
On Entropy in Computations

Anatol Slissenko
Laboratory for Algorithmics, Complexity and Logic

Université Paris-Est Créteil (UPEC), France

e-mail: slissenko@u-pec.fr

ABSTRACT
This is an attempt to grope for quantitative measures
of information structure of runs of algorithms. The
prospective goal, likely long-term, is on the one hand,
to introduce smoothness and information convergence
or information capacity of algorithms with the hope to
prove lower bounds on complexity for such algorithms
(all practical algorithms intuitively look smooth), and
on the other hand, to try to find new ideas for design-
ing efficient algorithms. I start with adapting classical
notions of epsilon-entropy of compacts and probabilis-
tic entropy. Though they are not sufficient to reach the
goal, they give some ideas how to go further.

Keywords Algorithm, computation, metrics, entropy,
information convergence

1. INTRODUCTION

Many concepts widely used in computer science come
from mathematics of the pre-computer era. The most
famous examples are: logical theory and algorithm
(lambda-calculus, recursive function, Turing machine).
In hindsight, they played a very important role in the
development of theoretical computer science with well
visible impact on applications. They stimulated the de-
velopment of more adequate notions like Boolean circuit
and RAM (Random Access Machine), and hence the
computational complexity and algorithmics. However,
all the mentioned concepts are too wide, and traditional
complexity theory is inadequate to the realistic com-
putations. For example, polynomial time (even linear
time) is not practical feasibility, and negative algorith-
mic results (with the existing proofs) say almost nothing
relevant to realistic computations (see my remarks on
http://lacl.u-pec.fr//slissenko/Miscellaneous/).

Notice that modern mathematics does not study ar-
bitrary functions, nor arbitrary continuous functions,
nor even arbitrary smooth functions. It studies partic-
ular, always rather smooth, manifolds on which often,
though not always, acts a group with some nice prop-
erties. An algorithm is not only a function, from the
viewpoint of practical computation or from the view-
point of computational complexity, it is rather a set of
runs. This analogy and the geometric nature of many
of our intuitive perceptions motivates this attempt to
find geometric structure in computations (and later, I
hope, in problems).

Measuring similarity between traces (a trace is a con-
cise representation of run as a sequence of events, i.e.,
of executions of single commands) is the first issue ad-
dressed below. As for information convergence, a more

or less traditional approach is discussed. It remains not
clear whether one can well relate the introduced notions
of the flavor of epsilon-entropy [1] and of probabilistic
entropy (the situation under consideration is determin-
istic, so probabilistic treatment is purely technical).

This paper presents: (1) A metric over traces and
a measure of global similarity of traces. (2) A notion
of information convergence of algorithms. (3) Some
very preliminary considerations on measuring structural
complexity of some problems.

The notions (1) are intended to approach a formal-
ization of smoothness of algorithms. Those (2) may
help to make the just mentioned ones more adequate,
and moreover to bridge smoothness with the structural
complexity of problems.

2. A METRIC OVER SETS OF TRACES

Similarity of traces. We suppose that an algorithm F
(that is fixed below) is a transition system defined over
a vocabulary of functions (relations are considered as
functions) and a finite set of universes that are used to
define the semantics. The vocabulary may be infinite.
For example, it may contain all constants for rational
numbers. The universes are usually infinite. Some func-
tions have fixed interpretations (they are static) and are
not changed by algorithms, we assume that standard ba-
sic static functions like arithmetical operations and or-
der relations over integers, Boolean bitwise operations,
and basic list manipulations are always in the vocabu-
lary. The other functions are dynamic. We distinguish
3 kinds of such functions: input functions Vinp, output
functions Vout and proper internal functions Vint used
by the algorithm for its work; all these functions con-
stitute V ; the nullary functions of V , i.e., of arity zero,
correspond to variables of programming languages. The
values of input functions are not changed by algorithm,
the values of the others are computed by algorithm.

By domn(F) we denote the set of inputs of F of
length n, and by domn(g), where g ∈ V , the set of ar-
guments of g that appear in runs of F for inputs from
domn(F). We suppose that domn(F) 6= ∅ for all n.
By rangen(f) we denote the set of values of f for ar-
guments from domn(f), where f ∈ V or f = F . The
bound n is usually fixed, and thus, omitted.

We introduce a vocabulary Ṽ of nullary functions
obtained from V by replacing each non-nullary func-
tion f : A → B by the set of functions {fa}a∈A with

fa = f(a). We will deal functions from Ṽ for n that is
fixed. In particular, Vint and Vout denote below respec-

tively input and output functions as represented in Ṽ .

A similarity bijection of V is defined by:

(a) a bijection ϕ of Ṽ on itself that preserves functions
from Vin and Vout;

(b) bijections ψg of range(g) onto range(ϕ(g)) for

g ∈ Ṽ .
Time T is discrete, i.e., T = N. A state is an in-

terpretation of the vocabulary, and a run of F is a se-
quence of states that starts from the initial state and
such that each its non initial state is a result of a tran-
sition from the previous one. A transition executes an
event ; each event is either an assignment or the evalu-
ation of a condition followed by changing of control. A
run can be represented as a trace, i.e., as a sequence of
events starting from the initial state. The causal order
between events is defined as usually.

Notations:
• tr(x) is the trace corresponding to input x.
• |τ | is the number of events in trace τ .
• t∗F (x) and tF (n) are respectively time complexity of
F for a given input x (i.e.,the number of steps that F
uses to process x) and worst-case time complexity for
inputs of the length ≤ n (it is assumed to be the same
for inputs of length exactly n).
• λ[x, t] is the value of a function λ in the run for an
input x at time instant t; if t > t∗F (x) then t is replaced
by t∗F (x) in λ[x, t].
• λ[x] is λ[x, t∗F (x)], i.e., the final value of λ for input x.
• e(x, t) is the event in the run for an input x at an in-
stant t; below when we speak about an event we mean
an event of this form, i.e., an occurrence of an event in
a trace. �

Let Φ be a similarity bijection of V , i.e., a set of map-
pings mentioned above. Take two traces for two inputs
xk and two time instants tk, k = 0, 1. Suppose that

e(xk, tk) are assignments fk := gk, where fk, gk ∈ Ṽ .
These events are similar under Φ if ϕ(f0) = f1, ϕ(g0) =
g1 and ϕg0

(
g0[x0, t0]

)
= g1[x1, t1] (i.e., f0 and f1 get

similar values). Suppose that e(xk, tk) are evaluations
of a condition γk, where γk is a Boolean function from

Ṽ . Denote the value of this evaluation by vk. These two
evaluations are similar under Φ if ϕγ0(v0) = v1 , i.e., v0
is similar to v1, and the next events determined by the
control produced by these evaluations are also similar.

Let xk, k = 0, 1, be two inputs. Let Sk be a set of
disjoint sequences of events from tr(xk), |Sk| = s ≥ 1
for k = 0, 1.

By a similarity bijection of these 2 sets we mean the
following: a set B of s similarity bijections Bη0 of V
attributed to sequences η0 of S0, a bijection π from S0
onto S1 (π establishes a one-to-one correspondence be-
tween sequences of S0 and S1), and a set H of s bi-
jections hη0 , η0 ∈ S0, such that each bijection hη0 is
from η0 onto π(η0), it preserves the similarity of events
with respect to Bη0 and the causal order between all
events of all sequences (i.e., if e ∈ η0 ∈ S0, e′ ∈ η′0 ∈ S0
and e causally precedes e′ in tr(x0) then hη0(e) causally
precedes hη′0(e′) in tr(x1)). We call such a bijection a
similarity bijection from S0 to S1. If such a bijection ex-
ists then S0 and S1 are called similar. Notice that there
may be several similarity bijections from S0 to S1.

A measure of similarity. We can measure similarity
between 2 traces τk=df tr(xk), k = 0, 1, by choosing in
each τk a set Sk of disjoint subsequences of events such
that S0 and S1 are similar, and counting the number
of non-similar events. Let S0 and S1 be two such sets.
Denote the similarity bijection from S0 to S1 by β01 (it
represents all involved mappings, and will be used in-
formally); we call such β01 a similarity between S0 and
S1.

Set dβ01(τ0, τ1) = |τ0| + |τ1| − 2
∣∣⋃Sk∣∣ + 2(s − 1),

where
∣∣⋃Sk∣∣ is the number of events in all sequences

of Sk (k may be any as |
⋃
S0
∣∣ = |

⋃
S1
∣∣). One can see

that |τ0|+ |τ1|−2
∣∣⋃Sk∣∣ is the cardinality of a symmet-

ric difference between τ0 and τ1 if one identifies similar
events from S0 and S1. The term 2(s − 1), that is 0 if
we take only one sequence in each trace, is ‘payment’
for each extra subsequence that one wishes to use. It
is added in order to avoid ‘very good’ trivial similarity
by very many very short subsequences, e.g., singletons
(i.e., by one command executions).

Distance between traces is defined as

d(τ0, τ1) = min{dβ01(τ0, τ1) : over all similarities β01}.
As the usefulness of the case of s > 1 is not yet

evident, below we assume that s = 1, i.e., only one sim-
ilarity bijection is permitted to compare traces.

Clearly, d(τ0, τ0) = 0 and d(τ0, τ1) = d(τ1, τ0). The
equality d(τ0, τ1) = 0 does not mean that τ0 = τ1, it
means, however, that these traces are completely simi-
lar. One can see that the relation d(τ0, τ1) = 0 between
traces is an equivalence.

We show that d is a semi-metric on traces or a met-
ric on classes of equivalent traces. (A function ρ is a
semi-metric if ρ(x, x) = 0, ρ(x, y) = ρ(y, x, ρ(x, y) ≤
ρ(x, z) + ρ(z, y), but not necessarily ρ(x, y) = 0 ⇒ x =
y). It suffices to prove the triangle inequality.

Let τk = tr(xk), k = 0, 1, 2, be 3 traces, and let sim-
ilarities βkm, km ∈ {02, 01, 12} (here km means a pair
(k,m)), be such that dβkm(τk, τm) = d(τk, τm), and let
the respective subsequences of events of traces τk and
τm for βkm be respectively σkm and σmk. In our case of
s = 1 we have Skm = {σkm} and thus

∣∣⋃Skm∣∣ = |σkm|.
The triangle inequality is:

d(τ0, τ2) ≤ d(τ0, τ1) + d(τ1, τ2) (∗).
As d(τk, τm) = |τk|+ |τm| − 2|σkm|, formula (∗) can be
rewritten as |τ0| + |τ2| − 2|σ02| ≤ |τ0| + |τ1| − 2|σ01| +
|τ1|+ |τ2| − 2|σ12|, that is equivalent to

|σ01|+ |σ12| ≤ |τ1|+ |σ02| (∗∗)

Look at relative positions of β01(σ01) and of σ12 in τ1
(here and below we mean by β01 the appropriate map-
ping from β01, i.e., the mapping that was denoted hη0
above, and that, in the context under consideration, is
hσ01). If these subsequences of τ1 are pairwise disjoint
then |σ01|+ |σ12| ≤ |τ1|, as they all lie inside τ1. Hence,
in this case we have (∗∗).

Suppose that these subsequences intersect. For σ =
β01(σ01)∩σ12 there holds |σ01|+ |σ12| ≤ |τ1|+ |σ|. Sub-
sequence (β01)−1(σ) of τ0 and subsequence β12(σ) of τ2
are similar: β12

(
β01(β−1

01 (σ))
)

= β12(σ). As σ02 is cho-
sen as the longest similar subsequence of τ0 and of τ2
(for some bijection) then |σ| ≤ |σ02|, and hence (∗∗).

The set of all traces for inputs of a given length n,
denote it Trn, is a finite, and thus compact set. If one
uses a metric d

2·tF (n)
then the diameter of Trn becomes

≤ 1. In any case we can look at minimal epsilon-nets
in Trn (recall that a subset S of a compact is an vep-
net if the closed balls of radius ε centered at the points
of S cover the compact), and evaluate whether epsilon-
entropy (the base two logarithm of the size of a minimal
epsilon-net [1]) permits to compare algorithms from the
viewpoint of the structural complexity of the sets of
their traces. Below we give give 2 examples that outline
some issues concerning ε-entropy in compact spaces of
traces.

We take the function d as defined above, not devised
by the time complexity, so we take as epsilon a natural
number.

Example: Palindrome recognition. Consider a triv-
ial palindrome recognition of strings of even positive
length over B = {0, 1}. The vocabulary consists of al-
phabets B, {true,false}, N and functions eq : B×B→
B (it checks the equality of characters of B), +1 : N→ N,
i :→ N (loop counter), input function w : N → B (w(i)
is the ith character of the input string, i ≥ 1), input
function n :→ N (the length of the input), output func-
tion r :→ B (r = 1 means that the input is palindrome,
otherwise – non palindrome).

The first algorithm, denote it G, processes its input by
evaluating eq(w(i), w(n− i+ 1) for 1 ≤ i ≤ n

2
, starting

with i = 1 and advancing i as i := i + 1 if the ana-
lyzed characters are equal. If the algorithm arrives at
eq(w(n

2
), w(n

2
+ 1)), it outputs 1 otherwise it outputs

0. The initial values: i = 1, r = 1. Below we use not
rigorous notations, namely, sometimes we write directly
the values of terms (though for similarity we should see
the terms). The algorithm has, roughly speaking, two
types of traces (the details depend on the level of ab-
straction we use). For assignments i := i+1 we write in
the right-hand term the value of i (instead of character
i) and in brackets we write the acquired value. Similar
for condition i < n

2
.

Type 1. Non palindrome (for each type of trace there
are inputs w that give such traces):
A(w, 1)=df

(
¬eq(w(1), w(n)), r := 0

)
and for m > 1:
A(w,m)=df(
eq(w(1), w(n)), i[= 1] < n

2
, i := 1 + 1[= 2], . . . ,

eq(w(m− 1), w(n−m+ 2)), i[=]m− 1 < n
2
,

i := m− 1 + 1[= m], ¬eq(w(m), w(n−m+ 1)), r := 0
)

for 1 < m ≤ n
2

.
Type 2. Palindrome:

B(w)=df(
eq(w(1), w(n)

)
, i[= 1] < n

2
, i := 1 + 1[= 2], . . . ,

eq(w(n
2

), w(n
2

+ 1), ¬(i[= n
2

] < n
2

), r := 1
)
.

As the similarity does not demand similarity of the
values of arguments, we may take here trivial identical
bijection to get a good estimation of the entropy. One
see that there is only n/2 classes of equivalence of traces,
that is for inputs inputs W and W ′ with the respective
traces A(W,m) and A(W ′,m) or B(W) and B(W ′):
d(A(W,m), A(W ′,m)) = 0 and d(B(W), B(W ′)) = 0.
The non-trivial relations for appropriate inputs:
d(A(W,m), A(W ′,m+ 1)) = 3,
d(A(W,m), B(W ′)) = 3(n

2
−m) + 2, 1 ≤ m ≤ (n

2
− 1).

So there are non trivial ε-nets for ε ≥ 3, and their
size is c ·n, where c ≤ 1

2
is a constant depending only on

ε (we do not take into account small additive constant).
Thus log of the size, i.e., ε-entropy of the set of traces,
is logn− c0 for some c0 > 0.

Now take another algorithmG′ for palindrome recog-
nition; its vocabulary is slightly bigger and is clear from
the context. For simplicity consider only inputs whose
length is positive and is divisible by 4. It applies two
different procedures G0 and G1 depending on the first
bit of the input. If this bit is 0, it applies G0 that is like
G, otherwise it applies G1 that works as follows. The
procedure G1 uses 2 loop counters: i that goes from 1
to n

4
, and a counter j that goes from n

2
to n

4
+ 1. In

the loop with i it works as G. In the loop with j it cal-
culates (w(j)⊕w(n− j + 1)), where ⊕ is sum mod 2,
and treat 0 as true, and 1 as false. And G1 alternates
these two loops: one eq-comparison, one ⊕-comparison,
one eq-comparison etc.

The set G0 of traces produced by G0 has a metric
structure similar to that of G. The set G1 of traces of

G1 has also a metric structure that is alike from the
viewpoint of the number of types of traces and their
relative distances.

Consider τk ∈ Gk with the same number m of com-
parisons. The distance between τ0 and τ1 is > m

2
. Thus,

ε-nets in the sets of traces of G′ are roughly twice bigger
than for G. Algorithm G′ is ‘worse’ than G, however its
epsilon-entropy is slightly bigger because its set of traces
is more diverse. This difference is in the additive con-
stant c1 in the formula for epsilon-entropy logn + c1,
this time c1 > 0. �

Example: Convolution of bit vectors. We consider
the straightforward algorithm that follows the defini-
tion of the discrete convolution. Input data alphabet
is B = {0, 1} ⊂ N, and output and intermediate data
alphabet is N. Input functions are n :→ N (the length
of each of two input vectors), x, y : N → B (two input
bit vectors), output function z : N → N (output vector
with (2n−1) components of natural numbers, numbered
from 0 to (2n − 2)), internal functions χ : N × N → B
(products of input bits), ζ : N × N → N (partial sums
in convolution calculation), i, j, k, s, p, q :→ N (these are
loop counters, and thus functions, and for more flexibil-
ity in bijections it is better to have them different for
different loops), addition and multiplication of natural
numbers. If we describe domains and ranges of z, χ, ζ
more precisely, that may facilitate more exact analysis
of the structure of computations. For example, we may
set range(z(n− 1)) = {0, 1, . . . , n}.

In order to simplify the presentation of the problem,
assume that x(i) = y(i) = 0 for n − 1 < i ≤ (2n − 2).
Then the function to compute consists of (2n− 1) com-

ponents z(k) =
∑i=k
i=0 x(i)y(k − i), 0 ≤ k ≤ (2n − 2).

The algorithm (a value of n is taken as one of the in-
puts) works as follows: set x(p) = y(p) := 0 in a loop
n − 1 < p ≤ (2n − 2) (strictly speaking one cannot
change inputs but on can simulate the mentioned oper-
ation); χ(i, j) := x(i) · y(j) are computed in a double
loop 0 ≤ i, j ≤ (2n − 2); ζ(k, 0) := χ(k, 0); ζ(k, p) :=
ζ(k, p − 1) + χ(p, k − p) for 0 < p ≤ k ≤ (2n − 2);
z(q) := ζ(q, q) for 0 ≤ q ≤ (2n − 2). The inequal-
ities 0 ≤ z(k) ≤ (k + 1) for 0 ≤ k ≤ (n − 1) and
0 ≤ z(k) ≤ (2n − k − 1) for n ≤ k ≤ (2n − 2) give the
maximal values of natural numbers that can appear in
the calculations by formulas above. We assume that the
algorithm executes the arithmetic operations as atomic
ones, so we do not go down to bitwise operations.

We compare traces within identical bijections; sup-
pose there are no others to take into account (very likely,
it is true though I had no time to prove it rigorously).

Let x and y be 2 inputs of length n. Denote by
Kx and Ky the number of 1 in respectively x and y,
and set U(x, y)=df {(i, j) : x(i) = y(j) = 1}. Clearly,
z[x, y](k) = |U(x, y) ∩ {(i, j) : i+ j = k}|, and∑
k z[x, y](k) = |U(x, y)| = Kx ·Ky.
Suppose that x(p) = 1 and x(q) = 0 for some 0 ≤

p, q ≤ (n − 1), p 6= q. Take x′ that coincides with x
everywhere except these two positions: x′(p) = 0 and
x′(q) = 1. We have |{m : y(m − p) = 1}| = Ky and
|U(x, y)| = |U(x′, y)| but (p,m− p) 6∈ U(x′, y).
For m, 0 ≤ m ≤ (2n− 2), such that y(m− p) = 1 com-
pare
z[x, y](m) = |U(x, y) ∩ {(i, j) : i+ j = m}| =
|U(x, y)∩{(p,m−p)}∩{(i, j) : i+ j = m ∧ i 6= p}| and
z[x′, y](m) = |U(x′, y) ∩ {(i, j) : i + j = m}|. These
values are different: z[x, y](m) 6= z[x′, y](m). Thus, the
d-distance between tr(x, y) and tr(x′, y) is ≥ 2Ky (if
we take into account the number of different intermedi-

ate results then the lower bound will be bigger).
Suppose that Kx = Ky = n

2
, and for simplicity as-

sume that n is even. Then the number of inputs with

the mentioned number of 1’s is
(
n
n/2

)2
≈ 2n+1/2
√
πn

. Thus.

there are at least exponential number of traces (roughly,
at least 2n) with pairwise distances not smaller than n.
Hence, ε-entropy for ε of order smaller than n is at
least n, i.e., exponentially bigger than in the case of
palindrome recognition though the time complexity of
the convolution algorithm is only quadratic as compared
the linear complexity of palindrome recognition.
The latter remark only underlines that a high structural
diversity of traces does not mean a high time complex-
ity. Quite the contrary, a higher structural complexity
may correspond to a lower time complexity. �

Remark on auto-similarity. If we ask ourselves what
is the difference in the structure of executions of diago-
nal algorithms and of executions of practical algorithms,
we can see that the behavior of a diagonal algorithm
strongly varies from input to input. On the other hand,
for practical algorithms, I dare to say even for any prac-
tical algorithm, its behavior on any long input is similar
to its behavior on a fixed amount of rather short inputs.
This observation suggests that we can try to formalize
auto-similarity as a possibility to cover long runs by
runs from a fixed finite set. Such a viewpoint can be
implemented along the following lines.

Let B be a finite set of traces of a given algorithm F .
The set B covers all traces of F if the following holds
for any trace τ of F . There exists a (finite) set of pairs
(τi, hi) such that:
• τi ∈ B, hi is a similarity bijection of τi into τ ,
• any e ∈ τ is covered, i.e., e = hi(e

′) for some i and
e′ ∈ τi,

The size of B is a quantitative characteristic of auto-
similarity.

Whether such an approach is productive or not, needs
a study. One can modify it taking approximate cov-
erage. It would be interesting to find an appropriate
approach to auto-similarity in terms of metric spaces.

3. ON INFORMATION CONVERGENCE OF

COMPUTATIONS

Here we consider an algorithm F (this framework can
be applied to rather general sets of sequences of terms)
that is fixed as well as the bound n on the length of
inputs; the latter is presumed but omitted in the nota-
tions below. We use our previous setting.

Notations. For a set of functions Λ ⊆ V and a map-
ping T from Λ into T and an input x:
• Λ[x, T], is the set of values λ[x, T (λ)] for λ ∈ Λ.
• Λ[x] is Λ[x, t∗F], i.e., the set of final values of Λ.
• range(λ), where λ ∈ V , is the set of values of λ for
inputs from dom(F).
• range(Λ) is the set of sets range(λ) for λ ∈ Λ.
• R(Λ, Z, T)=df

{x ∈ dom(F) : ∀ λ ∈ Λ λ[x, T (λ)] = Z(λ)}, where Z
is a mapping from Λ into respective ranges, i.e., Z(λ) ∈
range(λ) for λ ∈ Λ. In other words, R(Λ, Z, T) is the
set of inputs, taken over all traces, for which a function
λ has value Z(λ) at instant T (λ)
• R(Λ, Z) is R(Λ, Z, T) with T (λ) = tF (n), i.e. R(Λ, Z)
is the set of inputs for which the final value of any λ ∈ Λ
is Z(λ).
• R(Λ, Z)=df (dom(F) \R(Λ, Z)); similar for
R(Λ, Z, T). I.e., Rn(Λ, Z) is the complement of R(Λ, Z).

•M=df

∣∣range(F)
∣∣ is the number of outputs for inputs

from dom(F). �

Now we proceed in a more or less traditional way
using probabilistic terminology. The situation under
study is quite deterministic. The probability theory
does not need the notion of randomness to be applied;
it needs just a probability measure.

The sets R(Vout, Z) for Z(λ) ∈ range(λ), λ ∈ Vout,
constitute a partition of dom(F) into M subsets. We
consider that each of these sets has a uniform prob-
abilistic distribution with total probability 1

M
; denote

the probability measure defined by this distribution by
P. Notice that the set R(Vout, Z) may contain one in-
put, and in this case the measure of this input is 1

M
;

the set R(Vout, Z) may contain several elements, say, K
ones, and in this case the measure of each element of
this set is 1

K·M .

We wish to formalize the following intuition. At any
given instant the algorithm sees only very limited piece
of information. At the beginning of its work algorithm
F knows nothing about its input, and hence about its
result, and thus its entropy (informally, the uncertainty
of its knowledge about the result) is maximal. At the
end of its work the algorithm knows all about the re-
sult for its input, and hence, its entropy is zero. We
represent the entropy concerning the initial knowledge
about what result may appear in the classical way as
−M

(
1
M

log 1
M

)
= logM . In the process of its work the

entropy goes to zero, and the speed of this convergence
says something about the quality of processing the data.
Now we try to do it formally.

The formalization of the intuition sketched above is
not so evident. We may reason in terms of the val-

ues of functions from Ṽ , and ask how the knowledge
of these values affect the knowledge about the result.
Imagine that the algorithm has read the input. If the
knowledge about the input is disposable then there is
no obvious way to avoid the conclusion that the result
is known. A remedy that immediately come to mind
is to restrict the values under scrutiny to pieces whose
bit length is much smaller than the length of inputs. In
the example of convolution above we permitted to put
up to logn bits in a register. However, even logn does
not look adequate. Indeed, suppose that an algorithm
for convolution simply reads log n bits of its input and
assigns this string as a value of some function (variable)
without any calculations. Then this value, taken as it
is, gives not less information about the result than the
corresponding calculations with these bits. It is bet-
ter to take a constant number of bits. In this case,
one can consider that they give not less of information
than the calculations with them because the algorithm
may have a pre-calculated table of these results of cal-
culations. Another way to deal with values containing
non-constant (e.g., logn) number of bits, is to choose
these values with clear understanding of its semantics.
If we analyze a particular algorithm, it looks reason-
able. If we wish to say something about any algorithm
for a given problem, we should be cautious. Below, we
tacitly mean that we analyze a concrete algorithm, and
our choice of values to reason about is well done.

We start with a ‘local’question: how the informa-
tion in chosen values of some functions influences the
knowledge about a particular value of a particular piece
of the result. It may be useful to look at the question
from viewpoint of partitions of measurable spaces. Con-
sider the space dom(F) with measure P. This measure

has the same value on any set of partition
ζ=df {F−1(y) : y ∈ range(F)}. Ascribe to each its
point, i.e., to each input, x the values F (x). This value
may be a vector as in the case of convolution. The in-
formation function [2], 2.2, of ζ is
I(ζ)(x) = −

∑
A∈ζ 1A(x) log P(A), where 1A is a char-

acteristic function of the set A, i.e., 1A(x) = 1 if and
only if x ∈ A. The entropy is the average (the expecta-
tion) of the information function:
H(ζ) = −

∑
A∈ζ P(A) log P(A). For our case this gives

logM as mentioned above. Below we consider other
partitions based on ζ.

Let Λ be a set of functions (intuitively it should be
‘small‘). Let Z be the values of Λ at some T ; there can
be many inputs x with traces where Λ[x, T] = Z. Take
a set Γ ⊆ Vout and a set U of values from the corre-
sponding ranges: U(γ) ∈ range(γ) for γ ∈ Γ.

How does the knowledge that Λ[x, T] = Z ‘approxi-
mate’ the knowledge about U?

The partition of dom(F) that describes the relevant
information about Γ and U consists of R(Γ, U) and its
complement R(Γ, U). The partition that describes the
information corresponding to Λ[x, T] = Z consists of
R(Λ, Z, T) and its complement. We ask what is the
information about Γ = U (that is about R(Γ, U)) un-
der the condition Λ[x, T] = Z. Hence, we look at the
partition of R(Λ, Z, T) into R(Λ, Z, T) ∩ R(Γ, U) and
R(Λ, Z, T)∩R(Γ, U). The probability measures of these
2 sets are respectively conditional probabilities that can
be informally written as
p(T)=df P(Γ = U

∣∣Λ[T] = Z) and P(Γ 6= U
∣∣Λ[T] = Z).

These probabilities define the entropy of the partition
consisting of 2 sets:
h0(T)=df −p(T) log p(T)−(1−p(T)) log(1−p(T)). Take
as T the mapping T (λ) = t for some t ∈ T for all λ ∈ Λ.
Observing the value of h0(t) when t goes to tF (n) we see
the convergence of information about Γ = U given by
Λ[t] = Z during the execution of F . We can also look
at the convergence of information of any nature defined
in terms of partitions.

On the basis on the ‘local’ analysis of information
convergence described above one can put ‘global’ ques-
tions about worst-case or average convergence.
It seems also to be interesting to find a productive view
of algorithm executions as dynamic systems over parti-
tions of measurable spaces.

Example: Palindrome recognition. We discuss al-
gorithm G for which we have M = 2. The cardinality of
the set R(r, 1) of palindromes is 2

n
2 , and the cardinal-

ity of the set R(r, 0) of non-palindromes is (2n − 2
n
2).

In spite of this difference of sizes these sets have the
same measure: P(R(r, 0)) = P(R(r, 1)) = 1

2
. Consider

an instant T where the value of i is k, 1 ≤ k ≤ n
2

and
eq(w(k), w(n− k + 1)) is evaluated to v.

Suppose v = false (trivial case). In this case
P(R(r, 1) ∩R(eq,false, T)) = P(∅) = 0,
P(R(r, 1) ∩R(eq,false, T)) =
P(R(r, 0) ∩ R(eq,false, T)) = P(R(eq,false, T)), and
hence P(r = 1|eq = false) = 0 and
P(r = 0|eq = false) = 1, and thus the respective en-
tropy is 0, i.e., the algorithm knows all.

Suppose v = true. In this case
P(R(r, 1) ∩R(eq, true, T)) = P(R(r, 1)) = 1

2
,

P(R(eq, true, T)) = P(R(r, 1)) + P({w : w(1..k) =
w(n..(n−k+1))∧w((k+1)..n

2
) 6= w((n−k)..n

2
+1)}) =

1
2

+ 1

2n−2
n
2
· 2k · (2n−2k − 2

n−2k
2) = 1

2
+ 2n−k−2

n
2

2n−2
n
2

. One

can see that for k = n
2

the latter value is 1
2

and thus,
P(r = 1|eq = true) = 1, and the entropy becomes 0.
For k = 1 the value is close to 1 and thus, P(r = 1|eq =
true) is close to 1

2
, and the entropy remains close to its

maximal value 1. �

Example: Convolution of bit vectors. It is intu-
itively obvious that the usual algorithm used in the pre-
vious section ensures a certain information convergence
from the very beginning of its execution. This is less
obvious for algorithms based Fourier Transform (FT).
We put aside what algorithm for FT is used, and just
notice that even the result of FT of one multiplicand,
say x (we use the notations of the example in the pre-
vious section), give some ‘advanced’ information about
the result.
We do not enter into technical details. The first compo-
nent of the FT of x is simply Kx. Clearly, the knowledge
of Kx diminishes the set of inputs that might give this
or that result, and thus diminishes the appropriate en-
tropy. For example, suppose Kx = 0. Then the result
is known, it is z(k) = 0 for all k. Suppose now Kx = n
(i.e., take the maximal value). Then, as in the previous
case, there is only one x with this property, and again
we get more information about possible results. Similar
for other values of Kx. The combinatorics that gives
good approximations to the changes of entropy is very
laborious. �

Remark. In both examples the estimations of measure
describing the information are expressions with the ex-
ponentiation. For example, for palindrome recognition
the information convergence is determined, in an ev-
ident way, by 2n−k (that will be in the denominator
in the expression of the probability we are calculating,
and hence of the entropy). And these exponential func-
tions reappear in formulas for entropy. Il seems to be
simpler and more productive to evaluate the speed of
convergence in terms of information, that is in terms of
logarithm of these exponential expressions. Taking ap-
propriate approximations we arrive at polynomials that
are much more comprehensible.

The measures introduced in this and previous sec-
tions probably permit to compare different algorithms
not only by comparing its characteristics like this or
that entropy, or information, but by introducing simi-
larity between their sets of traces.

The notions introduced above deal only with traces
for a given input length. It might be useful to find
notions similar in spirit for the set of all traces for all
inputs. �

4. TOWARDS METRICAL ANALYSIS OF

PROBLEMS STRUCTURE

The discourse in the previous sections gives some ideas
about metrical analysis of the structure of computa-
tions. However the prospective goal is to arrive to tech-
nical concepts apt to information analysis of problems.
The basic difficulty is that such concept cannot be on
the one hand, unrelated to the concept of algorithm, and
on the other hand, cannot be too algorithmic in order to
be applicable to any algorithm. Here I can describe one
preliminary observation concerning the structure often
given by the definition of a problem.

Consider 3 examples: palindrome recognition, convo-
lution and SAT (the problem of satisfiability of proposi-
tional formulas). In palindrome recognition we look for
the longest prefix of an input string whose inverse is also
a suffix of this string, and then the result is determined

by the length of this prefix compared to the length of
the input. So we look for a rather simple substructure
of input. Similar for the other examples.

In convolution we look for each k, 0 ≤ k ≤ (2n− 2),
for the set {(i, j) : x(i) = y(j) = 1 ∧ i + j = k}, and
take its cardinality as the kth output.

In SAT we look for the longest truth values assign-
ment that does not make the input formula ‘trivially’
false. We call such an assignment a maximal sat-assign-
ment. By “does not make the input formula ‘trivially’
false” we mean the following. Given a partial assign-
ment we put its truth values into the formula, and then
apply to the obtained formula with constants standard
simplifications for constants and repetitions (one can
say that we apply all standard simplifications that do
not augment the length of the formula). If the obtained
formula is not the constant true then we say that the
assignment does not make the formula trivially false.
For CNF this corresponds, modulo evident detail, to
the calculation of the number of disjuncts satisfied by
the assignment.

Consider SAT in more detail. Let Φ be a proposi-
tional formula, V ar(Φ) be the set of its propositional
variables, and Lit(Φ) be the set of its literals (a lit-
eral is a variable or its negation). We assume that Φ
is constructed from literals with the help of ∧ and ∨.
A partial assignment can be represented as a subset of
literals that contains no variable and its negation; a lit-
eral in this set represents its assignment to true. For
an assignment A denote by Φ(A) the residue formula
obtained by the simplifications mentioned just above.

For 2 formulas Φ0 and Φ1 with the same number of
literals denote β(Φ0,Φ1) the number obtained in the fol-
lowing manner. Take a bijection h : Lit(Φ0)→ Lit(Φ1)

that commutes with the negation: h(v) = h(v). In Φ1

and h(Φ0) (this is the formula obtained from Φ0 by re-
placing each its literal by its h-image) throw away equal
subformulas. Denote the sum of sizes of the remaining
2 formulas by βh(Φ0,Φ1). The minimum of βh(Φ0,Φ1)
over h is β(Φ0,Φ1). For formulas with the same number
of variables the function β is a semi-metric.

One can see that measure is also applicable to for-
mulas with different numbers of variables. In the latter
case h is chosen as a bijection from the smaller set of
literals to the bigger set. The function β seems to re-
main a metric in this case also.

Suppose we have some metric D between formulas.
D-distance alone does not give detailed comparison of
the behavior of formulas with respect to its evaluation
for different assignments. However, applied to residues
this measure permits to described some kind of con-
text of formula evaluations. For a given formula Φ and
for a given k ≤ |V ar(Φ)|, denote by A(Φ, k) all its
maximal sat-assignments of length ≤ k. The metric
space Mk(Φ)=df ({Φ(A) : A ∈ A(Φ, k)}, D) represents,
in some way, the general structure of the evaluation of Φ
for assignments from A(Φ, k). If for a relatively small ε
these spaces have a subexponential ε-net then this could
give new ideas for constructing algorithms or proofs.

For a set S of formulas with n variables the spaces
Mk(Φ), Φ ∈ S, represent a global structure of assign-
ment for these formulas. These spaces may be con-
verted into one metric space with Hausdorff or Gromov-
Hausdorff metric [3], 7.3.1–7.3.2. And after that we can
continue a more global metric analysis of the structure
of the problem.

5. CONCLUDING REMARKS

The notions introduced above are far from being final-
ized. An important experimental work in needed, that
is analysis of concrete algorithms and problems.

The similarity measures introduced above are based
on bijective embedding. It may happen that similar-
ity measure based on approximate homomorphisms are
more adequate. It is particulary probable for the anal-
ysis of SAT.

Similarity measures based on approximate homomor-
phisms may be not metrical, however, this does not ex-
clude that productive measures of information, based
on such an approach, are possible.

REFERENCES
[1] A. N. Kolmogorov and V. M. Tikhomirov.

ε-entropy and ε-capacity of sets in function spaces.
Uspekhi Mat. Nauk, 14(2(86)):3–86, 1959. In
Russian. English translation in: Selected Works of
A.N. Kolmogorov: Volume III: Information Theory
and the Theory of Algorithms (Mathematics and
its Applications), Kluwer Academic Publishers,
1992.

[2] N. F. G. Martin and J. W. England. Mathematical
Theory of Entropy. Addison-Wesley, 1981.

[3] D. Burago, Yu. Burago, and S. Ivanov. A Course
in Metric Geometry, volume 33 of Graduate
Studies in Mathematics. Americal Mathematical
Society, 2001.

