Steady State Dependability Verification by Perfect Sampling

Diana EL RABIH ⁽¹⁾, Gael Gorgo ⁽²⁾, Nihal PEKERGIN ⁽¹⁾, Jean-Marc Vincent ⁽²⁾

(1) LACL, University of Paris Est (2) LIG (MESCAL INRIA), University of Grenoble This work is supported by Checkbound, ANR-06-SETI-002

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

- Probabilistic Models
 - CTMC, DTMC, MDP, ...
 - Queueing Networks, Network protocols, Distributed Systems
- Dependability, availability and reachability properties with probabilistic temporal logics
 - CSL for CTMC, PCTL for DTMC
 - Steady State Operator: $S_{\geq \theta}(\phi)$ Ex: With probability at least θ , a system will be available at long run (in steady-state)

- Probabilistic Models
 - CTMC, DTMC, MDP, ...
 - Queueing Networks, Network protocols, Distributed Systems
- Dependability, availability and reachability properties with probabilistic temporal logics
 - CSL for CTMC, PCTL for DTMC
 - Steady State Operator: $S_{\geq \theta}(\phi)$ Ex: With probability at least θ , a system will be available at long run (in steady-state)

- Probabilistic Models
 - CTMC, DTMC, MDP, ...
 - Queueing Networks, Network protocols, Distributed Systems
- 2 Dependability, availability and reachability properties with probabilistic temporal logics
 - CSL for CTMC, PCTL for DTMC
 - Steady State Operator: $S_{\geq \theta}(\phi)$ Ex: With probability at least θ , a system will be available at long run (in steady-state)

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - Highly accurate results
 - Intractable for systems with large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification
 - + Low memory requirements
 - Expensive if high accuracy is required

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification
 - + Low memory requirements
 - Expensive if high accuracy is required

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification
 - + Low memory requirements
 - Expensive if high accuracy is required

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification
 - + Low memory requirements
 - Expensive if high accuracy is required

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification
 - + Low memory requirements
 - Expensive if high accuracy is required

- Numerical Model Checking (NMC)
 - Based on: Computation of distributions
 - + Highly accurate results
 - Intractable for systems with large state space
- 2 Statistical Model Checking (SMC)
 - Based on: Sampling (by simulation or by measurement) and Statistical Methods for verification
 - + Low memory requirements
 - Expensive if high accuracy is required

- PRISM tool: Numerical
 - Matrix representation: memory limit
- 2 MRMC tool: Statistical
 - Simulation by regeneration method
 - Same memory limit problem as PRISM
- 3 Ymer, VESTA tools: Statistical
 - transient properties
- 4 APMC tool: Statistical
 - transient properties
 - integrated in PRISM

- PRISM tool: Numerical
 - Matrix representation: memory limit
- 2 MRMC tool: Statistical
 - Simulation by regeneration method
 - Same memory limit problem as PRISM
- 3 Ymer, VESTA tools: Statistical
 - transient properties
- 4 APMC tool: Statistical
 - transient properties
 - integrated in PRISM

- PRISM tool: Numerical
 - Matrix representation: memory limit
- 2 MRMC tool: Statistical
 - Simulation by regeneration method
 - Same memory limit problem as PRISM
- 3 Ymer, VESTA tools: Statistical
 - transient properties
- 4 APMC tool: Statistical
 - transient properties
 - integrated in PRISM

- PRISM tool: Numerical
 - Matrix representation: memory limit
- 2 MRMC tool: Statistical
 - Simulation by regeneration method
 - Same memory limit problem as PRISM
- 3 Ymer, VESTA tools: Statistical
 - transient properties
- 4 APMC tool: Statistical
 - transient properties
 - integrated in PRISM

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

Stochastic simulation idea

- Drawbacks of forward simulation
 - Steady state is not exact
 - Dependence on the initial state
 - Burn-in period estimation
 - ⇒ Biased sampling
- Alternatives
 - Regeneration (MRMC tool)
 - Perfect sampling (Ψ² tool)

Stochastic simulation idea

- Drawbacks of forward simulation
 - Steady state is not exact
 - Dependence on the initial state
 - Burn-in period estimation
 - ⇒ Biased sampling
- Alternatives
 - Regeneration (MRMC tool)
 - Perfect sampling (Ψ² tool)

Backward Simulation Schemes

Backward Simulation Schemes

Synthesis

- Advantages
 - Steady state is exact (perfect sample)
 - Unbiased sampling of the steady-state
 - Very efficient under monotonicity
 - Very efficient for rare probability verification
 - Generic events (monotone and not) implemented in ψ^2 enabling to describe a wide range of systems
- Drawbacks
 - Monotonicity study of a system
 - If system is monotone: has to be proven
 - If not, "extended sandwiching technique": envelopes (not always efficient)
- \blacksquare A perfect sampler ψ^2 proposed by MESCAL INRIA Team
 - Samples rewards of the stationary distribution of large Markov chains

Synthesis

- Advantages
 - Steady state is exact (perfect sample)
 - Unbiased sampling of the steady-state
 - Very efficient under monotonicity
 - Very efficient for rare probability verification
 - Generic events (monotone and not) implemented in ψ^2 enabling to describe a wide range of systems
- Drawbacks
 - Monotonicity study of a system
 - If system is monotone: has to be proven
 - If not, "extended sandwiching technique": envelopes (not always efficient)
- \blacksquare A perfect sampler ψ^2 proposed by MESCAL INRIA Team
 - Samples rewards of the stationary distribution of large Markov chains

Synthesis

- Advantages
 - Steady state is exact (perfect sample)
 - Unbiased sampling of the steady-state
 - Very efficient under monotonicity
 - Very efficient for rare probability verification
 - Generic events (monotone and not) implemented in ψ^2 enabling to describe a wide range of systems
- Drawbacks
 - Monotonicity study of a system
 - If system is monotone: has to be proven
 - If not, "extended sandwiching technique": envelopes (not always efficient)
- lacksquare A perfect sampler ψ^2 proposed by MESCAL INRIA Team
 - Samples rewards of the stationary distribution of large Markov chains

☐SMC Decision Method

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

☐SMC Decision Method

Statistical Hypothesis Testing (SHT)

- Estimate the probability p that φ of a given formula $S_{\geq \theta}(\varphi)$ is satisfied on sample paths
- Formula verification: Test H : $p \ge \theta$ against K : $p < \theta$
- For specified indifference region δ and error bounds (α,β)

(a) Prob. of accepting H (ideal)

(b) Prob. of accepting *H* (with indifference region)

☐SMC Decision Method

Statistical Hypothesis Testing (SHT)

- Estimate the probability p that φ of a given formula $S_{\geq \theta}(\varphi)$ is satisfied on sample paths
- Formula verification: Test H : $p \ge \theta$ against K : $p < \theta$
- For specified indifference region δ and error bounds (α,β)

(a) Prob. of accepting H (ideal)

(b) Prob. of accepting *H* (with indifference region)

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples (Y)

$$H_0: p \ge \theta + \delta$$
 $H_1: p < \theta - \delta$

- If $Y \ge m$ then accepting H_0 (YES)
- Else If Y < m then accepting H_1 (NO)
- where *m* is the acceptance threshold of the statistical test
- 3 Statistical test strength (n, m) depends on (α, β) and on δ where n is the total sample size

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples (Y)

$$H_0: \rho \ge \theta + \delta$$
 $H_1: \rho < \theta - \delta$

- If $Y \ge m$ then accepting H_0 (YES)
- Else If Y < m then accepting H_1 (NO)
- where *m* is the acceptance threshold of the statistical test
- 3 Statistical test strength (n, m) depends on (α, β) and on δ where n is the total sample size

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples (Y)

$$H_0: p \ge \theta + \delta$$
 $H_1: p < \theta - \delta$

- If $Y \ge m$ then accepting H_0 (YES)
- Else If Y < m then accepting H_1 (NO)
- where *m* is the acceptance threshold of the statistical test
- 3 Statistical test strength (n, m) depends on (α, β) and on δ where n is the total sample size

- Inspired from the Single Sampling Plan (SHT method used by Younes et al.)
- Check samples and compute number of positive samples (Y)

$$H_0: p \ge \theta + \delta$$
 $H_1: p < \theta - \delta$

- If $Y \ge m$ then accepting H_0 (YES)
- Else If Y < m then accepting H_1 (NO)
- where *m* is the acceptance threshold of the statistical test
- 3 Statistical test strength (n, m) depends on (α, β) and on δ where n is the total sample size

SMC using Perfect Sampling

SMC of CSL Steady State Formula

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

SMC of CSL Steady State Formula

Verification of CSL Steady State Formula

- SMC of ψ = $S_{\geq \theta}(\varphi)$ by functional and/or monotone perfect simulation
- Check if the steady-state samples (x) satisfies φ or not
- By associating reward $r_{\varphi}(x)$ to each state x for the given property φ :

$$r_{\varphi}(x) = 1$$
, if $x \models \varphi$ (1)
 $r_{\varphi}(x) = 0$, otherwise $x \not\models \varphi$

Verification of CSL Steady State Formula

- SMC of ψ = $S_{\geq \theta}(\varphi)$ by functional and/or monotone perfect simulation
- Check if the steady-state samples (x) satisfies φ or not
- By associating reward $r_{\varphi}(x)$ to each state x for the given property φ :

SMC of CSL Steady State Formula

Verification of CSL Steady State Formula

- SMC of ψ = $S_{\geq \theta}(\varphi)$ by functional and/or monotone perfect simulation
- Check if the steady-state samples (x) satisfies φ or not
- By associating reward $r_{\varphi}(x)$ to each state x for the given property φ :

$$r_{\varphi}(x) = 1$$
, if $x \models \varphi$ (1)
 $r_{\varphi}(x) = 0$, otherwise $x \not\models \varphi$

Case studies

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

Models

- 1 Tandem network with 4 queues (TN)
 - Monotone model (ψ^2 benchmark)
- 2 Multistage delta queueing network with 8 queues (MDN)
 - Monotone model (ψ^2 benchmark)

Case studies

Models

- 1 Tandem network with 4 queues (TN)
 - Monotone model (ψ^2 benchmark)
- Multistage delta queueing network with 8 queues (MDN)
 - Monotone model (ψ² benchmark)

Case studies

Tandem Queuing Network with coaxian server (TQN-Cox)

- Non monotone model (PRISM benchmark)
- Implemented in ψ^2 using envelopes

Verified Properties (1)

- **11** AP $a_i(k)$: True if $N_i > k$, False otherwise
 - $ightharpoonup N_i$: number of customers in the i^{th} queue
 - $0 \le k \le N_{max}$ and N_{max} : maximum queue size
- 2 Define different saturation and availability measures for the underlying models
 - Ex: Saturation property in the i^{th} buffer, $S_{<\theta}(a_i(N_{max}))$, also check availability property $S_{\geq 1-\theta}(\neg a_i(N_{max}))$

Verified Properties (1)

- 1 AP $a_i(k)$: True if $N_i > k$, False otherwise
 - $ightharpoonup N_i$: number of customers in the i^{th} queue
 - $0 \le k \le N_{max}$ and N_{max} : maximum queue size
- 2 Define different saturation and availability measures for the underlying models
 - Ex: Saturation property in the i^{th} buffer, $S_{<\theta}(a_i(N_{max}))$, also check availability property $S_{\geq 1-\theta}(\neg a_i(N_{max}))$

Verified Properties (2)

- 1 Tandem network with 4 queues (TN)
 - 4^{th} buffer is full ($< \theta$ or not at steady state)
- Multistage delta queueing network with 8 queues (MDN)
 - At least one queue of the second stage of MDN is full $(<\theta$ or not at steady state)
- 3 Tandem Queuing Network with coaxian server (TQN-Cox)
 - The overall system is full ($< \theta$ or not at steady state)

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

- PRISM tool (Numerical MC, Oxford University)
 - Computes probabilities for each reachable state
 - \blacksquare Solves system of linear equations to find probabilities with convergence precision ϵ
- $\mathbf{2} \ \psi^2$ with SHT tool (SMC, Grenoble and UPEC Universities)
 - Perfect sampling (Functional)
 - Verification by Statistical Hypothesis Testing with precision (α, β, δ)
- 3 Comparison study
 - For fair comparison we take $\epsilon = 2.\delta$
 - \bullet $(\epsilon, \delta) = \{(10^{-3}/2, 10^{-3}/4), (10^{-4}, 10^{-4}/2)\}$ and $\alpha = \beta = 10^{-2}$
 - Rare probability dependability properties: $\theta = 0.001$

- PRISM tool (Numerical MC, Oxford University)
 - Computes probabilities for each reachable state
 - \blacksquare Solves system of linear equations to find probabilities with convergence precision ϵ
- 2 with SHT tool (SMC, Grenoble and UPEC Universities)
 - Perfect sampling (Functional)
 - Verification by Statistical Hypothesis Testing with precision (α, β, δ)
- 3 Comparison study
 - For fair comparison we take $\epsilon = 2.\delta$
 - \bullet $(\epsilon, \delta) = \{(10^{-3}/2, 10^{-3}/4), (10^{-4}, 10^{-4}/2)\}$ and $\alpha = \beta = 10^{-2}$
 - Rare probability dependability properties: $\theta = 0.001$

Compared Tools

- PRISM tool (Numerical MC, Oxford University)
 - Computes probabilities for each reachable state
 - \blacksquare Solves system of linear equations to find probabilities with convergence precision ϵ
- 2 with SHT tool (SMC, Grenoble and UPEC Universities)
 - Perfect sampling (Functional)
 - Verification by Statistical Hypothesis Testing with precision (α, β, δ)
- 3 Comparison study
 - For fair comparison we take $\epsilon = 2.\delta$
 - (ϵ, δ) ={ $(10^{-3}/2, 10^{-3}/4), (10^{-4}, 10^{-4}/2)$ } and $\alpha = \beta = 10^{-2}$
 - Rare probability dependability properties: $\theta = 0.001$

Experimental Results

Outline

- 1 Introduction
 - Probabilistic Model Checking
 - Perfect Sampling
- 2 SMC using Perfect Sampling
 - SMC Decision Method
 - SMC of CSL Steady State Formula
- 3 Experimental Comparison Study
 - Case studies
 - Compared Tools
 - Experimental Results
- 4 Conclusion and Future works

Experimental Results

Tandem Network (TN)

■ Model and property: λ =0.9, μ_i = 1, 1 ≤ i ≤ 4, $S_{<\theta}$ (*last-full*) where θ = 0.001

Multistage Delta Network (MDN)

Model and property: 2 stages and 4 buffers/stage, $\lambda = 0.9, \mu = 1, (\tau_{rout1}, \tau_{rout2}) = (0.8, 0.6),$ $S_{<\theta}$ (last-stage-full) where $\theta = 0.001$

Tandem Qeueuing Network (TQN)

■ Model and property: $\lambda = 4 \times N_{max}$, $\mu_1 = 2$, $\mu_2 = 2$, a = 0.1 and $\kappa = 4$, $S_{<\theta}$ (sys-full) where $\theta = 0.001$

Synthesis and Discussions

- 1 Variation of precision parameters ϵ (numerical) and δ (statistical)
 - Verification time dependence on on δ is considerable but on ϵ is negligible
- Variation of state space size (Max. queue capacity)
 - + Verification time dependence on state space size is negligible in ψ^2 (functional) but is considerable in PRISM
- Memory limitation problem
 - + Memory is never exhausted in ψ^2 but is proportional to the number of states in PRISM

Synthesis and Discussions

- 1 Variation of precision parameters ϵ (numerical) and δ (statistical)
 - Verification time dependence on on δ is considerable but on ϵ is negligible
- Variation of state space size (Max. queue capacity)
 - + Verification time dependence on state space size is negligible in ψ^2 (functional) but is considerable in PRISM
- Memory limitation problem
 - + Memory is never exhausted in ψ^2 but is proportional to the number of states in PRISM

Synthesis and Discussions

- 1 Variation of precision parameters ϵ (numerical) and δ (statistical)
 - Verification time dependence on on δ is considerable but on ϵ is negligible
- Variation of state space size (Max. queue capacity)
 - + Verification time dependence on state space size is negligible in ψ^2 (functional) but is considerable in PRISM
- 3 Memory limitation problem
 - + Memory is never exhausted in ψ^2 but is proportional to the number of states in PRISM

Experimental Results

- Memory limits obtained in PRISM:
 - TN case: For $N_{max} = 99 (|X| = 10^8)$
 - MDN case: For $N_{max} = 10$ ($|X| = 1.1 * 10^8$)
 - **TQN** case: For $N_{max} = 7500 \ (|X| = 2.1 * 10^8)$
- 2 MDN case: For 4 stages and 8 buffers/stage
 - + Efficient results using Ψ^2 while not possible using PRISM (memory problem for $N_{max}=1$, $O((N_{max}+1)^{32})$)
- TQN case (Non monotone model)
 - + Efficient results for this example when using envelopes

- Empirical comparison of numerical and statistical solutions
 - PRISM vs. ψ^2 with SHT
 - Focus on CSL steady state formulas
- 2 We have found that:
 - + ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - + ψ^2 with SHT is faster than PRISM for large models (greater than 10⁵)
 - + PRISM have memory problem (limiting state space sizes)

- Empirical comparison of numerical and statistical solutions
 - PRISM vs. ψ^2 with SHT
 - Focus on CSL steady state formulas
- We have found that:
 - + ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - + ψ^2 with SHT is faster than PRISM for large models (greater than 10⁵)
 - + PRISM have memory problem (limiting state space sizes)

- Empirical comparison of numerical and statistical solutions
 - PRISM vs. ψ^2 with SHT
 - Focus on CSL steady state formulas
- We have found that:
 - + ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - + ψ^2 with SHT is faster than PRISM for large models (greater than 10⁵)
 - + PRISM have memory problem (limiting state space sizes)

- Empirical comparison of numerical and statistical solutions
 - PRISM vs. ψ^2 with SHT
 - Focus on CSL steady state formulas
- We have found that:
 - + ψ^2 with SHT scales better with the state space size (no limiting memory problem)
 - + ψ^2 with SHT is faster than PRISM for large models (greater than 10⁵)
 - + PRISM have memory problem (limiting state space sizes)

Future works

- 1 Compare ψ^2 with SHT tool with the MRMC tool (Current)
 - Perfect Simulation vs. Regeneration Simulation
 - SHT vs. Confidence Intervals
 - Memory limitation problem in MRMC tool
- 2 SMC of CSL time unbounded until formulas

Future works

- 1 Compare ψ^2 with SHT tool with the MRMC tool (Current)
 - Perfect Simulation vs. Regeneration Simulation
 - SHT vs. Confidence Intervals
 - Memory limitation problem in MRMC tool
- SMC of CSL time unbounded until formulas

Future works

- 1 Compare ψ^2 with SHT tool with the MRMC tool (Current)
 - Perfect Simulation vs. Regeneration Simulation
 - SHT vs. Confidence Intervals
 - Memory limitation problem in MRMC tool
- 2 SMC of CSL time unbounded until formulas

Event modelling of a Markov chain

event	<i>e</i> ₁	<i>e</i> ₂	e ₃	e ₄
probabililty	<u>2</u>	<u>1</u> 6	1 /6	2 6
Transition function $\Phi(x,.)$	4 4 3 3 2 2 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 3 3 2 1	4 4 3 2 2 1 1

Sample paths are driven by the same source of randomness (inovation process of events)

Monotonicity

Monotone event

■ let \leq be a partial order on a multi-dimensional state space $\mathcal{X} = \mathcal{X}_1 \times \cdots \times \mathcal{X}_K$ (usually a lattice).

$$x \leq y \Leftrightarrow x^i \leq y^i \ \forall i$$

■ An event e is monotone if it preserves the partial ordering \prec on $\mathcal X$

$$\forall (x,y) \in \mathcal{X} \quad x \leq y \Rightarrow \Phi(x,e) \leq \Phi(y,e)$$

Monotonicity of systems

A Markov chain is monotone if all events are monotone