Perfect Simulation and Non-monotone
Markovian Systems

Ana Bugi¢®  Bruno Gaujal'  Jean-Marc Vincent?

LINRIA Grenoble - Rhéne-Alpes
2Université Joseph Fourier, Grenoble
3LIAFA, Paris 7

ANR Checkbound meeting, October 2008



Discrete Event System

System description: (X, 7%, &, p, ¢)

» Finite state space AX.
Without loss of generality, X = {1,..., N}.

> Probability measure 70 on X’:
70 >0, x € X is the probability that the system is in state x
at time 0.

» Finite set of events £.

» Probability measure p on &:
pe > 0, e € £ is the probability of event e.

» Transition function ¢ : X x & — X.



Discrete Event System (II)

Evolution of the system (over n steps):

1. Choose initial state Xy with probability measure 7°.

2. For i =1 to n do:

» Choose an event ¢; € £ with probability measure p
» Xii=o(Xi—1,e)



Example

0= :
P

Let p, = 1/3,pp = 2/3, and 70 = (1/4,1/4,1/4,1/4).

A possible trajectory of the system is
1-3-3-2—-4—-1—-3—-3— ... starting from state 1 and for

sequence of events bbababb. . ..



Remarks

Random sequence { X} e is a discrete time Markov chain
(DTMC) with transition probability matrix:

def - ;
Pij S P(Xo=j1Xo1=1) =D pely(ie)=j-
ecf

Furthermore, every DTMC can be represented in a form
(X, 79 &, p,$). For a chain with NV states, we can construct an
event representation with at most V2, with complexity O(N?).
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Assumption: {X,},cn is ergodic.

Question
How to sample its stationary distribution 7
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discrete probability measure sampling.
Complexity of computing 7: O(N3) (where N = |X]).



Sampling the Steady-state

Assumption: {X,},cn is ergodic.

Question

How to sample its stationary distribution 7?7

Answer: solve the linear system 7w = 7P to find 7, then use
discrete probability measure sampling.

Complexity of computing 7: O(N3) (where N = |X]).
Question

How to avoid computing 7?7



Monte-Carlo Simulation

Algorithm:

» Sample Xy from 7°.

» For i =1 to n:
» Sample ¢; from p.
» Xi = o(Xi—1, ).
Output: a sample from the probability measure 7°P".

Complexity: O(C(¢)n).
(Remark: sampling from discrete probability measure can be done
in O(1) using alias method [Walker, 74].)



Monte-Carlo Simulation

Algorithm:

» Sample Xy from 7°.

» For i =1 to n:
» Sample ¢; from p.
» X = ¢(Xi—17 ei)-

Output: a sample from the probability measure 7°P".

Complexity: O(C(¢)n).
(Remark: sampling from discrete probability measure can be done
in O(1) using alias method [Walker, 74].)

Inconvenient: approximation.
Error estimation is difficult: depends on the second eigenvalue of P
which is hard to compute [Brémaud, Glynn, Whitt, Hordijk].



Perfect Simulation

Goal:
> unbiaised samples of 7 without coputing it (nor P).

» finite stopping time.

First results (theoretical and existential) [Borovkov 75, Glynn 96]

Propp and Wilson (1996) proposed backward coupling algorithm.
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Backward coupling (II)

def
d" (x, e1-n) = S(... (P (x,e1),),...,€n).
For AC X, d" (A, e1_.,) & {07 (x, e1.,),x € A}.

Theorem ([Propp and Wilson (1996)])
There exists { € N such that

lim |®" (X, e_py1-0) | = £ almost surely.

n—oo

The system couples if { = 1. In that case, the value of
®"(X, e_p+1-0) Is steady state distributed.

Coupling time: 7° &k min{fn e N : |®"(X,e_py10) | =1}



Backward coupling (II)

def
d" (x, e1-n) = S(... (P (x,e1),),...,€n).
For AC X, d" (A, e1_.,) & {07 (x, e1.,),x € A}.

Theorem ([Propp and Wilson (1996)])
There exists { € N such that

lim |®" (X, e_py1-0) | = £ almost surely.

n—oo

The system couples if { = 1. In that case, the value of
®"(X, e_p+1-0) Is steady state distributed.

Coupling time: 7° &k min{fn e N : |®"(X,e_py10) | =1}

Inconvenient: Complexity O(7°C(¢)N).



Monotone systems

Assumption: state space is partially ordered (<) and transition
function is monotone:

x<y=>Vee& ¢(x,e) <oy, e).

States

0 Time
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Non-monotone case

Question
What to do with non-monotone events?




Non-monotone case (Il)

Assumption: (X, <) is a complete lattice.
Let T % supX and B Clinf x.
New transition function [ : X x X x & — X x X

def

Fi(m,M,e) = inf  o(x,e)

m<x<M

M(m Me) € sup (x;e).

m<x<M
Theorem
IfT"(B, T,e_pt1-0) hits the diagonal D (i.e. states of the form
(x,x)) in finite time: T¢ © min {n :T"(B, T,e_nt1-0) € D},

then I'™*(B, T, e_;.11-0) has the steady state distribution .



Non-monotone case (Il)

Assumption: (X, <) is a complete lattice.
Let T % supX and B Clinf x.
New transition function [ : X x X x & — X x X

def

Fi(m,M,e) = inf  o(x,e)

m<x<M

M(m Me) € sup (x;e).

m<x<M

Theorem
IfT"(B, T,e_pt1-0) hits the diagonal D (i.e. states of the form

(x,x)) in finite time: T¢ L min {n "B, T,e_p+1-0) € D},

then I'™*(B, T, e_;.11-0) has the steady state distribution .

Proof: If (mo, Mo) % (B, T,e_ni1.0), then the set

¢"(X, e_p+1-0) is included in {x : mp < x < Mp}. If the latter is
reduced to one point, so is the set ¢"(X,e_,11-0).
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Envelope perfect simulation

Data: - ¢, {e .} .y
- [ the pre-computed envelope function
Result: A state x* € X generated according to the stationary
distribution of the system

begin
n=1,M:==T;: m:=B;
repeat

for i = n—1 downto 0 do
| (m,M):=T(m, M, e_;);
n:=2n;
until M = m ;
x* = M:
return x*;

end

Complexity: O(C(I')7¢) (to compare with O(C(¢)N7>)).



Comments

1. Everything works the same if I'; (resp. I'2) is replaced by a
lower (resp. upper) bound on the infimum (res. supremum).

2. The definition of the envelopes is based on the constructive
definition ® of the Markov chain. For a new event
representation ®’ of the Markov chain envelopes are modified
accordingly.

3. If the function ®(., e) is non-decreasing for all event e, then
for any m < M, I'1(m, M, e) = ®(m, e) and
Fo(m, M, e) = (M, e), so that Algorithm EPSA coincides
with the classical monotone perfect simulation algorithm for
monotone Markov chains.



Problems

» The envelopes may not couple even if the trajectories do.

Example: a single queue with batch arrivals of size 3 and
batch services of size 2. (Notation: (+3,—2) queue.)

If the whole batch cannot be accepted, the batch is rejected
(blocking).
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Problems

» The envelopes may not couple even if the trajectories do.

Example: a single queue with batch arrivals of size 3 and
batch services of size 2. (Notation: (+3,—2) queue.)

If the whole batch cannot be accepted, the batch is rejected
(blocking).

» When the envelopes couple, the coupling time of envelopes
can be much longer.

Example: as above, with individual and batch arrivals.

» The complexity of envelope computation might be too high.
Complexity of EPSA: O(C(T') - 7¢).
C(T") should not depend on N!



Queuing networks

Most of the events are piece-wise space homogeneous
(i.e. ¢(x,e) = x+ vg for x in region R) and we often have:

C(r) ~ C(9).
Difference between PSA and EPSA in N7% and 7.

A2
,U«1:1 /1,2:1.5
M=08 7 15 O LC H O
—= G = U b =

negative client with prob. 0.8

Figure: A network with negative customers.



Queuing networks (1)

Mean coupling time
1600

PSA
EPSA
1400 -

1200 [
1000 [
800 r
600
}{;{}}{If}{f}

400 | LeEt

E2
{i{i{{}{

200

0 0.5 1 53 2 215) 3

Figure: Mean coupling times of PSA and EPSA algorithms for the
network in Figure 1 as a function of \,.



Beyond enveloppes

When the coupling time for envelopes is too long (or if they do not

couple):
» bounds
» splitting
T upper envelope
lower envelope
B

—n splitting 0



Example

Mean coupling time
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Figure: Mean coupling times for PSA, EPSA and EPSA with splitting for
a (+2,43,—1) queue.



Classes

Classes:

>

>

M; - monotone MC

M, - non-monotone MC,
where envelope perfect
simulation can be used
efficiently

M5 - envelopes do couple but
take a much larger time

M, - envelopes do not couple
(bounds, splitting)

Examples:

» E; - a network of finite queues
with monotone routing.

» £ - a network as E; with
negative customers
EJ - a network as E; with fork
and join nodes

» F3 - a network with individual
customers and batches

» E, - a network of queues with
only batches larger than two.
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