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de systèmes d’information médicaux sécurisés :
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Abbreviations

AAST annotated abstract syntax tree

AC Access Control

ASTD Algebraic State Transition Diagram

ATL ATLAS Transformation Language

BPCL Business Process Constraint Language

BPEL Business Process Execution Language

CSP Communicating Sequential Processes

DynAC Dynamic Access Control

EB3SEC eb3Secured

ESB Enterprise Service Bus

HTTP Hypertext Transfer Protocol

IS Information System

IS information systems

LOTOS Language Of Temporal Ordering Specification

MDA Model Driven Architecture

OASIS Organization for the Advancement of Structured Information Standards

OCL Object Constraint Language

PAP Policy Administration Point

PDP Policy Decision Point

PEM Policy Enforcement Manager

PEP Policy Enforcement Point

PIP Policy Information point

PIM Platform Independant Model

PSM Platform Specific Model

RBAC Role Based Access Control

SAC Static Access Control

SELKIS SEcure heaLth care networKs Information Systems

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SoD separation of duty
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SoDA separation of duty algebra

WS Web Service

WSDL Web Services Description Language

WS Web services

WS-BPEL Web Services Business Process Execution Language

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

XPath XML Path Language

XSD XML Schema Document
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Introduction
In order to provide an implementation of access control policies in the Model Driven Architecture (MDA)
approach, a PIM and a PSM metamodels are required. Then we can express translation rules between the
two levels. Our PIM language for static access control rules is UML/B and for dynamic access control
rules is the ASTD notation.
In this report, we present the PSM metamodel of our target architecture for the PSM level. Then we
present a PIM metamodel combining static and dynamic B access control specifications. Finally we
introduce a translation mechanism from ASTD specifications to Business Process Execution Language
(BPEL) processes following the PSM metamodel.

Part I

PSM Metamodel
In the WP4 of the SELKIS project proposal, Information Systems (ISs) are implemented using Web
services (in the broad sense). Security features are implemented in the Policy Enforcement Manager
(PEM). Those services rely on data available in relational databases or eXtensible Markup Language
(XML) based files. Our security framework is based on two mains actors: the Policy Enforcement Point
(PEP) and the Policy Decision Point (PDP). They are responsible of intercepting client application’s
requests to services and applying security policies on those requests. There are two other actors to
consider: the Policy Administration Point (PAP) which allows to manage the security policies in a policy
repository and the Policy Information point (PIP) which provides additional information on request’s
subjects (roles, actions/services, environment, ...) when required by the PDP.

1 Architecture and Target Platform

Figure 17 depicts a typical IS and its interaction with a client application. In this particular view, the
client application sends a request to a WS using standard protocols such as HTTP, WSDL and SOAP.
The request goes through an Enterprise Service Bus (ESB) acting as a middleware for the environment
and a routing point for secure exchanges of messages between communicating partners. In our projects,

PDP

Client

Enterprise Service Bus

Service
DB

1

2

4

5

1: A client sends a request to a service
2: The service receives the request
3: The service executes the request
4: The service returns a response
5: The client receives the response

Core
BPELBPEL 

Engine

PEP

3 Security 
DB

Figure 1: A typical SOA application
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Process level

RBAC level

Data level

PDP core

Figure 2: PDP abstract internal view

Client PEP

PDP

Service
1. Request

2. Request for
    authorization

3. Authorization
    approved

6. Service
    response

4. Client
    request

5. Service
    response

Figure 3: PEP and PDP security schema

the PEM complies with the one specified in the XACML standard from OASIS [22]. It is based on two
main components: the PEP and PDP. Together, they are responsible for intercepting requests from client
applications to services and providing authorization control w.r.t. access decisions for these requests
based on security policies. There are two other auxiliary components to consider: the PAP that provides
facilities for the management of a policy repository and the PIP that supplies additional information
closely related to requests (e.g., roles, actions/services, environment) when required by the PDP.
The PDP has a key role to play in the PEM, since it takes approval/denial decisions based on security
policies. In order to ensure security with a high level of granularity, decisions are based on three dif-
ferent levels of functional security as shown in Figure 18. The work described in this paper focuses on
enforcement of functional security rules associated with the third level, called process level. The reader is
referred to a companion paper for a presentation of aspects related to the two other levels [6]. Functional
security rules defined at the third level concern business processes (collections of related, structured
atomic services). They describe rules that depend on the state of the system (e.g., on the history of the
past events accepted by the system) and are specified at an abstract level using ASTD [9]. Generally
an ASTD takes into consideration a set of security rules, which defines an Access Control (AC) policy.
Indeed, the security rules are put together in the same ASTD by using the parallel composition operator.
At the implementation level, the decision-making task is realized with the aid of a BPEL engine that en-
forces security rules from a BPEL process derived from an ASTD. Therefore, the rules are not attached
to actions or services to secure, nor to entities (e.g., roles, actors) involved in the IS. For example, a
specialist can consult a patient’s health record only when this patient has been referred to him by the
treating physician.
Figure 19 details the interaction between a client and a service through the PEP as well as the interaction
between the PEP and the PDP. In a typical scenario, a client sends a request to a service or a component
of a distributed application (1) along with some user information (identification and role). The request
is intercepted by the PEP, which extracts user information and then formulates an authorization request
for approval/denial by the PDP (2). The PDP takes a decision on whether to approve or deny the client
request (in this scenario the request has been approved by the PDP). This decision, centralized at the
Core component of the PDP, is based on a check performed on the user information database Security
DB (identifiers and roles) and the response from the BPEL engine to a specific request formulated by
the Core. The authorization is reported back to the PEP (3). If the request is allowed by the PEP,
then the PEP allows the original request to reach the requested service (4), which may perform specific
business validations before executing the request (e.g., checking that an account has sufficient funds
before initiating an electronic fund transfer). The response goes through the PEP (5) so that the policy
repository or PAP (if there is any) can be updated with respect to the recently executed request. Finally,
the response is redirected to the client (6). The case in which the request is denied by the PDP is similar,
except that the steps (4) and (5) are superfluous, since an authorization denied response is returned
immediately by the PEP upon a reject from the PDP. In both cases, messages must be sent through
secure channels in order to guarantee confidentiality and integrity of the communication between all
the partners. It should be noted that this schema is a simplification of the security data-flow diagram

Projet SELKIS Livrable 5.1 7
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Figure 4: Subset of the PEM class diagram

described in the XACML standard.

2 Class diagrams

Figure 4 depicts the metamodel of the PEM metamodel. The active components in the diagram
are Interceptor, PEP and PDP. The class Message is used by user application to request services
(or information) from the IS. The Interceptor class is part of the user application and is responsi-
ble to add the required AC parameters (AccessControlParameter) to the Message, thus making it an
AccessControlledMessage. In the prototype Service Oriented Architecture (SOA)-oriented application,
the Interceptor is instantiated as a Simple Object Access Protocol (SOAP) handler. It acts between
the Web Service (WS) proxy in the client application. The main goal of this action is to inject into the
SOAP message of the form E(~x) (E is the requested service and ~x the parameters list) the AC parameters:
the user identifier u, its role r and organization o previously gathered through required authentication.
In this example, AC is exercised based on these three parameters which are instances the subclasses of
the class AccessControlParameter (see Figure 7). The new SOAP message of the form E(〈u, r, o〉; ~x)
exiting from the handler is an instance of the AccessControlledMessage. Any model derived from the
metamodel may consider other AC parameter such as time.

The PEP is an active component of the PEM framework. It enforces AC on service requests routed
from the user application to service implementations. The service requests are received as instances of
the class AccessControlledMessage. Control is then exercised by instances of the class PEP in a process
described by the sequence diagram of Figure 10. 08/02/11 15:51psm-filter.svg
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Figure 5: The PDP uses filters
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2.1 The message hierarchy

AbstractFilters are used by the PDP as depicted in Figure 5. They receive an instance of the
AutorisationDecisionMessage class, which contains elements from the initial user request to a ser-
vice (class Message) with actual values of the parameters (class AbstractParameter), and also values
of the AC parameters — that is parameters on which AC parameters are based. The PDP class synthe-
sizes the AC decision based on the response of its filter collection. The synthesis of the AC decision is
generally based on a simple conjunction function but more sophisticated behaviors may be possible. For
example an algorithm that prioritizes a policy over another in case of emergency might be implemented
by the PDP.

2.1 The message hierarchy

Messages are the mean by which actives components of the PEM framework exchange information
or request services. Message is the base class of all messages. Each message has a collection of
AbstractParameters. A AbstractParameter may hold an input value or an output as a result of a
service request or method call. A Message instance can then be:

• one way i.e. the Message has only input parameters and the sender does not expect a response;

• two way i.e. the Message has input and output parameters
12/01/11 23:55psm-messages.svg
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Message AccessControlParameter

AbstractParameter

MessageCompletedMessage

FunctionalParameter

AccessControlledMessage AutorisationDecisionMessage

acparameters
1..*

acparameters
1..*

parameters
0..*

Figure 6: PSM message hierarchy

As already mentioned earlier, the AccessControlParameters are the base on which AC is exercised.
In most implementations, notably RBAC-based ones — RBAC stands for Role Based Access Control,
these parameters are derived into User, Role, Organization classes, most of which are self-explanatory. 12/01/11 23:47psm-acp.svg
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Organization

AccessControlParameter
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Figure 7: The base access control parameters of the PSM
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2.2 The SAC package

2.2 The SAC package 08/02/11 15:31sac.svg
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sac

Permission StaticPolicy Prohibition

StaticFilter

StaticRule

AccessControlParameter

AbstractPolicyAbstractFilter

policy
1

rules 1..*rules 1..*

policy
1

1..*

Figure 8: Static AC filtering classes

The sac package depicted in Figure 8 contains that allow AC decision making based on Static Access
Control (SAC) policies. A SAC StaticPolicy is a set of StaticRules. Each StaticRule materializes
an association between AC parameters. Most implementation deals with two types of StaticRule:

• Permission allows execution of a service if the actual values of AC parameters in the AccessControlledMessage
matches the values specified by the Permission rule;

• Prohition fobits execution for values of AccessControlParameter defined by the rule.

A SAC StaticFilter— subclass of the abstract class AbstractFilter in the upper package — uses a
SAC StaticPolicy and infers an AC decision when it receives a AutorisationDecisionMessage. The
response of the sac StaticFilter to the PDP is positive — access granted — (or negative — access
denied — depending on the StaticRule type) when the AC parameters provided by the Interceptor
matches the values specified by the StaticRule.

2.3 The DynAC package 08/02/11 15:17dynac.svg
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Figure 9: Dynamic AC filtering classes
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Figure 10: PEP sequence diagram

:PDP :SACFilter
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:PEP

true

:DynACFilter

adMessage(E, u, r, x1, ..., xn)

autorisationDecision?

autorisationDecision?

false

false

alt

Figure 11: PDP sequence diagram

In Figure 9, classes that perfom Dynamic Access Control (DynAC) are depicted. A DynAC DynamicFilter
— subclass of the abstract class AbstractFilter in the upper package — uses a DynAC DynamicPolicy
and its current state (class PolicyState) to infer AC decisions. Instances of the DynamicPolicy class
express constraints at the process level. The constraints may mandate a specific ordering on the ser-
vice requests based on the values of the AC parameters. Regarding the update of the policy state, the
class MessageCompletedMessage is used by the PEP to keep the PDP up to date on whether the IS has
successfully executed the initial request or not.

3 Sequence diagrams
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Part II

PIM Metamodel - B for Access Control
In the following, we present a draft of a B metamodel at the PIM level in order to express AC policies. In
this metamodel, AC rules can be either static or dynamic. According to Neumann and Strembeck in [21],
dynamic rules are defined as rules that can only be evaluated at execution time according to the context
of execution. Static rules are defined as rules that are not dynamic.
Fig. 12 details an early version of the static part of the metamodel by linking it to the PSM architecture
defined in the previous part and to the B metamodel. This part of the specification results from the
translation of UML into B designed by the LIG team.

AccessControlParameter AC Parameter

Permission StaticACRule

StaticPolicy permissionDefinitions

StaticFilter RBAC Model

1..*

1..*

1

1

1 B Constant

B Variable

B Machine

1

1

user

role

AbstractPolicy

AbstractFilter

1 1

PermissionAssignement

permissions

1 1

1

1

1..*

Functional Model

UserAssignements
1

1

Abstract Classes SAC - PSM meta model B Access Control meta model B meta model

<<Includes>>

<<Includes>>

1 1

Figure 12: Static AC PIM Metamodel
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PolicyState DynamicState

DynamicPolicy ACWorkflow

DynamicFilter Dynamic Model

0..1

1

1 B Variable

B Machine

1

AbstractPolicy

AbstractFilter

1 1

0..1

DynamicContext
1

Abstract Classes DynAC - PSM meta model B Access Control meta model B meta model

1 1

1..*

B operation
1..*

<<Includes>>

Figure 13: Dynamic AC PIM Metamodel

Fig. 13 details an early version of the dynamic part of the metamodel by linking it to the PSM architecture
defined in the previous part and to the B metamodel. This part of the specification results from the
translation of ASTD into B designed by the LACL and GRIL teams.

Projet SELKIS Livrable 5.1 13



Part III

From ASTD Access Control Policies to WS-BPEL
Processes Deployed in a SOA Environment
Controlling access to Web services of public agencies as well as private corporations primarily depends
on specification and deployment of functional security rules in order to satisfy strict regulations im-
posed by governments, particularly in financial and health sectors. This paper focuses on one aspect
of the SELKIS and EB3SEC projects related to security of Web-based information systems, namely the
automatic transformation of security rules, instantiated from security rule patterns written in a graphical
notation with a denotational semantics close to statecharts, into WS-BPEL (or BPEL for short) processes.
The latter are executed by a BPEL engine integrated into a policy decision point, a component of a policy
enforcement manager similar to the one proposed in the XACML standard. The main results described
in this part are presented in [7].

4 Introduction

In some business sectors, information systems (IS) are governed by internal organization policies and
government laws. To enforce such policies as well as to prevent data confidentiality and integrity security
breaches, access control is widely used in IS. More precisely, user access to data and functionalities
are filtered, based on well defined policies. Role based access control (RBAC), a methodology which
associates user identities with the data and/or functionalities through their role, is the most implemented
solution. However, it does not solve new problems found in todays common SOA applications. These
applications are not “one user centric” only and implement workflows that may involve interactions with
different users. With respect to workflows, RBAC has little expressiveness power. As an example, RBAC
frameworks cannot implement separation of duty (SoD) properties.
A substantial part of the EB3SEC1 and SELKIS2 3 projects consists in developing a prototype of a PEM
for distributed IS executed in a SOA environment as Web services (WS). Our approach focuses on
three identified levels of access control: the data level, the RBAC level and the process level. In this
paper, we propose an automatic implementation of a significant part of the enforcement framework
derived from an access control policy expressed in a high level language. This high level language is
formal, powerful enough to implement common properties encountered in security policies and can also
express many sort of constraints. The implementation relies on a two-steps translation algorithm which
produces an executable BPEL process from a formal specification of an access control policy. Overall,
the enforcement framework follows architectural guidelines proposed by the XACML standard.
The rest of this paper is organized as follows. Section 5 provides an overview of the formal notation
(ASTD) used for specifying security rules and presents patterns for permission and obligation. The other
patterns, such as separation of duty and prohibition, are only mentioned. The ASTD notation allows for
the combination of state transition diagrams using process algebra operators. This high-level notation is
appropriate for specifying security rules at the process level and is independent from any implementation
environment. Section 6 describes the architecture of SOA applications our project targets as well as
the three level of granularity we have identified previously. Enforcement framework components are
also depicted as well as two typical message exchange scenarios between the principal components.
Section 7 details a translation schema that transforms an ASTD specification into a BPEL process along
with its WSDL interface and XSD type definitions, which are deployed in a SOA environment so that
they constitutes the core of the PDP. This translation schema is mechanizable as far as the security

1EB3SEC stands for eb3Secured.
2SELKIS is an acronym for SEcure heaLth care networKs Information Systems.
3Project ANR-08-SEGI-018 in France http://lacl.univ-paris12.fr/selkis/
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Figure 14: ASTD examples

rules obey to the aforementioned patterns. An error-prone development phase is then replaced by a safe
translation procedure. Section 8 describes strongly related work and points out differences with some
aspects developed in this paper. Section 9 concludes this paper with ongoing and future aspects of this
work.

5 Expressing Security Rules with an ASTD

In most security frameworks, a security policy is a combination of many security rules. Researchers and
security practitioners [4, 16, 17, 28] have considered the following categories for security rules:

• permission which authorizes actions to be executed;

• prohibition which forbids actions to be executed;

• separation of duty which expresses the fact that a set of tasks cannot be executed by the same users
or roles;

• obligation which forces a user to perform an action sometimes in the future after he has performed
a specific action, in other words two distinct actions must be performed by the same user.

Such rules can be expressed by using ASTD which is a graphical and formal notation initially created to
design IS. It has been inspired from statecharts [10] and process algebras like CSP and LOTOS. Since
the ASTD notation is formal, a wide range of verification and validation tools can be used with ASTD-
based models. Especially, Milhau et al.[20] devised a transformation from ASTD to Event-B [1] which
has solid and well established tools for proofs and formal verification. The ASTD notation can also be
used to define security rules that restrict the free behavior of IS so that it does not violate organizational
access control policies.
An ASTD is a hierarchical transition system. The dynamics is based on transitions labeled with events of
the form t(~x)[φ], where ~x is a list of parameters (which can be empty) and φ is an optional guard that must
hold to enable the transition to fire. States are typed. Possible types are elementary state, automaton,
guard, choice, etc. A special feature of the ASTD notation is a quantified version of parameterized
synchronization and choice operators. In addition, each non-elementary state may carry parameters as
events do. Figure 14a shows a Kleene closure (∗) in which, either t1 or t2 will be executed repetitively.
Figure 14b shows a guard that executes the action t only if v > 1 where v is the parameter of the ASTD.
The complete definition of the ASTD notation and its formal operational semantics is available in [8].
Concerning expression of security policies with ASTD, transitions are augmented with two parameters
to take into account the user identity and his role while executing an action: 〈u, r〉 where u is the user
identifier and r his role.
Due to space limitation, only permission and obligation patterns are detailed in the sequel. Figure 15a
shows the ASTD pattern for permission. It enables the execution of action t1 (to tn respectively) with
parameters ~x1 (to ~xn respectively) by user u1 (to un respectively) acting with role r1 (to rn respectively).
A Kleene closure (∗) is used, since an action can be repeatedly executed. Figure 15b illustrates an
instance of this pattern. Adrian and Boris have permission to execute actions deposit and cancel
when acting with roles clerk and banker respectively. The symbol “–” denotes a don’t care value for a
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parameter (account number and amount in the case of a deposit). Figure 16a includes the ASTD pattern
for obligation. With such a rule, actions t1 to t2 must be executed by the same user u. As illustrated in
Fig. 16b, deposits from a client must be always executed by the same cashier, unless the operation is
done by the head office. Figure 14c illustrates a simple SoD constraint which is an instance of the SoD
pattern. It states that actions deposit and validate must be executed by two different users (u , u′).
It should be noted that limiting security rules to patterns makes it possible to derive BPEL processes from
these particular forms of rules. Indeed, automatic translation regardless of the ASTD structure represents
a complex and challenging problem which is out the scope of our projects.

6 Architecture and Target Platform

Figure 17 depicts a typical IS and its interaction with a client application. In this particular view, the
client application sends a request to a WS using standard protocols such as HTTP, WSDL and SOAP.
The request goes through an ESB acting as a middleware for the environment and a routing point for
secure exchanges of messages between communicating partners. In our projects, the PEM complies
with the one specified in the XACML standard from OASIS [22]. It is based on two main components:
the PEP and PDP. Together, they are responsible for intercepting requests from client applications to
services and providing authorization control w.r.t. access decisions for these requests based on security
policies. There are two other auxiliary components to consider: the PAP that provides facilities for the
management of a policy repository and the PIP that supplies additional information closely related to
requests (e.g., roles, actions/services, environment) when required by the PDP.
The PDP has a key role to play in the PEM, since it takes approval/denial decisions based on secu-
rity policies. In order to ensure security with a high level of granularity, decisions are based on three
different levels of functional security as shown in Fig. 18. The work described in this paper focuses on
enforcement of functional security rules associated with the third level, called process level. The reader is
referred to a companion paper for a presentation of aspects related to the two other levels [6]. Functional
security rules defined at the third level concern business processes (collections of related, structured
atomic services). They describe rules that depend on the state of the system (e.g., on the history of the
past events accepted by the system) and are specified at an abstract level using ASTD [9]. Generally an
ASTD takes into consideration a set of security rules, which defines an access control policy. Indeed,
the security rules are put together in the same ASTD by using the parallel composition operator. At the
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Figure 15: ASTD pattern for permission
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Figure 19: PEP and PDP security schema

implementation level, the decision-making task is realized with the aid of a BPEL engine that enforces
security rules from a BPEL process derived from an ASTD. Therefore, the rules are not attached to
actions or services to secure, nor to entities (e.g., roles, actors) involved in the IS. For example, a spe-
cialist can consult a patient’s health record only when this patient has been referred to him by the treating
physician.
Figure 19 details the interaction between a client and a service through the PEP as well as the interaction
between the PEP and the PDP. In a typical scenario, a client sends a request to a service or a component
of a distributed application (1) along with some user information (identification and role). The request
is intercepted by the PEP, which extracts user information and then formulates an authorization request
for approval/denial by the PDP (2). The PDP takes a decision on whether to approve or deny the client
request (in this scenario the request has been approved by the PDP). This decision, centralized at the
Core component of the PDP, is based on a check performed on the user information (identifiers and roles
in Security DB) and the response from the BPEL engine to a specific request formulated by the Core. The
authorization is reported back to the PEP (3). If the request is allowed by the PEP, then the PEP allows
the original request to reach the requested service (4), which may perform specific business validations
before executing the request (e.g., checking that an account has sufficient funds before initiating an
electronic fund transfer). The response goes through the PEP (5) so that the policy repository or PAP
(if there is any) can be updated with respect to the recently executed request. Finally, the response is
redirected to the client (6). The case in which the request is denied by the PDP is similar, except that
the steps (4) and (5) are superfluous, since an authorization denied response is returned immediately by
the PEP upon a reject from the PDP. In both cases, messages must be sent through secure channels in
order to guarantee confidentiality and integrity of the communication between all the partners. It should
be noted that this schema is a simplification of the security data-flow diagram described in the XACML
standard.

7 Transforming an ASTD Access Control Specification into a BPEL Pro-
cess

The algorithm, that translates an ASTD access control specification into a BPEL process, includes two
phases since an intermediate representation in an AAST form is more convenient for computation pur-
poses. For a technical reason introduced in Sect. 7.8 (the use of a specific tool for implementing the
transformation), the AAST notation is considered as an intermediate language called L1. The algorithm
generates a BPEL process along with its WSDL interface and XSD type definitions. The transformation
is event-based in the sense that the BPEL process mimics the flow of events described by the ASTD.

7.1 The BPEL Process Language

WS-BPEL stands for Web Service Business Process Execution Language. It is basically an XML lan-
guage for designing business processes independently from enactment engines. BPEL is an OASIS
standard [23] and makes intensive use of other standards. Because tasks are often automated through
WS, it uses WSDL, the standard for describing service interfaces, and XPath, for navigation in XML
variables.
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7.2 Transformation Rules from ASTD to BPEL

1 <repeatUntil >
2 <pick>
3 <onMessage operation="authDect1". . .>
4 . . .
5 </onMessage >
6 . . .
7 <onMessage operation="authDectn". . .>
8 . . .
9 </onMessage >

10 </pick>
11 <condition >false()</condition >
12 </repeatUntil >

Figure 20: Permission BPEL code skeleton

1 <repeatUntil >
2 <sequence >
3 <scope>
4 <!-- t1 BPEL code -->
5 </scope>
6 <scope>
7 <!-- t2 BPEL code -->
8 </scope>
9 </sequence >

10 <condition >false()</condition >
11 </repeatUntil >

Figure 21: Obligation BPEL code skeleton

A BPEL specification defines one process through the XML root element process. Such a process
can be directly run by an enactment engine. It is thus referred to as an executable process. BPEL
provides various basic activities, such as arrival of a message (element receive), reply to a message
(element reply) and invocation of a WS (element invoke). The standard includes more elaborated
constructs like scopes (scope) for variable declaration, loops (e.g., repeatUntil) and conditionals (e.g.,
if). Furthermore, complex parallel processing is possible with the flow element, combined with link to
create dependencies or synchronization points between concurrently running activities.
Our industrial partners both in Canada and France are replacing their legacy systems using SOA plat-
forms. As BPEL integrates very well within such environments, it is an appropriate choice to enact
security processes. Since engines deployed in a distributed environment are bundled with technical secu-
rity characteristics (e.g., encryption protocols, reliable messaging, scalability), any proper BPEL engine
would provide such functionalities at no additional cost. Another motivation behind the choice of BPEL
is the work done to verify properties on BPEL processes [3], which allows to check properties on the
final process using Event-B [1] and the Rodin platform [2].

7.2 Transformation Rules from ASTD to BPEL

The proposed transformation is tailored for the security rules patterns expressed with the ASTD notation.
Each pattern is transformed into a set of adequate BPEL elements. This section provides a skeleton
overview of these BPEL elements for the permission and obligation patterns.
Intuitively, pattern permission is implemented by a repeatUntil BPEL activity. As shown in Fig. 15a,
the events t1 to tn have the same outgoing state 0, thus introducing a pick activity (see Fig. 20). For
this pattern, the interaction between the PEP and the PDP regarding a permission goes shortly as fol-
lowing: when the part of the BPEL code corresponding to the pattern is testing, a request of the form
authDect(〈u, r〉, ~x) (where t is the event, u and r the user and role respectively, ~x the event’s parameters)
is received by the pick activity. If t < {t1, ..., tn}, then the request is immediately denied since the pick
element cannot process it. Otherwise, the processing goes further in the corresponding onMessage ele-
ment where the user identity and role as well as event’s parameters are tested against the values encoded
in the BPEL code from the formal specification. Whether or not the match fails, the test will loop due to
the upper repeatUntil element.
In the same way, an obligation rule is implemented by a repeatUntil BPEL element. Events t1 and t2 in
Fig. 16a are transformed into a set of elements wrapped into a sequence BPEL element. Figure 21 is a
skeleton of the transformation. Table 1 summarizes the mappings used to guide the transformation rules.

7.3 L1: An Intermediate Language between ASTD and BPEL

L1 is a notation for AAST. Particular data fields are added in the nodes in order to calculate <link/>
BPEL elements required to manage dependencies that arise when dealing with the parameterized syn-
chronization construct. Leafs have a node type, empty(left links, right links) or message(left links, t, right links),
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7.3 L1: An Intermediate Language between ASTD and BPEL

where left links and right links represent control flow dependencies between activities of a BPEL pro-
cess, and t a transition from an ASTD automaton. Node type empty are useful to create synchronization
points when dealing with ASTD synchronization. Internal nodes have also a node type in accordance
with the ASTD operators:

1. sequence(activity1, ..., activityn) represents the sequence execution flow of activity1 to activityn
(parameters named activity represent subnodes of the tree);

2. synchronization(∆, activity1, activity2) represents the synchronization between the threads associ-
ated to processes activity1 and activity2 over the common events set ∆;

3. kleene closure(activity) represents the repetition of activity;

4. prohibition choice(activity1, ..., activityn) represents the choice between activities that prohibit ex-
ecution of some events;

5. guard(p, activity) represents the execution of activity if the predicate p holds;

6. choice(branches) represents the choice of a thread to execute based on the first incoming message,
the other choices are discarded (a branch can be viewed as a pair 〈message(l, t, r), activity〉);

7. quantified choice(v,T, activity) represents the execution of one thread of activity for a value of
v ∈ T ;

8. parameterized synchronization(v,T, activity) represents the interleaved execution of threads of
activity for each value of v ∈ T .

Table 1: Mapping between ASTD and BPEL constructs

ASTD BPEL

Sequence in au-
tomaton

<sequence/>

Choice in automa-
ton

<flow/> with <link/> to manage depen-
dencies between the first action and the re-
mainder of each branch

Kleene closure
✶ <repeatUntil/> with condition set to

false

Guard
⇒ p Add the predicate p to all the first possible

events in the sub-ASTD

Prohibition choice
✶ |

<flow/>

Quantified choice
| v: T <scope/> with two <variable/> based on

v to manage the choice

* kleene_closure

component 
ASTD

sub-tree of
component ASTD

(a) Kleene closure

sequence

message 
{}, t1, {}

message
{}, tn, {}

choice

aut
t1 tn... ......

...

aut

t1 tn

...

...
message 
{}, t1, {}

message
{}, tn, {}

...

(b) Base cases

Figure 22: Construction of the AAST
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7.4 From ASTD to L1

1 <scope>
2 <variables >
3 <variable name="tAuthDecIn" type="authorizationDecisiontRequest"/>
4 <variable name="tAuthDecOut" type="authorizationDecisionResponse"/>
5 <variable name="tServExecIn" type="serviceExecutedRequest"/>
6 </variables >
7 <sources>
8 <!-- Transforming r to actual source links -->
9 </sources>

10 <targets>
11 <!-- Transforming l to actual target links -->
12 </targets>
13 <repeatUntil >
14 <receive variable="tAuthDecIn" operation="authDect".../>
15 <assign>
16 <!-- $tAuthDecOut.access =... -->
17 </assign>
18 <reply variable="tAuthDecOut" operation="authDect".../>
19 <if>
20 <condition >$tAuthDecOut.access = granted </condition >
21 <receive variable="tServExecIn"
22 operation="servExect".../>
23 </if>
24 <condition >$tServExec.exec</condition >
25 </repeatUntil >
26 </scope>

Figure 23: Message

1 <sequence >
2 <!-- activity1 -->

3 . . .
4 <!-- activityn -->

5 </sequence >

Figure 24: Sequence

7.4 From ASTD to L1

To transform an ASTD specification into a BPEL process as a first step, we use some straightforward
rules, as defined in an attribute grammar, to produce a L1 tree. These rules are used recursively when
encountering a component ASTD in a parent ASTD operator, as illustrated for the Kleene closure ASTD
in Fig. 22a. Other internal nodes are created in the same usual way. For instance, a quantified choice
node is created, with fields for the quantified variable v and its type T , and recursively a node for the
activity, when a quantified choice ASTD is encountered. The base cases are shown in Fig. 22b. For
an automaton ASTD, a message is created for each transition in the automaton and inserted as a leaf,
which is linked to an internal node (sequence or choice) w.r.t. the transition function of the automaton.
The sets left links and right links are initially empty and are filled later by a helper function that deduces
dependencies when encountering synchronization ASTD. Also, in accordance with the security rule
patterns, there is no cycle in the automaton avoiding generation of loops in the BPEL process with link
crossing their boundary (this is the cross-boundary restriction of the BPEL standard).

7.5 From L1 to BPEL

Much like the conversion of an ASTD into L1, the conversion of a L1 model into a full BPEL process
follows a set of transformation rules. To be able to execute the process in a BPEL enactment engine, its
WSDL interface and XSD type definitions are also generated using other suitable sets of transformation
rules as described in the next two sections.
A L1 message(l, t, r) is converted into a sequence of BPEL constructs that must perform altogether
the arrival of a request for authorization decision, the effective computation of the access decision, the
response to request for authorization and if required the arrival of a message which indicates if the
initial target service, when authorized, has been effectively executed. This translation schema is given in
Fig. 23 for a simple message which is not a choice child node. For a message under a choice node, the
corresponding BPEL code encompasses an onMessage element rather than a simple receive.
A L1 sequence(activity1, ..., activityn) is converted into a BPEL sequence and the transformation rules
are called recursively to transform the subnodes activity1 to activityn of the sequence as shown in Fig. 24.
A L1 choice node is transformed into a BPEL flow with a link creating a flow dependency between the
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7.6 Generating the WSDL Interface

1 <definitions name="SecurityFilterProcessInterface">
2 <message name="authorizationDecisionResponse">
3 <part name="access" type="AccessType"/> <!-- granted or denied -->
4 </message>
5 <message name="serviceExecutedRequest"/>
6 <part name="exec" type="boolean"/>
7 </message>
8 <!-- Place for message definitions -->

9 <portType name="PDPPortType">
10 <!-- Place for operation definitions -->

11 </portType >
12 <partnerLinkType name="PDPPartnerLink">
13 <role name="securityFilter" portType="PDPPortType"/>
14 </partnerLinkType >
15 </definitions >

Figure 25: WSDL document for the PDP interface

first message and the remaining activity for each branch making up the choice. The choice is imple-
mented by first enabling execution of the first action — which is a leaf of the type message(l, t, r) — of
each branch. Then a link is used to enabled the execution of the remainder of the branch as soon as
the first action is done running. As it is a choice that has to be made between branches, the same link
mechanism is used to disable to other branches that have not been chosen. Due to space limitation, the
corresponding BPEL code is omitted.
A kleene closure node is transformed into a BPEL repeatUntil with its condition set to false. Again,
the subnode is processed recursively using the rules. A L1 guard is not transformed into an enclos-
ing BPEL element. However, its predicate p is added to the execution condition (the AccessType-typed
access part in the output message) of all the first events of the sub-ASTD. AL1 prohibition choice node
is transformed into a flow containing the transformation of each subtree node wrapped in a repeatUntil.
A L1 quantified choice(v,T, activity) node is transformed into an enclosing BPEL scope with two de-
clared variables to manage the choice. The first variable holds the chosen value for v and the second
one holds a Boolean that keeps track of when a value has been chosen or not for v. An additional
variable may be required in order to validate the value passed to the BPEL process by the PEP accord-
ing to legal values in T .

7.6 Generating the WSDL Interface

The ASTD notation does not provide clauses to define the signature of events that label transitions.
Nonetheless, elements of the form 〈t, 〈p1,T1〉, . . . , 〈pn,Tn〉〉, where t is an event name, pi a parameter
name and Ti a type name, can be inserted into a list which is attached to the corresponding ASTD. A
WSDL document for the PDP interface, which includes messages, operations and port types, is generated
from the event list of the ASTD specification according to the skeleton given in Fig. 25. In this skeleton,
the first two message types are independent from events. The message type authorizationDecisionResponse
is used when the PDP transmits an access decision, which can be granted or denied, to the PEP (point 3
in Fig. 19). The message type serviceExecutedRequest is sent by the PEP to the PDP in order to update
its state w.r.t the fact that the requested service has been or not executed by the IS. WSDL code snippets
are inserted in appropriate places in this document for each event in the list. For instance, lines 1–7 in
Fig. 26 provide the code snippet for the message used when the PEP makes a request for authorization
to execute the service t (point 2 in Fig. 19). The code snippets associated with messages are inserted at
line 8 in Fig. 25. Similarly, code snippets associated with event signatures are generated according to the
schema in Fig. 26 (lines 10 to 16) and inserted at line 10 in the skeleton.

7.7 From L1 to XSD Type Definitions

In ASTD quantified operators, a variable appears explicitly and its value must belong to a predefined set
of values, which can be expressed in two forms. The first form is an enumeration, T = {x1, . . . , xn}. The
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7.8 Implementation of Transformations with ATL

1 <message name="authorizationDecisiontRequest"/>
2 <part name="u" type="UserType"/>
3 <part name="r" type="RoleType"/>
4 <part name="p1" type="T1"/>

5 . . .
6 <part name="pn" type="Tn"/>

7 </message>
8

9 <portType name="PDPPortType">
10 <operation name="authDect">
11 <input name="inputAuthDect" message="authorizationDecisiontRequest"/>
12 <output name="outputAuthDect" message="authorizationDecisionResponse"/>
13 </operation >
14 <operation name="servExect">
15 <input name="inputServExect" message="serviceExecutedRequest"/>
16 </operation >
17 </portType >

Figure 26: WSDL code for an event signature

resulting XSD code is a simple type enumerating all the values in T as shown in Fig. 27. The name baseT
(line 2) is a base type (integer, float or string) of the simple type (which can be seen as a restriction
of a base type). The base type is determined by an helper function based on the values that are included
in the original set T . The second form is an interval of values, T = [xl, xu]. The resulting XSD code is
still a simple type with a range defined from the lower and upper bounds of the interval (see Fig. 28).
However, baseT is necessarily integer, since it is the only range base type presently supported. All XSD
code snippets are inserted in the same file which is then imported in the main BPEL process file.

7.8 Implementation of Transformations with ATL

In our projects, the principles of model driven engineering are adopted. Therefore, access control policy
specifications are abstract models, BPEL processes, along with WSDL interfaces and XSD type defini-
tions, are concrete models and L1 trees are intermediate models. To implement a transformation from
a model into another sort of model, as described in Sects. 7.4 to 7.7, the ATLAS Transformation Lan-
guage (ATL)4 is used, because its framework is well-suited for conversion of models written in formal
languages described with metamodels. The ATL framework is built on the Eclipse platform5 and pro-
vides both a language to express transformation rules and a toolkit to execute those rules. Since, the
metamodels for BPEL and WSDL already exist in the form of XSD models, only the metamodel has
been defined for the ASTD notation.
In Fig. 29 a model M1 is transformed into a model M2. This is done by providing a transformation
model (i.e., a set of transformation rules) M12M2 which maps elements of M1’s metamodel M1 to
elements of M2’s metamodel M2. The metamodels M1 and M2 as well as ATL are instances of the
Ecore metamodel.

4http://www.eclipse.org/m2m/atl/
5http://www.eclipse.org/

1 <simpleType name="T">
2 <restriction base="baseT">
3 <enumeration value="x1">

4 . . .
5 <enumeration value="xn">

6 </restriction >
7 </simpleType >

Figure 27: XSD code for an enumeration

1 <simpleType name="T">
2 <restriction base="baseT">
3 <minInclusive value="xl">

4 <maxInclusive value="xu">

5 </restriction >
6 </simpleType >

Figure 28: XSD code for an interval
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Figure 29: Transforming a model M1 into a model M2 using ATL

8 Related Work

The ORKA6 project includes a practical approach to specify, develop and deploy access control policies.
In a first step, UML and OCL are used to define RBAC-like access control policies and the associated
constraints, respectively (see [13] for more information on the Role Based Access Control standard).
The constraints express usual notions like SoD and delegation/revocation. The authors advocate that the
UML class diagram of access control policies and OCL constraints used in conjunction with the tool
USE are well-suited to validate, à la model-checking, security rules against different possible RBAC
configurations. Inconsistency or lack of completeness can then be detected. In the second step, RBAC
policies are expressed in CASL7 with the aid of linear temporal logic formulas. The proofs are carried
out by the theorem prover Isabelle8. The latter step is more comprehensive than the former, since it
involves formal proofs. Therefore, this approach is an attempt to fill the gap between practical design
for enforcement of RBAC access control policies and the use of formal methods to verify them. Even
if ORKA, SELKIS and EB3SEC projects share similar goals, SELKIS and EB3SEC go one step further.
Contrary to OCL, the ASTD notation has powerful constructs to take into consideration history of ac-
tivities as required to deal reasonably well with constraints like SoD. Furthermore, since ASTDs can
be automatically translated into BPEL processes under some assumptions, the implementation approach
adopted in our projects seem more appropriate in situations where such constraints are frequently used.
In addition, since ASTD is the only notation used by designers to specify and verify security policies,
there is no need to rewrite constraints in another language if formal proof is required, thus avoiding
possible errors. Another important difference is at the implementation level. The integration of our en-
forcement framework into existing applications is a matter of configuration of the middleware to route
messages from the client to the targeted services through corresponding handlers for the PEP to work
correctly. A change in the interface of a service may require modifications in the access control policy
but no modification at all in the PEP. In the specific PEP mentioned in [25], such a change would require
an update (even if it is a little one) to reflect a new interface version.
The ASTD notation is not the only one that has been adapted to specify RBAC-like access control
policies. Access right constructs have been recently added to the CaSPiS (Calculus of Services with
Pipelines and Sessions) notation [15], which is a calculus to specify Web services by explicitly defining
sessions (conversations between clients and servers) and properties like graceful termination [5]. CaSPiS
in its original version provides a denotational semantics, which has been extended to accommodate
access rights. To the best of our knowledge, no further work has been done to exploit this notation in a
practical framework.
In our projects, transformations are mainly used to obtain implementation code from a high-level speci-
fication. Transformations can also be used in the modeling phase to derive secrecy models from a base
(UML) model by iteratively applying property preserving transformation operations as proposed in [11].
This work is still in its early stages. The main drawback seems related to the expressiveness of UML

6The ORKA Consortium http://www.orka-projekt.de/index-en.htm
7http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL
8http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Projet SELKIS Livrable 5.1 23

http://www.orka-projekt.de/index-en.htm
http://www.informatik.uni-bremen.de/cofi/wiki/index.php/CASL
http://www.cl.cam.ac.uk/research/hvg/Isabelle/


models, which are limited to the RBAC level of Fig. 18.
Bassin et al. use in [4] separation of duty algebra (SoDA), an algebra for SoD developed by Li et al. in
[18], to implement access control policies in a framework where workflow are modeled with CSP [12].
This methodology cannot be used to express other type of constraint like obligation, as it is possible
in our projects. Other various work have been proposed to implement access control on WS. Bertino
et al. in [24] have developed a framework to apply RBAC policies to WS using an XACML encoding.
Since RBAC itself is not tailored for SoD constraints, their framework uses Business Process Constraint
Language (BPCL) to express not only SoD rules but a broader range of constraints. In [28], Yao et al.
present an architecture for access control around services with support for formal RBAC-like policies
which cannot take into account the history of actions. Jajodia et al. propose in [14] a language that
supports multiple access control policies for a single system with a focus on conflict resolution. They
provide the notion of history through a history table. All those frameworks have the same drawback:
when they do not support at all constraints like SoD, they use different notations or mechanisms to
overcome this limitation. In our projects, we use ASTD as a unified, intuitive and powerful notation to
express permissions as well as various constraints including ordering constraints and SoD in particular.
There are other work around BPEL and formal notations. Gibbons et al. describe in [27] an approach
to design workflows using CSP. Their methodology is based on the specification of some control flow
and state based patterns originally defined by van der Aalst. The latter has define a formal model of
workflows in [26] using Petri nets, enriched later by Massuthe et al. in [19]. Both notations have each
their disadvantages w.r.t. access control and verification. On one hand CSP does not support state
variables and are not well suited for liveness properties. On the other hand, Petri nets does not support
quantification which is an important feature when dealing with IS.

9 Conclusion

The aim of the method presented in this paper is to deploy access control policies in a PDP automatically.
Security managers are able to specify such policies at the process level using a rigorous notation. The
policies are enacted in a BPEL engine as part of an access right enforcement framework. In future
work, PEP and PDP will be integrated into a larger framework where additional functionalities (e.g.,
policy edition for the three levels in Fig. 18) will be provided. The drawback of the approach presented
in this paper is linked to the transformation method. Indeed the BPEL process derived by applying
transformation rules reproduces the flow of events specified by an ASTD. When the policy is updated,
the BPEL process and thus its current execution state have to be recreated from scratch. A way to
avoid this is to record ASTDs as XML documents and exploit a BPEL engine as an interpreter for those
documents. Specifically, an ASTD specification would be transformed into an XML variable in the BPEL
process, and so would be the current state of the ASTD. Since BPEL is not suitable for data manipulation
(the assign functionality is rather rudimentary), such an interpreter would require a BPEL engine that
provides extension points to deal with adequate XML data manipulation and complex computation. For
instance, Oracle BPEL Process Manager9 and GlassFish ESB v2.110 support data manipulation through
Java and Javascript code respectively.

9http://www.oracle.com/technology/products/ias/bpel/index.html
10https://glassfish.dev.java.net/
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Conclusion
We have presented a combined PIM metamodel, a PSM metamodel and translation rules for a BPEL
implementation of access control policies.
As future work we will present a B0 PSM metamodel and refinement steps from the combined PIM B
metamodel. We will also compare the different implementations of the access control filter (BPEL, B
and using iASTD).

Projet SELKIS Livrable 5.1 25



REFERENCES

References

[1] Jean-Raymond Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[2] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and
Laurent Voisin. Rodin: an open toolset for modelling and reasoning in Event-B. Software Tools for
Technology Transfer, 12(6):447–466, 2010.

[3] Idir Aı̈t-Sadoune and Yamine Aı̈t-Ameur. Stepwise design of BPEL Web services compositions, an
Event B refinement based approach. In 8th ACIS International Conference on Software Engineering
Research, Management and Applications, pages 51–68, 2010.

[4] David A. Basin, Samuel J. Burri, and Günter Karjoth. Dynamic enforcement of abstract separation
of duty constraints. In 14th European Symposium on Research in Computer Security, pages 250–
267, 2009.

[5] M. Boreale, R. Bruni, R. Nicola, and M. Loreti. Sessions and pipelines for structured service
programming. In 10th IFIP WG 6.1 International Conference on Formal Methods for Open Object-
Based Distributed Systems, pages 19–38, 2008.

[6] Michel Embe Jiague, Marc Frappier, Frédéric Gervais, Pierre Konopacki, Jérémy Milhau, Régine
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[9] M. Frappier, F. Gervais, R. Laleau, B. Fraikin, and R. St-Denis. Extending statecharts with process
algebra operators. Innovations in Systems and Software Engineering, 4(3):285–292, 2008.

[10] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Program-
ming, 8(3):231–274, 1987.

[11] W. Hassan, N. Slimani, K. Adi, and L. Logrippo. Secrecy UML method for model transformations.
In 2nd International Conference ABZ Short Papers, pages 16–21, 2010.

[12] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–
677, 1978.

[13] INCITS. Role Base Access Control. ANSI, 2004.

[14] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian. Flexible support
for multiple access control policies. ACM Transactions on Database Systems, 26(2):214–260, 2001.

[15] M. Kolundzija. Security types for sessions and pipelines. In 5th International Workshop on Web
Services and Formal Methods, volume LNCS 5387, pages 175–190, 2009.

[16] P. Konopacki, M. Frappier, and R. Laleau. Expressing access control policies with an event-based
approach. Technical Report TR-LACL-2010-6, LACL (Laboratory of Algorithms, Complexity and
Logic), University of Paris-Est (Paris 12), 2010.

Projet SELKIS Livrable 5.1 26



REFERENCES

[17] P. Konopacki, M. Frappier, and R. Laleau. Modélisation de politiques de sécurité à l’aide d’une
algèbre de processus. RSTI - Ingénierie des systèmes d’information, 15(3), 2010.
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[20] Jérémy Milhau, Marc Frappier, Frédéric Gervais, and Régine Laleau. Systematic translation rules
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