Impossibility of
‘Essential’ Real-Time Garbage Collection
in the General Case

D. Beauquier! T. Crolard! A. Durand' A. Slissenko'!

Laboratory for Algorithmics, Complexity and Logic (LACL)
University Paris 12

{beauquier,crolard,durand,slissenko } @Quniv-paris12.fr

Abstract

We give an example of a computational problem for which no RAM (random access
machine) can ensure a non-trivial garbage collection though a large amount of used memory
can be in principle freed starting from some time moment. This example is of theoretical
nature and means only that there can be no universal algorithm for ‘sufficiently good’ real-
time garbage collection applicable in all situations.

1 Introduction

We give an example of computational problem solvable in real-time and such that a simple real-
time RAM that solves it starts from a certain time moment to ‘liberate in principle’ large pieces
of memory. That means that it will not use these pieces of memory for its future work. However,
non-trivial garbage collection is impossible for this problem whatever be any other RAM solving
it. To describe the latter property we introduce an adequate space measure for real-time RAMs.
This result shows only principle difficulties to construct a universal, always applicable algorithm
for real-time garbage collection and underlines the necessity to exploit particular properties of
concrete problems to develop practical real-time garbage collectors.

Garbage collection is an automatic reclamation of computer storage [1]. The reader can find
a good survey of this subject in [5, 6], and address to [2] for further reading on various advanced
topics in garbage collection. Our result draws attention to the importance of theoretical analysis
of domains of applicability of real-time garbage collectors.

In the next section 2 we give the notions we exploit, in particular, the space measure for real-
time algorithms to model garbage collection and the problem of computing a value of a Boolean
function (CVBF). Then we illustrate an ‘ideal garbage collector’ in terms of Kolmogorov—
Schénhage algorithms? to get some estimation of the needed memory. Our result and a proof
are in section 3.

! Address: Dept. of Informatics, University Paris 12, 61 Av. du Gén. de Gaulle, 94010, Créteil, France

* Member of St-Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, St-
Petersburg, Russia.

2A. N. Kolmogorov introduced the first version of his pointer machines using topological terms in 1953 [3];
the storage was a graph of bounded degree. In his lectures in the 60ies he used a notion (formally more general)
where the storage was a digraph with unbounded fan-in. The latter notion was independently introduced by
A. Schénhage in 1970 [4] under the name of storage modification machine (SSM). Later A. Schénhage proved
several remarkable theorems related to this notion (in particular, linear time multiplication by SSM, real-time
simulation of multi-dimensional Turing machines by SSMs).

2 Space Measure and Computational Problem

As a model of computation we consider RAM (Random Access Machine) — any version poly-
time equivalent to Turing machines will suit. We assume that the registers of a RAM can
contain strings over alphabet B=, {0,1} that are interpreted as integers. We permit multi-
plication/division and Boolean operations under the constraint that the length of registers is
bounded by logn + O(1), where n is the length of the input, — this gives rather powerful model
for real-time computations. By real-time computation we mean a computation that makes no
more than a constant number of steps to process each current ‘component’ of the input (that
can be viewed as written on an input tape that is one directional and read-only). Usually a
component is a string of a fixed length, for example, a character — this will be our components.
If we admit as input alphabet the alphabet B = {0,1} then we take as components strings of
some fixed length (length 2 will be sufficient).

Remind that space measure for RAMs is defined as the maximal register used during com-
putation. For example, if we used registers 1, 17 and 100, then the space size is 100. It is not
the number of registers (in our example — 3) because the number of a register contains also
an information that can be exploited to accelerate the computation. In other words, the used
memory is defined always as the minimal initial segment of natural numbers that contains all
the used registers.

Space measure for real-time garbage collection: GCMem.

Garbage collection concerns some kind of freeing the memory that will not be used in further
computations. Take a time moment t. We will refer to time moment strictly smaller that ¢ as
before t, and to time moments that are greater or equal to t as after t.

What memory is needed for an algorithm A after a time moment ¢t? Better to formulate
this question as “What memory cannot be used by other processes at time ¢t?” The memory to
discuss is constituted by registers into which A wrote before ¢t and by registers from which 4
reads after t. But if after ¢ there was a writing into a register before reading there is no need
to count it at ¢ — its contents will be defined at the further moment of writing even if we free
it at t. So we count only registers from where A read after ¢ without writing into them before
reading. Now imagine that A wrote before ¢ into some 100 registers but read only from 3 of
them. Clearly, only 3 registers are necessary for the functioning of A, others can be used by
other processes. But if A wrote into 3 registers before ¢t and reads from 100 registers after ¢t we
cannot use these 100 registers for other processes. So only the latter registers are important to
define the necessary memory.

Definition. Thus, we define GCMem 4(W,t) for an algorithm A that processes an input W
as the maximal register that was used by A for reading from it after ¢ without writing into it
between t and the first moment of reading after ¢.

Problem: Calculating a Value of a Boolean Function (CVBF).

The problem we consider has the following inputs. Each input consists of two parts, namely, of
a Boolean function and of argument. The first part of the input will be called function and the
second part will be called query. We will take a straightforward table representation of Boolean
functions as it is not so essential. So the function part of an input is a list of 2" (for an arbitrary
n) distinct strings of the form (a; ...a,,b), where a;,b € B. Here list (a; ...a,) represents an
argument of a Boolean function and b represents its value for this argument. The query part
of the input is an argument of the Boolean function, i. e. a list (ay ...ay), where a; € B. The
problem is to output the value of the function for the argument given by the query.

And our goal is to give a lower bound to the space measure introduced above. To compare our
lower bound with the memory ‘really needed’ to solve the problem of CVBF we give its solution

by a Kolmogorov—-Schonhage algorithm, that we will denote Axg. Algorithm Ags when reading
the function part of an input constructs a usual complete binary tree whose leaves are labeled
by the values of the function. A query is processed in a straightforward way: while reading of
the query Agg cuts off all redundant branches of the tree, so after having read [bits of the
query it keeps only a subtree of the depth (n — 1) whose size (of representation in the memory)
is 0(2("*1)). The latter value is the memory that cannot be freed by this moment of time.

Denote by KSspace the space measure for Kolmogorov-Schonhage algorithms: KSspace 4(W, t)
is the number of vertices of the memory graph of algorithm A reachable from the control (active)
vertex at time ¢t when processing an input W.

3 Impossibility Result and Its Proof

We can formulate our result in terms of the two space measures introduced above.

Main Theorem. There are real-time computational problems such that for any RAM A solving
such a problem and for some Kolmogorov—Schonhage algorithm B solving the same problem there
are inputs W and time moments t such that

KSspaceg(W, t) <0 log® N
GCMemy (W, t) — N)

where N denotes the length of the input W.

Proof.
Let a be any RAM that solves the problem of CVBF and consider its work on the set 28" of
Boolean functions of n arguments.

Denote by L the maximum of GCMem,, (W, t) over all W for time t corresponding to the
end of processing of function part of input.

During the steps of processing of the first £ bits of the query part of input algorithm « can
change O(k) registers (here we use the fact that « is a real-time algorithm). This change can be
described as a string of the form ((ri,v1),...,(rs,vs)), where s = O(k), r; is a register number
and v; is the last new value put into r; by the end of processing of the kth bit of query. For 2%
possible values of k first bits of a query we can code possible changes of this form as a binary
tree of height k& whose each leaf is supplied with a list ((r1,v1),..., (s, vs)).

A Boolean function of n arguments can be coded with the help of the following informations:
(i) numbers n and k, 1 < k < n, (ii) the list (wo,...,wr) of the contents of registers 0, ..., L) of
a that are produced when a process queries concerning this function, (iii) a tree T' of height k
whose leaves are supplied with lists ((r1,v1),..., (s, vs)) as described above, (iv) a value of the
instruction counter of a.

Denote by (the following RAM that calculates values of a Boolean function from the just
described code as follows. Machine [receives as input a code of a Boolean function of the form
described above and an argument of this function. It puts in its first L registers the contents
(wo, ..., wr), memorizes the tree T" and starts to process the query. This processing follows
the branch of T' corresponding to the k-prefix of the argument and thus arrives at a list of the
form ((r1,v1),...,(rs,vs)). Then [writes v; into r;. After that 3 launches (more precisely,
simulates) « starting with the instruction given by the instruction counter. Here we presume
that the program of « is ‘included’ into the program of 3. Remark that § is not demanded to
be real-time.

The size of such a coding of Boolean functions is bounded from above by

(L+0(2" - k) + O(logn) + O(1)). (1)

Each of two machines a and 8 computes the values of Boolean functions of n arguments for
respective codings. We wish to estimate from below the length of coding of Boolean functions
of n arguments with respect to 3.

The standard counting argument implies that for sufficiently large n at least one function,
say, f has the code of the size greater than 2™ — A, where the constant A depends only on 3 (in
fact, A is the bit length of 3, and the lower bound takes place for almost all functions). This
lower bound and (1) give for f the bound

(L+0O(2% - k) + O(logn) + O(1)) > (2" — A)
that can be rewritten as

L>2"—C(2% -k —logn — 1), (2)

for some constant C. Take k = n—logn. Then the memory of KS-algorithm solving the problem
of CVBF after processing k bits of query is O(n) (as the depth of the remaining tree is only
logn, and the GCMem of a remains exponential in n — see (2). So the rate of memories of the
KS-algorithm and « is bounded from above by

AR S —
2n —C(-2k -k —logn—1)) — 20 1 - C(2k.k—logn—1) -

2

C k C k 2 n

n
on
(To get this bound it suffices to choose k that insures 2%(2”f ‘k—logn—1) <@ with0<6<1.)
Remark now that the length of the input is N = O(n2") (because of our table representation

of Boolean functions). So in terms of the input length n = O(log N) and 2" = % > ¢

log N *
From here and (3) we get the estimation of the Main Theorem.]

References

[1] Andrew W. Appel. Garbage collection. In Peter Lee, editor, Topics in Advanced Language
Implementation, pages 89-100. MIT Press, 1991.

[2] Yves Bekkers and Jacques Cohen, editors. Proceedings of International Workshop on Mem-
ory Management, volume 637 of Lecture Notes in Computer Science, St Malo, France, 16—
18 September 1992. Springer-Verlag.

[3] Kolmogorov. O ponyatii algoritma (on the concept of algorithm). Uspekhi Matem. Nauk,
8(4(56)):175-176, 1953. In Russian.

. Schénhage. Universelle Turing Speicherung. In Automatentheorie und Formale Sprachen,
4] A. Schénh Uni lle Turing Speich In A heori d F le Sprach
pages 369-383. Bibliogr.Instutut, Mannheim, 1970.

[5] Paul R. Wilson. Uniprocessor garbage collection techniques. In Bekkers and Cohen [2].

[6] Paul R. Wilson. Uniprocessor garbage collection techniques. Technical report, University of
Texas, January 1994. Expanded version of the IWMM92 paper.

