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Motivation

From probabilistic discrete-event systems to Markov chains (MCs)

» Probabilistic systems are not necessarily memoryless (timeouts, packet
arrivals, etc.).

» However during the modeling and analysis process, one often encounters
Markov chains (e.g. the embedded Markov chain of a semi-Markovian
process).
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Why Interval Markov Chains (IMCs)?

» Estimation of the transition rates through statistical experiences leading to
confidence intervals.

» Abstraction of events during the modeling step or abstraction of states during
the analysis step.



Analysis of IMC

First works

» Introduction of the formalism and study of conformance relations between
models.
(Jonsson, Larsen LCS'91)

» Methods for computing the parameters of an IMC.
(Kozine, Utkin Reliable Computing 2002)

Probabilistic model-checking

» Analysis of the model checking of PCTL over IMCs: in PSPACE (via the
existential theory of reals), NP-hard and coNP-hard.
(Sen, Wiswanathan, Agha TACAS'06)

» Generalization for a new logic w-PCTL: still in PSPACE.
(Chatterjee, Sen, Henzinger FOSSACS'08).



Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations
Algorithms in PSPACE are impractical for large IMCs.

Some useful properties cannot be expressed even with w-PCTL.



Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations
Algorithms in PSPACE are impractical for large IMCs.

Some useful properties cannot be expressed even with w-PCTL.

Goal: semi-decision procedures based on stochastic comparison

» Generally different magnitude orders between the requirement and
implementation probabilities.
Thus the don'’t know case should seldom occur.

» The problem is reduced to the model checking of MCs.
This should lead to a significant improvement w.r.t. time complexity.



QOutline

© 'MC model

@ PCTL

© Efficient Model Checking PCTL for IMCs

@ Conclusion and perspectives



QOutline

© 'MC model

PCTL

Efficient Model Checking PCTL for IMCs

Conclusion and perspectives



Interval Markov Chain
Syntax
An IMC M(P~,P*) = (S,P~,P™, L) is defined by:

» S, the finite set of states which are labelled by atomic properties
through the mapping L;

» P~ (resp. PT with Pt > P~), a sub-stochastic (resp. super-stochastic)
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An IMC M(P~,P*) = (S,P~,P™, L) is defined by:

» S, the finite set of states which are labelled by atomic properties
through the mapping L;

» P~ (resp. PT with Pt > P~), a sub-stochastic (resp. super-stochastic)
matrix:

Vs€S Y P[s,t] <1< PHs,t]

tesS tesS

Semantic

A DTMC with transition probability matrix P over S is said to belong to
M(P~,P7") (denoted P € M(P~,PT)), if:

Vs,t €S P [s,t] < P[s,t] < PT[s, ¢

W.l.o.g. we assume that:

Pls,t]>1-> PHs,t|APY[s,t] <1-) P [s,1]
t £t t'#t



An IMC with two associated DTMCs

Maximizing a probability transition Minimizing a probability transition
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Optimal values
for cumulative transition probabilities

Individual transition probabilities

Bounds can always be reached. For every s,t € S, thereisa P € M(P~,PT) with
Pls,t] =P*[s,t] and a P € M(P~,PT) with P[s,t] = P~ [s, {].

Let se Sand &' ={s1,...,8m} CS={s1,...,5.}
How to maximize ), s, P|[s,t] for possible P in M(P~,P*)?
» Maximize one by one the probability transition taking into account the
constraints updated by the previous choices.
Pls, s;]. Then:
P[s,s;] = min(P*[s, s;], 1 — sum — 3=, P~ [s, 55]);

> More formally, let sum =3_,_;

Observations
There is a similar algorithm for minimization.

Different subrows P[s, —] are possible depending on the ordering of S’.



IMC for sub-stochastic matrices
When model checking MCs, one produces MCs with an absorbing state

or equivalently sub-stochastic matrices. So:

An IMC M(P~,P™, out) for sub-stochastic matrices is enlarged with a vector out
over states such that P~ , P, out fulfill for all s, € S:

» 0 <P [s,t] <PT[s,t] A D, cs P [s,t'] + out[s] < 1

> PHs,t] <1-37,,, P [s,t'] — out[s]

A sub-stochastic matrix P over S belongs to M(P~,P™, out) if:

Vs,t €S P[s,t] < Ps,t] <PT[s,t] A Y, Pls,t'] <1— out[s]
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The survival toolkit: definitions

» Let X, Y be two defective distributions over S = {s,..., s, } defined by
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The survival toolkit: definitions

» Let X,Y be two defective distributions over S = {s1,..., s, } defined by
px (i) = prob(X = s;) and py (i) = prob(Y = s;). Then:
X< YiftVi ¥, px(k) > _pv(k)
» Let P, P’ be two sub-stochastic matrices over S. Then:
P <, P ifVi Pls;, —| <5t P'[s;, -]
» Let P be a sub-stochastic matrix over S. Then:
P is st-monotone if Vi <n P[s;, —| <s P[sit1, —]

The survival toolkit: some results

» Let X,Y be two defective distributions over S such that X <,; Y and r be a
decreasing mapping over S. Then: E(r(X)) > E(r(Y))

» Let P <,; P’ be two sub-stochastic matrices over S such that either P or P’
is st-monotone. Then:

1. The inequality holds for every power of matrices: Vk € N P* <, P'*
2. (as a corollary) the mean leaving time of P is greater than the one of P’:

(EkEN Pk)ln el (EkeN P/k)ln
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How to compute (accurate) bounds for leaving time m[s] and M]s]|?
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Stochastic bounds and IMCs

Motivation
How to compute (accurate) bounds for leaving time m[s] and M(s]?
m(s] < minpepp- P+,out){(ZkeN P*)1,)[s]}
maxpe p(p-,p+out) L (L ren PF)1n)[s]} < M(s]

Computing the best m([s] is straightforward.

minPeM(P—,P+,out) {(EkeN Pk)ln)[s]} = (ZkeN(P_)k)ln) [s]

Computing a bound M]s] via stochastic order (Haddad, Moreaux EJOR 2007)

» There is a unique greatest lower bound P*® w.r.t. < for M(P~,P", out)
» which admits a unique greatest monotone lower bounding matrix P* < ; P*.
> M[s] = (ZkeN(P*)k)ln)[s]

(different bounds are possible depending on the ordering of states)

» Furthermore a priori detecting states s for which M[s] = oo can be performed
in very efficient way without computing the strongly connected components of
the underlying graph (this paper).
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PCTL for MCs

Syntax
¢u=true|a|pAd | =9 | Pap(X9) | Pap(n U™Plgs) | Dar(9)

Semantic: path formulas

A path o = s¢, s1, ... is an infinite sequence of states of the Markov chain.
» o EXoiff s E o
> 0 |= ¢p1ldgs iff there exists ¢ such that s; = ¢2 and Vj < i s; = ¢y

Semantic: state formulas

» Threshold formulas

based on Prob™ (s, ) the probability that a random path in M starting from
s satisfies

s | Pap(p) iff Prob™M(s,p)<p
» Duration formulas

based on EM(FTime(s, $)) the mean of the first time that a random path in
M starting from s satisfies ¢

s = Dar(¢) iff EM(FTime(s,¢)) <r



PCTL for IMCs

1. VM e M(P~,Pt) M, s = ¢ (always satisfied)
2. VM e M(P~,P1) M, s = —¢ (never satisfied)

3. IMM e MP-,PH) M, s EpAM s ¢
(sometimes satisfied and sometimes not)




PCTL for IMCs

Exact semantic
1. VM e M(P~,PT) M, s |= ¢ (always satisfied)
2. VM e M(P~,P1) M, s = —¢ (never satisfied)

3. IMM e MP-,PH) M, s EpAM s ¢
(sometimes satisfied and sometimes not)

Approximate semantic induced by a semi-decisional procedure

Six possible alternative information labels for s w.r.t. ¢

» 5.0 = VT when it is known that case 1 holds.

» s.¢ =V~ when it is known that case 2 holds.

» 5.¢ = 3T~ when it is known that case 3 holds.

» s5.¢ = 3T when it is known that cases 1 or 3 hold.
» s.¢ = 3~ when it is known that cases 2 or 3 hold.

» s.¢ =7 when no information has been obtained.
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General principles

Split the set of states depending on:

» the current label (V7,...) to be assigned to states;

» the labels of states w.r.t. the sub-formulas occurring in the formula;
» the external path operator of the formula;
» the kind of comparison <, >.
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cumulative probabilities, st-monotone glb matrix, etc.).



General principles

» the current label (V7,...) to be assigned to states;

» the labels of states w.r.t. the sub-formulas occurring in the formula;
» the external path operator of the formula;

» the kind of comparison <, >.

Build one or more sub-stochastic matrices
» by (appropriately) ordering the states inside the subsets;

» and applying an algorithm for IMC to compute the coefficients (maximizing
cumulative probabilities, st-monotone glb matrix, etc.).

Perform a standard computation for Markov chains.




Assigning V~ for formula P, (p U'*"lq)

First step.
The semi-decision procedure implies a conservative approach. Thus:

» S\ (S1USy) ={s€S|sp#VT As.q#VT}is the set of states such that
one cannot assign V™.
(the probability of satisfaction for the random path could be 0)

» Sy = {s €S8 |s.q=VT}is the set of states such that one can surely assign
V.
(the probability of satisfaction for the random path is 1)

» S1={se€8|sp=V"As.q#VT} is the set of states that requires a
(conservative) computation.

s.q=V'As.p=V"
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What is the quantity to lower bound?
The probability to reach Sy from S; without leaving Sp in at most 3 steps:

—1
(Zfzo (Ps, xSl)k> T
where r[s] is the probability to immediately reach Sy from s.
So we perform the following substitutions:

» Matrice P~ is substituted to P.
> Vector r is substituted by r™ = max(3_, s, P[5, 5,1 = 22, 05, PF[s.8'])
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Second step.
What is the quantity to lower bound?
The probability to reach Sy from S; without leaving Sp in at most 3 steps:

—1
(Zfzo (Ps, xSl)k> T
where r[s] is the probability to immediately reach Sy from s.
So we perform the following substitutions:

» Matrice P~ is substituted to P.
> Vector r is substituted by r™ = max(3_, s, P[5, 5,1 = 22, 05, PF[s.8'])

Third step. Compute |m = ( f;é (Plfslxsl)k) T

and assign ¥V~ to s iff m[s] > p.



Assigning V" for formula P, (p U"Yg)

First step.
The semi-decision procedure implies a conservative approach. Thus:

» S\ (S1US8) ={seS|sp=V" As.q=VY"}is the set of states such that
one can surely assign V7.
(the probability of satisfaction for the random path is 0)

» Sy = {s €S8 |s.q#V "} is the set of states such that one cannot assign V.
(the probability of satisfaction for the random path could be 1)

» S1={se€S|sp#Y As.q=V"}is the set of states that requires a
(conservative) computation.

s.q=VAs.p=V"




Assigning V' for formula P-,(p U"/g)

Second step.
We now upper bound

(ZQ;S(Pwlxsl)k) - r

So we define an appropriate M(P~, P, out) over S;:
» Matrices P*, P~ are the original matrices restricted to Sj.

» Vector out is defined by:

out[s] = max(}_, g5 P7[s, 8,1 = > s, PT[s,s])
» Moreover we upper bound r by

rt = min(} . s, Pt[s,s'],1 - Zs’esz P[s,s])
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Second step.
We now upper bound

-1
(Zizo (P|31 xSl)k> T
So we define an appropriate M(P~, P, out) over S;:

» Matrices P*, P~ are the original matrices restricted to Sj.
» Vector out is defined by:
out[s] = max(}_, g5 P7[s, 8,1 = > s, PT[s,s])
» Moreover we upper bound r by
rt = min(X:s,eS2 Pt[s,s'],1 - Zs’esz P[s,s])
Warning In order to apply stochastic bound, r* must be decreasing. So it implies
a re-ordering of states of S; before computing P*.

Third step. Compute | M (Z’g 1(P*) ) Tt
and assign VT to s iff M[s] < p




Assigning 3" for formula P-,(p U"/g)

First step as in the previous case.
Second step.
Here we guess one (or more) matrix P with a small value of:

(Zf;é (Pis, xs, )k> T

» We order the states of S: first Sy then S and S\ (S1 U Ss)
» Inside S, order the states w.r.t.
r[s] = max(}_, ¢, Pt[s,s'],1— Zs'¢52 Pt[s,s'])
» Build P by minimizing the transition probabilities following that order.
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Assigning 3" for formula P-,(p U"/g)

First step as in the previous case.
Second step.
Here we guess one (or more) matrix P with a small value of:

(Zf;é (Pis, xs, )k> T

» We order the states of S: first Sy then S and S\ (S1 U Ss)
» Inside S, order the states w.r.t.
r[s] = max(}_, ¢, Pt[s,s'],1— Zs'¢52 Pt[s,s'])
» Build P by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.
Third step. Compute | M = (Zi;é(P\Slxsl)k) T

and assign 3% to s iff m[s] < p.
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Conclusion and perspectives

Summary of results

» Efficient semi-decision procedure for model checking IMCs

» Application of stochastic comparisons for model checking PCTL over IMCs

» Handling the interval constrained until and the mean reachability time
operators

» Providing partial answers 37, 3~

» Development of a prototype for high level formalisms
with IMC as possible semantic

» Accuracy of bounds and impact of heuristics

» One year post-doc position available for this project



