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Computation of the steady-state distribution 7p
CTMC (same method after uniformization)

Proved convergence (i.e. one can build S such that 7p € S and S as

small as needed).

Compute bounds rather than 7p
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We consider non negative matrices (not stochastic)
We use the element wise comparison of matrices and vectors (<¢;)

Dynamical systems (i.e. non stochastic) based on (max,+) or

(min,+) sequences
Convergence to mp or bounds of 7p

Depending on some quantities easily computed on P
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e Definition of Vp.
e Algorithms and Results when Vp # 0 (the easy case).
e Algorithms and Results when Vp = 0 (the hard case).

e Aggregation and Bounds (a new solution).
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e Lemma 1 As7wp =7pP, and as 7(j) is between 0 and 1 for all j,

then we have:

M’anP( <7Tp ZT"P <Masz(iaj)

e Definition: Vp(j) = Min;P(i,j) and Ap(j) = Max;P(i,j)
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Algorithm Iterate V Lower Bound (IVL) -

e Parameters d1 <. mp, d2 <, Vp and d2 # 0.
e Initialization z(9) = d1

o Iteration z*tH = maz(z®, 2* P 4 d2(1 — ||z®]],))

Theorem 1 Let P be an irreducible stochastic matrixz. Assume that the
steady-state probability distribution wp exists. If Vp # 0, Algorithm
(IV L) provides lower bounds for all components of mp and converges to

wp for any value of the parameters d1 and d2.
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Example 1 P1 =
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Vp1 = (0.0,0.2,0.0,0.2).

Algorithm (IV L) with d1 = d2 = V p1 gives the following sequence of
lower bounds for the probabilities.

k 1 2 3 4 Restdual
1 | 0.00000 | 0.28000 | 0.10000 | 0.26000 | 0.36000
5 | 0.04630 | 0.31643 | 0.29723 | 0.29338 | 0.04665
10| 0.06236 | 0.31886 | 0.31770 | 0.29743 | 0.00362
15| 0.06371 | 0.31912 | 0.31903 | 0.29783 | 0.00028
20 | 0.06582 | 0.81914 | 0.81914 | 0.29787 | 0.00002
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Algorithm Iterate V Upper Bound (IVU) -

e Parameters d3 >, mp, d2 <o Vp and d2 # 0.
e Initialize: y(® = d3.

o Iterate: y* 1) = min(y®,yF P +d2(1 — |ly*|]1)).

Theorem 2 Let P be an irreducible stochastic matriz. Assume that the
steady-state probability distribution wp exists. If Vp # 0, Algorithm IVU
provides a sequence of non increasing upper bounds for all the
components of mp and leads to mp.
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o At every step k, %) <, mp <o y®)

e And z(® is increasing, while y*) is decreasing. ||y*) — 2(®)||;
converges to 0.

e Example 2 Again P1 (Example 1), after 20 iterations, combining

both algorithms we have the following intervals for the steady-state
distribution:

(0.06382,0.06384)
(0.81914,0.31915)
(0.81914 , 0.81916)
(0.29787,0.29787)
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e nz non zero entries, n size of the state space
e Computing V: 0(nz),

e Per Iteration: Vector Matrix multiplication (nz) for a sparse matrix.

+ Linear complexity operations.
e See also: Kronecker representation.

e Number of iterations: convergence upper bounded by a geometric
with rate ||Vpl|1

e Speed of convergence: easily obtained from the matrix
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e Assumes that computing P is too difficult...
e Typically censoring, ideal aggregation, stochastic complement....

e But you know how to compute () an element wise lower bound of P.
Assume that Vg # 0.

e Property 1 Use (Q instead of P in IVL to obtain an increasing
sequence upper bounded by wp.

e Property 2 Similarly, if P <. R, use R instead of P in IVU to
obtain (under some technical constraints) a decreasing sequence lower
bounded by mp.
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Simple Lower Bound Algorithm—-(SLB)——
e Initialization: 29 = d <., 7p.

o Iteration: (1) = max(z®, 2 P).

Theorem 3 For d such that 0 <. d <¢; wp, SLB Algorithm converges.
Moreover, if d # 0, then the limit vector x of the sequence xR, k> 0 is
a multiple of mp (i.e. x = EGin ) and ||z||; < 1.
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Simple Upper Bound Algorithm—(SUB) -
e Initialization: 2(0) = d3 >, 7p.

o Iteration: z(Ft1) = min(z(F) 2(F) p).

Remark 1 Again one can use d3 = Ap in the initialization step of this
algorithm.

Theorem 4 Algorithm SUB gives a decreasing sequence of upper bound
vector for mp which converges to a multiple of p.
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| Problems I

How to find d <. mp and d # 0
A solution is in the paper based on stochastic complement

Test for convergence: difference between successive values of z(*¥)
(same problem from (%))

(k) (k)
Provi roximations: —=—— and % —~—.
ovides two appro ations IEQIF Tz |1

How to build an accurate bound from bounds of a multiple of 7wp?
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Example 3 P7 =
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. Vp7 =(0.0,0.0,0.0,0.0) and

Ap7 =(0.5,0.6,0.4,0.4). Assume that we have found a lower bound of
wp7 which is equal to (0.0,0.0,0.15,0.0). The algorithms SLB and SUB
provide the following lower (first table) and upper (second table) bounds:

k 1 2 3 4 Restdual

1 | 0.000000 | 0.090000 | 0.150000 | 0.000000 | 0.760000

10 | 0.1958324 | 0.161590 | 0.150000 | 0.166461 | 0.326625

20 | 0.234766 | 0.177670 | 0.150000 | 0.200543 | 0.237021

40 | 0.242429 | 0.180798 | 0.150000 | 0.207164 | 0.21961/

\ 60 | 0.242641 | 0.180880 | 0.150000 | 0.207348 | 0.2191351
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k 1 2 3 4 Restdual
1 ] 0.500000 | 0.450000 | 0.340000 | 0.400000 | -0.690000
10| 0.471310 | 0.352347 | 0.291323 | 0.400000 | -0.514980
20 | 0.468221 | 0.349080 | 0.289445 | 0.400000 | -0.506746
40 | 0.468085 | 0.348936 | 0.289362 | 0.400000 | -0.506384
60 | 0.468085 | 0.348936 | 0.289362 | 0.400000 | -0.506383
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o Gauss-Seidel effect

e Joined computation of lower and upper bound based on:
Lemma 2 For zF) <, mp < z(k), we have:
1. 2P+ V(1 = ||z®|1) 2 7p =t 2B P+ V(1 —||20]]1)

2. Simalarly,
2P+ A1 =201 R mp e 2P P+ AL — [[2P]])
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e Assume that P is finite, irreducible, and Vp = 0.
e Assume that P is not lumpable.

e Assume that we have found a partition Ay,..., A, (m > 2) of the
state-space such it exists a non empty subset A; such that for all
state j in the state space P(j, Ax) > 0.
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R =WUPV,V is a collector matrix, W a distributor matrix

V (i, k) = 1 if state 7 is in subset Ay

Columns of W contains the conditional distribution of states for a

subset
We must know mp to compute the aggregated matrix W and R

If the aggregated Markov chain is an ideal aggregation of P, then
TR — 7TpV.
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e Entry (i, k) of matrix PV is P(¢, Ag).

e Entry (k,j) of matrix W is the conditional distribution if state 7 is in

subset Ax and 0 otherwise.

e Entry (I, k) of matrix W PV is the convex sum of P(i, Ax) for i € A,
and for all distributor matrix W we have:

Minieq, P(i, Ax) < (WPV)(, k) < Mazx;c 4, P(i, Ax)

e Finally, L <., WPV <., U
where L(l, k) = Min;c 4, P(i, Ax)
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o LjelWPVjelU
e Because of the partition Vg # 0,

e Apply Algorithm IVL on L (a lower bound of R) to obtain an

increasing sequence upper bounded by wpV.
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| Conclusion I

e New computation scheme for the steady-state distribution of DTMC
e Compatible with tensor and sparse representation

e Provide bounds at every step

e Proved convergence if V # 0

e Simplification of matrices implies component-wise bounds

e Mixed approach with ’'Ideal Aggregates’ to obtain component-wise
bounds for the aggregates.

e Works well with Google matrix
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