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Motivation

From probabilistic discrete-event systems to Markov chains (MCs)

I Probabilistic systems are not necessarily memoryless (timeouts, packet
arrivals, etc.).

I However during the modeling and analysis process, one often encounters
Markov chains (e.g. the embedded Markov chain of a semi-Markovian
process).

Why Interval Markov Chains (IMCs)?

I Estimation of the transition rates through statistical experiences leading to
confidence intervals.

I Abstraction of events during the modeling step or abstraction of states during
the analysis step.
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Analysis of IMC

First works

I Introduction of the formalism and study of conformance relations between
models.
(Jonsson, Larsen LCS’91)

I Methods for computing the parameters of an IMC.
(Kozine, Utkin Reliable Computing 2002)

Probabilistic model-checking

I Analysis of the model checking of PCTL over IMCs: in PSPACE (via the
existential theory of reals), NP-hard and coNP-hard.
(Sen, Wiswanathan, Agha TACAS’06)

I Generalization for a new logic ω-PCTL: still in PSPACE.
(Chatterjee, Sen, Henzinger FOSSACS’08).
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Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations

I Algorithms in PSPACE are impractical for large IMCs.

I Some useful properties cannot be expressed even with ω-PCTL.

Goal: semi-decision procedures based on stochastic comparison

I Generally different magnitude orders between the requirement and
implementation probabilities.
Thus the don’t know case should seldom occur.

I The problem is reduced to the model checking of MCs.
This should lead to a significant improvement w.r.t. time complexity.



4/24

Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations

I Algorithms in PSPACE are impractical for large IMCs.

I Some useful properties cannot be expressed even with ω-PCTL.

Goal: semi-decision procedures based on stochastic comparison

I Generally different magnitude orders between the requirement and
implementation probabilities.
Thus the don’t know case should seldom occur.

I The problem is reduced to the model checking of MCs.
This should lead to a significant improvement w.r.t. time complexity.



5/24

Outline
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Interval Markov Chain
Syntax

An IMC M(P−,P+) = (S,P−,P+, L) is defined by:

I S, the finite set of states which are labelled by atomic properties
through the mapping L;

I P− (resp. P+ with P+ ≥ P−), a sub-stochastic (resp. super-stochastic)
matrix:

∀s ∈ S
∑
t∈S

P−[s, t] ≤ 1 ≤
∑
t∈S

P+[s, t]

Semantic
A DTMC with transition probability matrix P over S is said to belong to
M(P−,P+) (denoted P ∈M(P−,P+)), if:

∀s, t ∈ S P−[s, t] ≤ P[s, t] ≤ P+[s, t]

W.l.o.g. we assume that:

P−[s, t] ≥ 1−
∑
t′ 6=t

P+[s, t′] ∧P+[s, t] ≤ 1−
∑
t′ 6=t

P−[s, t′]
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An IMC with two associated DTMCs
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Optimal values
for cumulative transition probabilities

Individual transition probabilities

Bounds can always be reached. For every s, t ∈ S, there is a P ∈M(P−,P+) with
P[s, t] = P+[s, t] and a P ∈M(P−,P+) with P[s, t] = P−[s, t].

Let s ∈ S and S ′ = {s1, . . . , sm} ⊂ S = {s1, . . . , sn}
How to maximize

∑
t∈S′ P[s, t] for possible P in M(P−,P+)?

I Maximize one by one the probability transition taking into account the
constraints updated by the previous choices.

I More formally, let sum =
∑
j<iP[s, sj ]. Then:

P[s, si] = min(P+[s, si], 1− sum−
∑
j>iP

−[s, sj ]);

Observations
I There is a similar algorithm for minimization.

I Different subrows P[s,−] are possible depending on the ordering of S ′.
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IMC for sub-stochastic matrices
When model checking MCs, one produces MCs with an absorbing state
or equivalently sub-stochastic matrices. So:

An IMCM(P−,P+,out) for sub-stochastic matrices is enlarged with a vector out
over states such that P−,P+,out fulfill for all s, t ∈ S:

I 0 ≤ P−[s, t] ≤ P+[s, t] ∧
∑
t′∈S P−[s, t′] + out[s] ≤ 1

I P+[s, t] ≤ 1−
∑
t′ 6=tP

−[s, t′]− out[s]

A sub-stochastic matrix P over S belongs to M(P−,P+,out) if:

∀s, t ∈ S P−[s, t] ≤ P[s, t] ≤ P+[s, t] ∧
∑
t′ 6=tP[s, t′] ≤ 1− out[s]
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Stochastic bounds
The survival toolkit: definitions

I Let X,Y be two defective distributions over S = {s1, . . . , sn} defined by
pX(i) = prob(X = si) and pY (i) = prob(Y = si). Then:

X ≤st Y if ∀i
∑i
k=1 pX(k) ≥

∑i
k=1 pY (k)

I Let P,P′ be two sub-stochastic matrices over S. Then:
P ≤st P′ if ∀i P[si,−] ≤st P′[si,−]

I Let P be a sub-stochastic matrix over S. Then:
P is st-monotone if ∀i < n P[si,−] ≤st P[si+1,−]

The survival toolkit: some results
I Let X,Y be two defective distributions over S such that X ≤st Y and r be a

decreasing mapping over S. Then: E(r(X)) ≥ E(r(Y ))
I Let P ≤st P′ be two sub-stochastic matrices over S such that either P or P′

is st-monotone. Then:

1. The inequality holds for every power of matrices: ∀k ∈ N Pk ≤st P′k

2. (as a corollary) the mean leaving time of P is greater than the one of P′:
(
P

k∈N Pk)1n ≥el (
P

k∈N P′k)1n
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Stochastic bounds and IMCs

Motivation

How to compute (accurate) bounds for leaving time m[s] and M[s]?
m[s] ≤ minP∈M(P−,P+,out){(

∑
k∈N Pk)1n)[s]}

maxP∈M(P−,P+,out){(
∑
k∈N Pk)1n)[s]} ≤M[s]

Computing the best m[s] is straightforward.

minP∈M(P−,P+,out){(
∑
k∈N Pk)1n)[s]} = (

∑
k∈N(P−)k)1n)[s]

Computing a bound M[s] via stochastic order (Haddad, Moreaux EJOR 2007)

I There is a unique greatest lower bound P• w.r.t. ≤st for M(P−,P+,out)
I which admits a unique greatest monotone lower bounding matrix P? ≤st P•.
I M[s] = (

∑
k∈N(P?)k)1n)[s]

(different bounds are possible depending on the ordering of states)

I Furthermore a priori detecting states s for which M[s] =∞ can be performed
in very efficient way without computing the strongly connected components of
the underlying graph (this paper).
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Outline

IMC model

2 PCTL

Efficient Model Checking PCTL for IMCs

Conclusion and perspectives
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PCTL for MCs
Syntax

φ ::= true | a | φ ∧ φ | ¬φ | P/p(Xφ) | P/p(φ1 U [α,β]φ2) | D/r(φ)

Semantic: path formulas

A path σ ≡ s0, s1, . . . is an infinite sequence of states of the Markov chain.

I σ |= Xφ iff s1 |= φ

I σ |= φ1Uφ2 iff there exists i such that si |= φ2 and ∀j < i sj |= φ1

Semantic: state formulas
I Threshold formulas

based on ProbM(s, ϕ) the probability that a random path in M starting from
s satisfies ϕ

s |= P/p(ϕ) iff ProbM(s, ϕ) / p
I Duration formulas

based on EM(FTime(s, φ)) the mean of the first time that a random path in
M starting from s satisfies φ

s |= D/r(φ) iff EM(FTime(s, φ)) / r
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PCTL for IMCs

Exact semantic

1. ∀M ∈M(P−,P+)M, s |= φ (always satisfied)

2. ∀M ∈M(P−,P+)M, s |= ¬φ (never satisfied)

3. ∃M,M′ ∈M(P−,P+)M, s |= φ ∧M′, s |= ¬φ
(sometimes satisfied and sometimes not)

Approximate semantic induced by a semi-decisional procedure

Six possible alternative information labels for s w.r.t. φ

I s.φ = ∀+ when it is known that case 1 holds.

I s.φ = ∀− when it is known that case 2 holds.

I s.φ = ∃+− when it is known that case 3 holds.

I s.φ = ∃+ when it is known that cases 1 or 3 hold.

I s.φ = ∃− when it is known that cases 2 or 3 hold.

I s.φ =? when no information has been obtained.
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Outline

IMC model

PCTL
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Conclusion and perspectives
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General principles

First step. Split the set of states depending on:

I the current label (∀+, . . .) to be assigned to states;

I the labels of states w.r.t. the sub-formulas occurring in the formula;

I the external path operator of the formula;

I the kind of comparison ≤,≥.

Second step. Build one or more sub-stochastic matrices
I by (appropriately) ordering the states inside the subsets;

I and applying an algorithm for IMC to compute the coefficients (maximizing
cumulative probabilities, st-monotone glb matrix, etc.).

Third step. Perform a standard computation for Markov chains.
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Assigning ∀− for formula P≤p(p U [0,β]q)
First step.
The semi-decision procedure implies a conservative approach. Thus:

I S \ (S1 ∪ S2) = {s ∈ S | s.p 6= ∀+ ∧ s.q 6= ∀+} is the set of states such that
one cannot assign ∀−.
(the probability of satisfaction for the random path could be 0)

I S2 = {s ∈ S | s.q = ∀+} is the set of states such that one can surely assign
∀−.
(the probability of satisfaction for the random path is 1)

I S1 = {s ∈ S | s.p = ∀+ ∧ s.q 6= ∀+} is the set of states that requires a
(conservative) computation.
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Assigning ∀− for formula P≤p(p U [0,β]q)

Second step.
What is the quantity to lower bound?
The probability to reach S2 from S1 without leaving S1 in at most β steps:(∑β−1

k=0(P|S1×S1)
k
)
· r

where r[s] is the probability to immediately reach S2 from s.

So we perform the following substitutions:

I Matrice P− is substituted to P.

I Vector r is substituted by r− = max(
∑
s′∈S2 P−[s, s′], 1−

∑
s′ /∈S2 P+[s, s′])

Third step. Compute m =
(∑β−1

k=0(P−|S1×S1)
k
)
· r−

and assign ∀− to s iff m[s] > p.
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Assigning ∀+ for formula P≤p(p U [0,β]q)

First step.
The semi-decision procedure implies a conservative approach. Thus:

I S \ (S1 ∪ S2) = {s ∈ S | s.p = ∀− ∧ s.q = ∀−} is the set of states such that
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(the probability of satisfaction for the random path is 0)
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Assigning ∀+ for formula P≤p(p U [0,β]q)

Second step.
We now upper bound (∑β−1

k=0(P|S1×S1)
k
)
· r

So we define an appropriate M(P−,P+,out) over S1:

I Matrices P+,P− are the original matrices restricted to S1.

I Vector out is defined by:
out[s] = max(

∑
s′ /∈S1 P−[s, s′], 1−

∑
s′∈S1 P+[s, s′])

I Moreover we upper bound r by
r+ = min(

∑
s′∈S2 P+[s, s′], 1−

∑
s′ /∈S2 P−[s, s′])

Warning In order to apply stochastic bound, r+ must be decreasing. So it implies
a re-ordering of states of S1 before computing P?.

Third step. Compute M =
(∑β−1

k=0(P?)k
)
· r+

and assign ∀+ to s iff M[s] ≤ p.
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Assigning ∃+ for formula P≤p(p U [0,β]q)

First step as in the previous case.

Second step.
Here we guess one (or more) matrix P with a small value of:(∑β−1

k=0(P|S1×S1)
k
)
· r

I We order the states of S: first S2 then S1 and S \ (S1 ∪ S2)
I Inside S1, order the states w.r.t.

r[s] = max(
∑
s′∈S2 P+[s, s′], 1−

∑
s′ /∈S2 P+[s, s′])

I Build P by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.

Third step. Compute M =
(∑β−1

k=0(P|S1×S1)
k
)
· r

and assign ∃+ to s iff m[s] ≤ p.
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Outline

IMC model

PCTL

Efficient Model Checking PCTL for IMCs

4 Conclusion and perspectives
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Conclusion and perspectives
Summary of results

I Efficient semi-decision procedure for model checking IMCs

I Application of stochastic comparisons for model checking PCTL over IMCs

I Handling the interval constrained until and the mean reachability time
operators

I Providing partial answers ∃+, ∃−

Perspectives

I Development of a prototype for high level formalisms
with IMC as possible semantic

I Accuracy of bounds and impact of heuristics

I One year post-doc position available for this project


