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Finite DTMC P with stationary solution

• Computation of the steady-state distribution πP

• CTMC (same method after uniformization)

• Proved convergence (i.e. one can build S such that πP ∈ S and S as
small as needed).

• Compute bounds rather than πP
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Changing the point of view

• We consider non negative matrices (not stochastic)

• We use the element wise comparison of matrices and vectors (≼el)

• Dynamical systems (i.e. non stochastic) based on (max,+) or
(min,+) sequences

• Convergence to πP or bounds of πP

• Depending on some quantities easily computed on P
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Outline of the paper

• Definition of ∇P .

• Algorithms and Results when ∇P ̸= 0⃗ (the easy case).

• Algorithms and Results when ∇P = 0⃗ (the hard case).

• Aggregation and Bounds (a new solution).
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An old and simple Idea

• Lemma 1 As πP = πP P , and as π(j) is between 0 and 1 for all j,
then we have:

MiniP (i, j) ≤ πP (j) =
∑

i

πP (i)P (i, j) ≤ MaxiP (i, j)

• Definition: ∇P (j) = MiniP (i, j) and ∆P (j) = MaxiP (i, j)
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∇P ̸= 0⃗, Lower Bound

————– Algorithm Iterate ∇ Lower Bound (I∇L) —————-

• Parameters d1 ≼el πP , d2 ≼el ∇P and d2 ̸= 0⃗.

• Initialization x(0) = d1

• Iteration x(k+1) = max(x(k), x(k)P + d2(1 − ||x(k)||1))

—————————————————————————————

Theorem 1 Let P be an irreducible stochastic matrix. Assume that the
steady-state probability distribution πP exists. If ∇P ̸= 0⃗, Algorithm
(I∇L) provides lower bounds for all components of πP and converges to
πP for any value of the parameters d1 and d2.
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Exemple 1

Example 1 P1 =


0.5 0.2 0.0 0.3

0.0 0.2 0.5 0.3

0.1 0.2 0.5 0.2

0.0 0.6 0.0 0.4

. ∇P1 = (0.0, 0.2, 0.0, 0.2).

Algorithm (I∇L) with d1 = d2 = ∇P1 gives the following sequence of
lower bounds for the probabilities.

k 1 2 3 4 Residual

1 0.00000 0.28000 0.10000 0.26000 0.36000

5 0.04630 0.31643 0.29723 0.29338 0.04665

10 0.06236 0.31886 0.31770 0.29743 0.00362

15 0.06371 0.31912 0.31903 0.29783 0.00028

20 0.06382 0.31914 0.31914 0.29787 0.00002
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∇P ̸= 0⃗, Upper Bound

——— Algorithm Iterate ∇ Upper Bound (I∇U) ————-

• Parameters d3 ≽el πP , d2 ≼el ∇P and d2 ̸= 0⃗.

• Initialize: y(0) = d3.

• Iterate: y(k+1) = min(y(k), y(k)P + d2(1 − ||y(k)||1)).

—————————————————————————

Theorem 2 Let P be an irreducible stochastic matrix. Assume that the
steady-state probability distribution πP exists. If ∇P ̸= 0⃗, Algorithm I∇U

provides a sequence of non increasing upper bounds for all the
components of πP and leads to πP .
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Convergence

• At every step k, x(k) ≼el πP ≼el y(k)

• And x(k) is increasing, while y(k) is decreasing. ||y(k) − x(k)||1
converges to 0.

• Example 2 Again P1 (Example 1), after 20 iterations, combining
both algorithms we have the following intervals for the steady-state
distribution:

1 (0.06382,0.06384)

2 (0.31914,0.31915)

3 (0.31914 , 0.31916)

4 (0.29787,0.29787)
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Complexity

• nz non zero entries, n size of the state space

• Computing ∇: θ(nz),

• Per Iteration: Vector Matrix multiplication θ(nz) for a sparse matrix.
+ Linear complexity operations.

• See also: Kronecker representation.

• Number of iterations: convergence upper bounded by a geometric
with rate ||∇P ||1

• Speed of convergence: easily obtained from the matrix
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Simplification of Matrices

• Assumes that computing P is too difficult...

• Typically censoring, ideal aggregation, stochastic complement....

• But you know how to compute Q an element wise lower bound of P .
Assume that ∇Q ̸= 0⃗.

• Property 1 Use Q instead of P in I∇L to obtain an increasing
sequence upper bounded by πP .

• Property 2 Similarly, if P ≼el R, use R instead of P in I∇U to
obtain (under some technical constraints) a decreasing sequence lower
bounded by πP .
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The hard case: ∇P = 0⃗, Lower bound

—————Simple Lower Bound Algorithm—-(SLB)——

• Initialization: x(0) = d ≼el πP .

• Iteration: x(k+1) = max(x(k), x(k)P ).

————————————————————————-

Theorem 3 For d such that 0 ≼el d ≼el πP , SLB Algorithm converges.
Moreover, if d ̸= 0⃗, then the limit vector x of the sequence x(k), k ≥ 0 is
a multiple of πP ( i.e. x = πP

||x||1 ) and ||x||1 ≤ 1.

ANR SetIn CheckBound and Network of Excellence EURO-NF [12/22]



The hard case: ∇P = 0⃗, Upper bound

—————Simple Upper Bound Algorithm—(SUB)————-

• Initialization: z(0) = d3 ≽el πP .

• Iteration: z(k+1) = min(z(k), z(k)P ).

————————————————————————————

Remark 1 Again one can use d3 = ∆P in the initialization step of this
algorithm.

Theorem 4 Algorithm SUB gives a decreasing sequence of upper bound
vector for πP which converges to a multiple of πP .
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Problems

• How to find d ≼el πP and d ̸= 0⃗

• A solution is in the paper based on stochastic complement

• Test for convergence: difference between successive values of z(k)

(same problem from x(k))

• Provides two approximations: z(k)

||z(k)||1
and x(k)

||x(k)||1
.

• How to build an accurate bound from bounds of a multiple of πP ?
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Exemple

Example 3 P7 =


0.2 0.3 0.2 0.3

0.5 0.1 0.0 0.4

0.0 0.6 0.4 0.0

0.5 0.0 0.2 0.3

. ∇P7 = (0.0, 0.0, 0.0, 0.0) and

∆P7 = (0.5, 0.6, 0.4, 0.4). Assume that we have found a lower bound of
πP7 which is equal to (0.0, 0.0, 0.15, 0.0). The algorithms SLB and SUB
provide the following lower (first table) and upper (second table) bounds:

k 1 2 3 4 Residual

1 0.000000 0.090000 0.150000 0.000000 0.760000

10 0.195324 0.161590 0.150000 0.166461 0.326625

20 0.234766 0.177670 0.150000 0.200543 0.237021

40 0.242429 0.180793 0.150000 0.207164 0.219614

60 0.242641 0.180880 0.150000 0.207348 0.219131
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k 1 2 3 4 Residual

1 0.500000 0.450000 0.340000 0.400000 -0.690000

10 0.471310 0.352347 0.291323 0.400000 -0.514980

20 0.468221 0.349080 0.289445 0.400000 -0.506746

40 0.468085 0.348936 0.289362 0.400000 -0.506384

60 0.468085 0.348936 0.289362 0.400000 -0.506383
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Improvements

• Gauss-Seidel effect

• Joined computation of lower and upper bound based on:

Lemma 2 For x(k) ≼el πP ≼el z(k), we have:

1. x(k)P + ∇(1 − ||x(k)||1) ≼el πP ≼el z(k)P + ∇(1 − ||z(k)||1)
2. Similarly,

z(k)P + ∆(1 − ||z(k)||1) ≼el πP ≼el x(k)P + ∆(1 − ||x(k)||1)
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Aggregation

• Assume that P is finite, irreducible, and ∇P = 0⃗.

• Assume that P is not lumpable.

• Assume that we have found a partition A1, . . . ,Am (m ≥ 2) of the
state-space such it exists a non empty subset Ak such that for all
state j in the state space P (j,Ak) > 0.
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Ideal Aggregates

• R = WPV , V is a collector matrix, W a distributor matrix

• V (i, k) = 1 if state i is in subset Ak

• Columns of W contains the conditional distribution of states for a
subset

• We must know πP to compute the aggregated matrix W and R

• If the aggregated Markov chain is an ideal aggregation of P , then
πR = πP V .
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Bounds on Matrices

• Entry (i, k) of matrix PV is P (i,Ak).

• Entry (k, j) of matrix W is the conditional distribution if state i is in
subset Ak and 0 otherwise.

• Entry (l, k) of matrix WPV is the convex sum of P (i,Ak) for i ∈ Al

and for all distributor matrix W we have:

Mini∈Al
P (i,Ak) ≤ (WPV )(l, k) ≤ Maxi∈Al

P (i,Ak)

• Finally, L ≼el WPV ≼el U

where L(l, k) = Mini∈Al
P (i,Ak)
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Bounds on steady-state distribution

• L ≼el WPV ≼el U

• Because of the partition ∇R ̸= 0⃗,

• Apply Algorithm I∇L on L (a lower bound of R) to obtain an
increasing sequence upper bounded by πP V .
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Conclusion

• New computation scheme for the steady-state distribution of DTMC

• Compatible with tensor and sparse representation

• Provide bounds at every step

• Proved convergence if ∇ ̸= 0⃗

• Simplification of matrices implies component-wise bounds

• Mixed approach with ’Ideal Aggregates’ to obtain component-wise
bounds for the aggregates.

• Works well with Google matrix

ANR SetIn CheckBound and Network of Excellence EURO-NF [22/22]


