
Minimizing Entropy of Knowledge Representaion

Anatol Slissenko1

Dept. of Informatics, University Paris-12, France
and

Institute for Informatics, Academy of Sciences of Russia,
St-Petersburg, Russia

Abstract

If to compare the existing general purpose theorem provers, which efficiency is more than
modest, and human way of reasoning, which is incomparably more efficient, one can see some
principal distinction in knowledge organization in both cases. We give a notion of entropy which
permits to set up a thesis that an efficient knowledge organization adheres to the principle
of minimizing the entropy. Within the same framework one can define various quantitative
characteristics of systems of knowledge. A practical consequence of this point of view is strategy-
oriented architecture of theorem provers. We mention an experimental implementation of such
an architecture that demonstrated promising results.

0. Introduction

The topic under consideration is motivated by inefficiency of automatic theorem-provers clearly
understood already in the 60ies. Since then there were no principal progress in the develop-
ment of architectures of theorem provers, though the modern ones (one can find many referencies
at http://www-formal.stanford.edu/clt/ARS/ars-db.html) are incomparably more powerful then
those made by pioneers [AR83a, AR83b]. But the relative power of modern theorem provers is a
consequence of development of computers and programming but not of fundamental ideas. The
strategy used even in modern theorem provers represent general syntactic observations that practi-
cally do play no role in non trivial proofs. They are equally applicable to any domain. On the other
hand, to learn to reason in a particular domain takes a lot of time, and moreover, the structure of
knowledge of any particular domain develops, as well as methods of search for proofs, as a result
of considerable intellectual investments. E. g. compare a two page formalisation of calculus and
a handbook on the same subject. Theoretical properties of more or less powerful logics that rep-
resent our knowledge, in particular their universality, signify that no general purpose proof search
can be efficient. The universality means that any algorithmic difficulty can be modeled in these
logics; there are even individual provable propositions that are hard to handle (cf. [Sli75]). These
considerations mean that the only way to achieve the efficiency of proof search is to organize the
basic knowledge of concrete domains and the knowledge about proof search in these domains in an
efficient way. But constructing such a knowledge representation needs adequate tools to restructure
this knowledge. We are going to discuss one theoretical point of view and one practical approach
to develop such tools.

In the present communication we briefly develop a system of notions that permits to give
quantitative characteristics of systems of knowledge representation. The latter are represented as
inference systems defined in Section 1. Then in Section 2 we introduce proof complexity that can
serve to define various measures of quality of systems of knowledge representation (see [Sli91]).
Here we speak only about entropy. The last Section 3 touches a strategy based theorem proving.

1Address: Dept. of Informatics, University Paris-12, 61 Av. du Gén. de Gaulle, 94010, Créteil, France.
E-mail: slissenko@univ-paris12.fr

1

We say several words about an experimental computer system that implements a strategy-oriented
architecture of theorem proving.

1. Inference Systems

The notion of an infrence system we introduce below, is motivated by knowledge systems where the
amount of rules or axioms related to the domain under consideration is much larger than individual
proofs we are looking for. As examples of such systems one can take handbooks on particular
domains of mathematics or physics, or large expert systems for situation analysis. We look at
knowledge representation and processing system as having 2 levels: the first (lower) level contains
basic knowledge that represents the problem domain we are interested in, and this knowledge must
be precise and reliable, and the second (higher) level consists of tools to describe methods of solving
problems under consideration. The lower level knowledge representation will be modeled below as
inference system.

Let some standard logic syntax be fixed, a syntax of applied predicate logic language with
predicate and functional symbols is suitable. To simplify the presentation we will speak only about
proving formulas though the approach works also for queries find x such that F (x) that are of
more practical interest.

A semantics of the language is defined as a set of inference rules that constitute a knowledge base
of the lower level we mentioned above. The main object to manipulate with is a list of formulas each
one labeled as assumption or conclusion, and supplied with an information concerning its origin
(an axiom, a result of application of a rule). The latter information will be called the analysis. A
formula labelled as an assumption and conclusion corresponds to a trivial logical axiom of the form
F ` F . An inference rule is an algorithm transforming a list of formulas from its domain into an
extension of this list.

A list L1 is a result of an application of a rule r to a list L if L1 can be constructed due to the
following prescription. Take any sublist K of L belonging to dom(r). The formulas of r(K) consist
of all the formulas of K, maybe with changed labels. Denote these formulas corresponding to K
by K1, and the rest by K2 = r(K) \ K1. Those formulas of K2 that are marked as assumptions
are catenated with L as its prefix, and those marked as conclusions are catenated as suffix of the
L. The appropriate information about the origin of the formulas of r(K) is ascribed to them.

A system consisting of a syntax and of a semantics is called an inference system. Elsewhere
below S is an inference system.

Proof in S or S-proof is a list of formulas of the form described above. I. e. every formula of
the list is marked as assumption or conclusion, and is provided with its analysis when marked as
conclusion. The proper ancestors of a conclusion are situated to the left of the conclusion itself.
Without loss of generality we consider only proofs not containing repetitions of formulas.

The next step to develop the setting needs a notion of complexity. We start with fixing con-
ventional notations.

The length of a string W is denoted by |W |. For a finite set E of strings |E| denotes the sum
of the lengths of the elements of E. If S is a set of algorithms then we mean that its elements are
represented as strings, and we treat |S| according to this representation.

By ASSUMP (L) and CONCL(L) we denote respectively the set of the formulas of a list L
marked as assumptions and the set of the formulas of L marked as conclusions. And as a measure
of size we will use lc(L) = |CONCL(L)\ASSUMP (L)|.

Let Φ and Γ be finite sets of formulas. Denote by PRFS(Φ |Γ) the set of all S-proofs D such
that Φ ⊆ CONCL(D) and ASSUMP (D) ⊆ Γ

A set of formulas or a formula Φ is provable in S or S-provable from formulas (assumptions) Γ

2

if PRSS(Φ |Γ) 6=∅, and Φ is S-provable if it is provable with empty Γ.

2. Measuring Quality of Knowledge Representation

Proof Complexity
The principal notion for the setting under consideration is proof complexity of a set of formulas Φ
under assumptions Γ:

dS(Φ |Γ) = min{lc(D) : D ∈ PRFS(Φ | Γ)}, dS (Φ) = dS(Φ | ∅).
Here we assume that min ∅ = ∞.

The function dS can be treated as a one-directional metrics; a simple symmetrization like
dS(Φ |Ψ) + dS(Ψ |Φ) gives a genuine metrics on the set of finite sets of formulas. One can see that
the measure dS is a generalisation of known measures, and that an appropriate choice of S can lead
as to measures like time complexity as well as to measures of the type of Kolmogorov complexity.

One can prove the following properties of dS :
dS(Φ |Γ) = 0, dS(Φ |Φ) = 0,
Φ ⊆ Ψ ⇒ dS(Φ |Γ) ≤ dS(Ψ |Γ), Γ ⊆ ∆ ⇒ dS(Φ |Γ) ≥ dS(Φ |∆),
max{dS(Φ |Γ), dS(Ψ |Γ)} ≤ dS(Φ ∪Ψ |Γ) ≤ dS(Φ |Γ) + dS(Ψ |Γ).

Entropy of a Set of Formulas
We assume that a reasonable notion of inconsistency of an inference system is introduced. Two
inference systems are consistent if the same is valid for their union. Since any formula can be
treated as an inference rule, i.e. as an axiom, these notions can be extended to sets of formulas.

Let Φ be a finite set of formulas, S and V be inference systems, and ξ be a natural number.
The notion of entropy introduced below has a flavour similar to the notion of ε-entropy of compacts
in metric spaces:

entrS(Φ |V, ξ) = min{|U | : U is consistent with S and ∀F ∈ Φ(dV ∪U (F) ≤ ξ)},
entrS(Φ, ξ) = entrS(Φ |∅, ξ).
One can prove that the entropy is not descreasing in Φ, not increasing in V and semi-additive

in Φ.
A system S is said to be optimal for Φ and a given ξ if entrS(Φ |S, ξ) = 0 and entrS(Φ, ξ) =

len(S).
The value of the entropy is, apparently, very sentitive to the class of admissible systems U . But

on the whole it is clear that we improve quality of the inference system if we use effective rules
with wide domain of applications. This consideration and observations concerning developments
of theories permits us to forth
Thesis. The quality of an inference system to solve a set of problems increases with diminishing of
the entropy of this set with respect to the inference system.

The thesis implicitely presumes some value of the parameter ξ that is usally small. Surely, one
can consider more adequate versions of entropy with some averaging and so on.

3. Strategy Based Inference Search

Structuring of knowledge to improve the efficiency of its representation may involve highly creative
activity such as inventing new approaches, profound new theories etc. But there is more modest
activity that corresponds, say, to the way an undergraduate student learns to solve some problems.
For example, the problems of finding symbolic limits. The general problem is undecidable. However,
for sets of problems containing rather non trivial ones, the student manages to develop strategies
of solving them. Such a strategy gives a rule that considerably ameliorates the efficiency of the
corresponding knowledge representation. To support the development of strategies one can try
to make a computer tool with a language to represent strategies and with possibilities to easily

3

modify them, preferably on-line. A system of this kind had been implemented by my PhD student
V. V. Tarasov [Tar96] on the ideas mentioned in [Sli91] and considerably developed by us during this
work. It deals with symbolic limits, but can be tuned to similar domains based on mathematical
terms manipulations.

The system gives tools to represent user’s semantical considerations by looking for particular
patterns in formulas and proofs. In fact, the common basis for strategy representation language
is a language of occurrences. For example, for the problem of symbolic limits, we try first of
all to classify the term under treatment, say, as polynomial, rational function, term containing
trigonometric functions and so on. We look for subformulas with knowm limits. We try to commute
the lim-operator with functions etc. In terms of such a language we can describe some features of
formulas to analyze. And in addition we need algorithms to detect the desired patterns. To facilitate
the construction of strategies we use meta-rules of inference search that represent common local
strategies to try to apply.

The system [Tar96] contains tools to define a language to describe the basic rules, a language to
describe patterns, control predicates, control functions and control rules. There are also additional
means to organize, say, backtracking. In a concrete knowledge base the basic rule limx→∞ sin c

x = 0
is written as TSUBST(SL sincdivx inf;lim(arg(u,inf),sin(div(c,u)));0;). Among control
predicates one can find ”The expression of the limit operator occurring in a formula F contains
tgx, ctgx, secx or cosecx” or ”The expression of the limit operator occurring in a formula F is a
difference or a sum of fractions”. All this machinery permit to write a one page strategy that finds
many limits among them limn→∞ ((n + 1)α − nα), where α ∈ R and 0 < α < 1. The latter is
not trivial.

References

[AR83a] The Automation of Reasoning I. Classical Papers on Computational Logic 1957–1966.
Springer Verlag, 1983.

[AR83b] The Automation of Reasoning II. Classical Papers on Computational Logic 1967–1970.
Springer Verlag, 1983.

[Sli75] A. Slissenko. Finite approach to the problem of optimizing theorem-proving algorithms.
Zapiski Nauchnykh Seminarov LOMI, 49:123–130 (Russian), 1975. J. of Soviet Mathe-
matics, 10:4(1978):597–603 (English).

[Sli91] A. Slissenko. On measures of information quality of knowledge processing systems. Infor-
mation Sciences: An International Journal, 57–58:389–402, 1991.

[Tar96] V. V. Tarasov. Inference search control in expert systems based on explicit meta-rules of
inference search. PhD thesis, St. Petersgurg Institute for Informatics and automation,
Russian Academy of Sciences, 1996. (Russian.).

4

