ ∆ ⇒ dF (Φ |Γ) ≥ dF (Φ |∆),
max{dF (Φ |Γ), dF (Ψ |Γ)} ≤ dF (Φ ∪Ψ |Γ) ≤ dF (Φ |Γ) + dF (Ψ |Γ).

Entropy of a Set of Formulas.We assume that a reasonable notion ofinconsistencyof
an inference system is introduced. Two inference systems areconsistentif their union is
consistent. Since any formula can be treated as an inference rule, i.e. as an axiom, these
notions can be extended to sets of formulas (seen as inference systems).

Let Φ be a finite set of formulas,S andV be inference systems, andξ be a natural
number. The notion of entropy introduced below has a flavor similar to the notion of
epsilon-entropy of compact metric spaces:

entrF (Φ |V, ξ) = min{|U | : U is consistent with F and ∀F ∈ Φ (dV ∪U (F ) ≤ ξ)},
entrF (Φ, ξ) = entrF (Φ |∅, ξ).
(To be coherent with classical notions one should takelog of entrF ; however, it is not
clear a priory what normalization to choose as the situation is different from those where
the classical notions of entropy are used.)

One can prove that the entropy is not decreasing inΦ, not increasing inV and semi-
additive inΦ.

A systemF is said to beoptimal for Φ and a givenξ if entrF (Φ | F , ξ) = 0 and
entrF (Φ, ξ) = |F|.

To compare this notion of entropy with the traditional one we normalize it:

HF =
entrF (Φ, ξ)

card(Φ)
, wherecard(Φ) is the number of elements ofΦ.

Take as en example a random predicateP over {0, 1}n. As Φ we take the set
{P (w) = β}w∈{0,1}n whose cardinality is2n. It can be represented by a word̂P of
length2n over{0, 1}. This representation can be considered as a formal system: given a
word w ∈ {0, 1}n we apply a rule that calculates its place in̂P , and this gives a proof
for P (w) = β, whereβ is the valueP (w). And this formal system is optimal (or almost
optimal if we permit very powerful algorithmic rules). The length of a proof in this sys-
tem can be evaluated asO(1) or even1. For the appropriateξ (the just mentioned length
of proof) we haveHF (Φ, ξ) = 1 that corresponds to the classical entropy of a random
predicate.

This example shows that the dependence ofH on F may be very weak. It is not
very instructive as in our context we never deal with random predicates. In fact, the
example uses ‘almost’ Kolmogorov complexity. If we admit as inference rules any total
algorithms, and do not care about computational complexity of such rules, then we arrive
at Kolmogorov complexity. But this complexity is hard to evaluate for the predicates we
are interested in.

A way that seems productive is to measure the introduced complexity in a simple
inference system that formalizes our intuition of “to be similar to”. An example is editing
distance with respect to one-character transformations. Letξ be fixed. Suppose that we
have chosen among all traces of our system a finite subsetE . Intuitively, this subset
approximately represents the patterns of behavior we are interested in. We say this subset
E is ξ-network for propertyP, if for eachτ ∈ S there exists a patternτ0 ∈ E at a distance
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not greater thanξ from τ such thatP(τ) ≈ P(τ0). Here≈may mean= or equality with
some probability. If such a network is smaller for aB(λ) than for the entireS then we
have an information leak that can be measured on the basis of comparison of the sizes of
the networks (better of theirlog’s).

The just described framework is ‘less’ abstract than the previous one. In the first
framework the only way of extracting information is ‘guessing’. In the second model one
may hope to ‘deduce’ something. Though theoretically this deduction is not an advan-
tage, practically, it could be better as it is easier extendable with additional knowledge.
To go on in this direction the notion of trace should be concretized according to a partic-
ular application: information flow in programs (e.g, [17,18,19]), intrusion detection etc.;
a survey of language related motivation can be found, e.g., in [20]).

3. Evaluating Resistance of Security Policy Executions

We are interested in the behavior of an access control security policy in a system. This
is not the question about description and enforcement of this or that type of security
policies. In some way we will consider a product of a policy and a system, and will
call this product a system, and will try to avoid the word “policy”. Notice that treating
access largely, one can model in a similar manner the behavior of not only access control
policies, but, for example, information flow control policies.

3.1. A Model of Policy Execution

Models we consider are based on abstract transition systems, though slightly less abstract
than in the previous section.

The class of systems we introduce is defined overuniversesof:
• ComponentsC; this universe consists of finite sets with relation∈. A component

may contain other components, the latter again may contain components and so on. How-
ever, each component is finite and well founded, i.e, the tree of inclusions∈ is finite.

• StatesS of components. A state is not atomic, and contains accesses as described
below. It is a part of global state (see below).

• InputsX; inputs are introduced just to make the systems open, and as a way to
resolve non determinism.

• ActionsA; actions model implementations of accesses, their types are concretized
below.

As variables for the elements of the introduced universes we will use the following
letters with indices:c for C, s for S, x for X andα for A.

A component models, for example, a computer or an account or a set of services or
a set of files etc. A component may have sub-components of similar nature. For exam-
ple, an administrator manages users’ accounts, programs and files. The files may have
different rules of access for different users. A user may manage accesses of other users.
And so on. We do not assume that components are disjoint, two components may have
common sub-components.

An important element of the model isaction. An action implements an access that
may change other accesses and states.

An action has one of three types: either
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(C×S× X)× (C×S) → S×S

that signifies thatα acts from a componentc1 in a states1 with an inputx onto a com-
ponentc2 in a states2 and changes the states of these components:
α(c1, s1, x, c2, s2) = (s′1, s

′
2), or

(C×S× X)× (C×S) → S

that signifies thatα acts from a componentc1 in a states1 with an inputx onto a com-
ponentc2 in a states2, changes the state ofc1 and deletesc2, or

C×S× X → S× (C×S)
that signifies thatα acts from a componentc1 in a states1 with an inputx, changes the
state ofc1 and creates a componentc2 in a states2.

An action of the first two types may be reflexive, i.e., may act from a component
onto itself.

At this high level of abstraction we introduce three actions: state change, append a
component and delete a component. However, at lower levels of abstraction we may wish
to have a more diverse variety of actions, taking into account inputs, reading files, writing
to files, executing programs etc. Even at the present level of abstraction we structure the
states.

The states of a componentc contains a set of accesses that is denoted by
Access(c, s). An element ofAccess(c, s) is a tuple(c′, s′, α′) that means that compo-
nentc in states is permitted to apply an actionα′ to a componentc′ whose state iss′, in
particularc′ may be a new component. We presume here that the permission is valid for
any input. We may introduce input as one more parameter ofAccess. However, we will
refer to inputs in another way, as indicated below.

There can be various modes of execution of a system. We consider a simple one. Ba-
sically, atransitionfrom one global state (see just below) to another one is determined by
an action executed locally. This notion of transition is similar to the notion of transition
in asynchronous distributed systems.

A global stateg of S is represented by a set of componentsC ⊆ C and a mapping
state : C → S that attributes a state to each component. We assume that there is a
function (the same for all systems)act that indicates for givenc, s andx what element of
Access(c, s) to execute. Moreover, we limit ourselves to inputs attributed to components.
This permits to avoid non determinism (for simplicity). So we suppose that an input
arrives as a sequence of pairs(ci, xi) with ci ∈ C andxi ∈ X. An input is processed
sequentially, and a pair(ci, xi) says that the system makes transition by applying an
actionact(ci, state(ci), xi) from ci. One may need to consider more complicated inputs,
like involving also states, not ordered or permitting simultaneous actions etc.

A run of a system from an initial global stateg0 with the set of componentsC0 is
determined by an input. The first element(c0, x0) of the input says what action to apply
to C0. This application carries the system into a stateg1. Then the next element of the
input transformsg1 into g2 and so on.

We presumedependenciesbetween accesses. That means that certain accesses imply
others. A traditional dependency is transitivity: if(c0, s0) has an access to(c1, s1) via an
actionα, et(c1, s1) has an access to(c2, s2) via the same action then(c0, s0) has access
to (c2, s2) via α. However, this derivative access can be not given explicitly in the sys-
tem. We suppose that there are dependencies between accesses, for example transitivity,
inheritance of access and maybe other dependencies — we suppose that they are easy
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to verify. To formulate some questions of synthesis of policies one needs to distinguish
between dependencies inherent to the systems and dependencies defined by the policy.
For the analysis of the resistance the nature of dependencies is not so relevant.

To compare the ‘power of access’ of systems we need some notions. We speak about
systems over the same set of universes.

A global stateg1 with state mappingstate1 is said toincludeg0 with state mapping
state0 if each component ofg0 is a component ofg1, and for each componentc0 of g0

we havestate0(c) = state1(c), Access(c0, state0(c0)) ⊆ Access(c1, state1(c1)).
A systemS1 in stateg1 is anextensionof a systemS0 in stateg0 if g1 includesg0.
The behavior of a systemS1 from a stateg1 is anextension of the behaviorof a

systemS0 from a stateg0, if for any runρ0 of S0 from g0 there is a runρ1 of S1 from g1

that preserves the extension of states, i.e., thekth stateρ0(k) of ρ0 is included in thekth
stateρ1(k) of ρ1.

A systemS1 is anextensionof S0 if for any stateg0 of S0 there is a stateg1 of S1

such that the behavior ofS1 from this state is an extension of the behavior ofS0 from g0.
Two systems areequivalentif each one is an extension of the other.
Suppose that we have two systemsS0 andS1, andS1 is an extension ofS0. Suppose

that their initial states are respectivelyg0 andg1, andg0 is included intog1. Compare the
behaviors of these systems for a given inputX. From the fact thatact is universal, i.e.,
does not depend on the system, we conclude that while the run ofS0 is defined, the run
of S1 will be also defined and will consist of the same actions.

In addition to a description of a system we suppose that arequirementis also given.
The requirement specifies what accesses should bepermittedand what should beforbid-
denfor all executions of the system.

With respect to given requirements, that may also specify what components must
be present in the system, we look for a minimal system that verifies these requirements.
This minimality means that the amount of accesses should be minimal to meet the re-
quirements. This can be formulated in terms of the notion of extension introduced above:
a systemS0 is minimalfor a given requirement if there is no other systemS that satisfies
the requirement and for whichS0 is an extension.

Thus, we arrive at a question ofminimizationof a given system that preserves the
requirements. To be minimal is important for the security; intuitively, the smaller is the
system, the better is its resistance against possible security breaches.

3.2. Resistance to security breaches

It is hard to estimate risks and vulnerabilities. It is simpler to estimate losses from con-
crete security breaches (as we mentioned in Introduction, all these estimations are de-
manded by the methodologies of security management).

Suppose that a function∆ of lossesis given. This function (with rational non nega-
tive) number values is defined over permitted and forbidden accesses. A loss for a forbid-
den access signifies a loss implied by breaching this prohibition. A loss for a permitted
access means a loss implied by blocking this access.

One can represent a system as a graph, for example, in the following way. Each
component is a vertex. Sub-components of a given component are connected to it by
‘inclusion’ arcs. Accesses are presented by ‘access’ arcs. Each access arc is labeled by
an access. So there may be many access arcs between two components. The requirement
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defines also ‘no-access’ arcs, i.e., forbidden accesses, that are labeled in a way similar to
the labeling of access arcs.

The function∆ is defined over access and no-access arcs. A gain of a forbidden
access may imply, via dependencies, other forbidden accesses that increase the total loss.
Similar for the accesses that are blocked, blocking an access may imply blocking some
other ones.

Consider a systemS that is determined by a setS0 of initial states and a setX0

of inputs. Suppose that the system is consistent, i.e., satisfies the requirement which
presumes, in particular, that there never appear contradictions between permitted and
prohibited accesses.

Suppose that for each state there is given a distribution of probabilities of violat-
ing permissions or prohibitions. We call such a distributionB-distribution(B stands for
Breach). It is easy to calculate the expected loss for a given state.

There another interesting problem for a given state. Suppose we partially ordered the
B-distributions. So we can speak about minimal B-distribution that implies a loss greater
than some given boundΛ. Such distributions characterizeΛ-resistanceof a given state.
More precisely, a state isΛ-resistant for a given B-distribution if the expected loss is not
greater thanΛ.

What we are more interested in is theΛ-resistanceof the system. This means that
given a B-distribution for each state, whether all the states that can appear in executions
of S areΛ-resistant. Even if B-distributions are described in a simple finite manner, this
question is undecidable for general systems, even for rather simple systems that can grow
up (one can follow the lines of the undecidability proof from [21]). However, the proofs
of undecidability we know, are irrelevant to the computational reality, and thus, it is more
productive to look for what is decidable.

The first question about resistance, that is feasible, is about systems that do not grow,
and that are described by finite transition systems. Suppose for simplicity that there is
only one finite initial stateS0, and that the set of inputsX0 of S is described by a finite
automaton. The set of actions is supposed to be finite and fixed. In this case the set of
states that can appear is finite. Thus, if a given B-distribution is stationary, i.e., does not
depend on time, thenΛ-resistance is computable. Similar for the inverse problem: what
minimal B-distribution implies nonΛ-resistance. But what is the complexity of solving
these problems?

In practice the probability of breaching the security increases with time. In our model
this means that the B-distribution evolves in time. For simply defined evolutions, e.g.,
for evolutions where the probabilities grow up with a constant speed, how to calculate
the time interval whereS remainsΛ-resistant? Again this is a question of complexity
of solving this problem if the probability evolution can be described by polynomials. If
exponents appear it depends on particular features as we may not know the decidability
of theories with exponential functions that may appear.

One can make the same framework more probabilistic. Suppose that a probability
distribution over inputs is given. For the model under discussion that may mean that the
inputs are defined by a Markov chain for a timeless case or by a stochastic process like
semi-Markov process for continuous time.
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In any case an interesting question is how to construct a ‘most dangerous’ behavior
or to describe all such behaviors.

Growing systems.For growing up systems almost all interesting questions become un-
decidable in the general case. Thus, to be able to analyze systems with growing number
of components we have to impose realistic constraints on the type of this growth to avoid
the undecidability.

Growing practical systems possess this or that self-similarity. If a local vulnerable
configuration, i.e., a configuration with a positive probability of security breach, can have
a growing number of occurrences then clearly the loss will surpass any given bound.
The time of arrival of this situation may be harder, and more interesting, to estimate.
It depends on the propagation of losses in the states that may appear. If for one given
breach the propagation is bounded, then the resistance depends on how this propagation
may interact with other ones. At this point one can see that we touch the question of
resistance of various architectures of existing systems.

Other criteria of resistance may be of interest. For example, the expected loss nor-
malized by the size of the system. This question is also open.

Conclusion.

We have outlined simple models of quantitative estimation of some security character-
istics of a given system. This framework is centered on algorithmic questions of decid-
ability and complexity of computing these security characteristics. The question how to
model evolving systems in a reasonable setting, that can be supported by efficient algo-
rithms of analysis of security, remains open.

The question of synthesis a system with given properties is of evident interest also.
For the model of security policy execution it means the following. Suppose we have a set
of actions, a set of dependencies and a function of losses. We wish to construct a system
with a given set of components and a given set of inputs that isΛ-resistant for a given
B-distribution of probabilities of violation of accesses (better, resistant for a given class
of B-distributions).
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