Perfect Simulation and Non-monotone Markovian Systems

Ana Bušić³ Bruno Gaujal¹ Jean-Marc Vincent²

¹INRIA Grenoble - Rhône-Alpes ²Université Joseph Fourier, Grenoble ³LIAFA, Paris 7

ANR Checkbound meeting, October 2008

Discrete Event System

System description: $(\mathcal{X}, \pi^0, \mathcal{E}, p, \phi)$

- ► Finite state space \mathcal{X} . Without loss of generality, $\mathcal{X} = \{1, \dots, N\}$.
- ▶ Probability measure π^0 on \mathcal{X} : $\pi^0_x \geq 0, \ x \in \mathcal{X}$ is the probability that the system is in state x at time 0.
- \triangleright Finite set of events \mathcal{E} .
- ▶ Probability measure p on \mathcal{E} : $p_e > 0, e \in \mathcal{E}$ is the probability of event e.
- ▶ Transition function ϕ : $\mathcal{X} \times \mathcal{E} \rightarrow \mathcal{X}$.

Discrete Event System (II)

Evolution of the system (over n steps):

- 1. Choose initial state X_0 with probability measure π^0 .
- 2. For i = 1 to n do:
 - ▶ Choose an event $e_i \in \mathcal{E}$ with probability measure p
 - $X_i := \phi(X_{i-1}, e_i)$

Let
$$p_a = 1/3$$
, $p_b = 2/3$, and $\pi^0 = (1/4, 1/4, 1/4, 1/4)$.

A possible trajectory of the system is $1-3-3-2-4-1-3-3-\cdots$ starting from state 1 and for sequence of events bbababb...

Remarks

Random sequence $\{X_n\}_{n\in\mathbb{N}}$ is a discrete time Markov chain (DTMC) with transition probability matrix:

$$P_{i,j} \stackrel{\mathrm{def}}{=} \mathbb{P}(X_n = j | X_{n-1} = i) = \sum_{e \in \mathcal{E}} p_e \mathbf{1}_{\phi(i,e) = j}.$$

Furthermore, every DTMC can be represented in a form $(\mathcal{X},\pi^0,\mathcal{E},p,\phi)$. For a chain with N states, we can construct an event representation with at most N^2 , with complexity $O(N^2)$.

Sampling the Steady-state

Assumption: $\{X_n\}_{n\in\mathbb{N}}$ is ergodic.

Question

How to sample its stationary distribution π ?

Sampling the Steady-state

Assumption: $\{X_n\}_{n\in\mathbb{N}}$ is ergodic.

Question

How to sample its stationary distribution π ?

Answer: solve the linear system $\pi=\pi P$ to find π , then use

discrete probability measure sampling.

Complexity of computing π : $O(N^3)$ (where $N = |\mathcal{X}|$).

Sampling the Steady-state

Assumption: $\{X_n\}_{n\in\mathbb{N}}$ is ergodic.

Question

How to sample its stationary distribution π ?

Answer: solve the linear system $\pi=\pi P$ to find π , then use

discrete probability measure sampling.

Complexity of computing π : $O(N^3)$ (where $N = |\mathcal{X}|$).

Question

How to avoid computing π ?

Monte-Carlo Simulation

Algorithm:

- ▶ Sample X_0 from π^0 .
- For i = 1 to n:
 - ▶ Sample e_i from p.
 - $X_i = \phi(X_{i-1}, e_i).$

Output: a sample from the probability measure $\pi^0 P^n$.

Complexity: $O(\mathcal{C}(\phi)n)$.

(Remark: sampling from discrete probability measure can be done in O(1) using alias method [Walker, 74].)

Monte-Carlo Simulation

Algorithm:

- ▶ Sample X_0 from π^0 .
- For i = 1 to n:
 - ▶ Sample e_i from p.
 - $X_i = \phi(X_{i-1}, e_i).$

Output: a sample from the probability measure $\pi^0 P^n$.

Complexity: $O(\mathcal{C}(\phi)n)$.

(Remark: sampling from discrete probability measure can be done in O(1) using alias method [Walker, 74].)

Inconvenient: approximation.

Error estimation is difficult: depends on the second eigenvalue of *P* which is hard to compute [Brémaud, Glynn, Whitt, Hordijk].

Perfect Simulation

Goal:

- unbiaised samples of π without coputing it (nor P).
- finite stopping time.

First results (theoretical and existential) [Borovkov 75, Glynn 96]

Propp and Wilson (1996) proposed backward coupling algorithm.

Backward coupling (II)

$$\begin{split} &\Phi^{n}\left(x,e_{1\rightarrow n}\right)\stackrel{\mathrm{def}}{=}\Phi\left(\dots\Phi\left(\Phi\left(x,e_{1}\right),e_{2}\right),\dots,e_{n}\right).\\ &\text{For }A\subset\mathcal{X}\text{, }\Phi^{n}\left(A,e_{1\rightarrow n}\right)\stackrel{\mathrm{def}}{=}\left\{\Phi^{n}\left(x,e_{1\rightarrow n}\right),x\in A\right\}. \end{split}$$

Theorem ([Propp and Wilson (1996)])

There exists $\ell \in \mathbb{N}$ such that

$$\lim_{n\to\infty} \left| \Phi^n \left(\mathcal{X}, e_{-n+1\to 0} \right) \right| = \ell \text{ almost surely.}$$

The system couples if $\ell = 1$. In that case, the value of $\Phi^n(\mathcal{X}, e_{-n+1 \to 0})$ is steady state distributed.

Coupling time: $\tau^b \stackrel{\text{def}}{=} \min\{n \in \mathbb{N} : |\Phi^n(\mathcal{X}, e_{-n+1 \to 0})| = 1\}.$

Backward coupling (II)

$$\begin{split} &\Phi^{n}\left(x,e_{1\rightarrow n}\right)\stackrel{\mathrm{def}}{=}\Phi\left(\dots\Phi\left(\Phi\left(x,e_{1}\right),e_{2}\right),\dots,e_{n}\right).\\ &\text{For }A\subset\mathcal{X}\text{, }\Phi^{n}\left(A,e_{1\rightarrow n}\right)\stackrel{\mathrm{def}}{=}\left\{\Phi^{n}\left(x,e_{1\rightarrow n}\right),x\in A\right\}. \end{split}$$

Theorem ([Propp and Wilson (1996)])

There exists $\ell \in \mathbb{N}$ such that

$$\lim_{n\to\infty} \left| \Phi^n \left(\mathcal{X}, e_{-n+1\to 0} \right) \right| = \ell \text{ almost surely.}$$

The system couples if $\ell = 1$. In that case, the value of $\Phi^n(\mathcal{X}, e_{-n+1 \to 0})$ is steady state distributed.

Coupling time: $\tau^b \stackrel{\text{def}}{=} \min\{n \in \mathbb{N} : |\Phi^n(\mathcal{X}, e_{-n+1 \to 0})| = 1\}.$

Inconvenient: Complexity $O(\tau^b C(\phi) N)$.

Monotone systems

Assumption: state space is partially ordered (\prec) and transition function is monotone:

$$x \prec y \Rightarrow \forall e \in \mathcal{E}, \phi(x, e) \prec \phi(y, e).$$

Monotone systems

Assumption: state space is partially ordered (\prec) and transition function is monotone:

$$x \prec y \Rightarrow \forall e \in \mathcal{E}, \phi(x, e) \prec \phi(y, e).$$

Non-monotone case

Question

What to do with non-monotone events?

Non-monotone case (II)

Assumption: (\mathcal{X}, \prec) is a complete lattice.

Let $T \stackrel{\text{def}}{=} \sup \mathcal{X}$ and $B \stackrel{\text{def}}{=} \inf \mathcal{X}$.

New transition function $\Gamma: \mathcal{X} \times \mathcal{X} \times \mathcal{E} \to \mathcal{X} \times \mathcal{X}$

$$\Gamma_1(m, M, e) \stackrel{\text{def}}{=} \inf_{\substack{m \prec x \prec M}} \phi(x, e)$$

$$\Gamma_2(m, M, e) \stackrel{\text{def}}{=} \sup_{\substack{m \prec x \prec M}} \phi(x, e).$$

Theorem

If $\Gamma^n(B,T,e_{-n+1\to 0})$ hits the diagonal $\mathcal D$ (i.e. states of the form (x,x)) in finite time: $\tau^e \stackrel{\mathrm{def}}{=} \min \left\{ n : \Gamma^n(B,T,e_{-n+1\to 0}) \in \mathcal D \right\}$, then $\Gamma^{\tau_e}(B,T,e_{-\tau_e+1\to 0})$ has the steady state distribution π .

Non-monotone case (II)

Assumption: (\mathcal{X}, \prec) is a complete lattice.

Let $T \stackrel{\text{def}}{=} \sup \mathcal{X}$ and $B \stackrel{\text{def}}{=} \inf \mathcal{X}$.

New transition function $\Gamma: \mathcal{X} \times \mathcal{X} \times \mathcal{E} \to \mathcal{X} \times \mathcal{X}$

$$\Gamma_1(m, M, e) \stackrel{\text{def}}{=} \inf_{\substack{m \prec x \prec M}} \phi(x, e)$$

$$\Gamma_2(m, M, e) \stackrel{\text{def}}{=} \sup_{\substack{m \prec x \prec M}} \phi(x, e).$$

Theorem

If $\Gamma^n(B, T, e_{-n+1\to 0})$ hits the diagonal \mathcal{D} (i.e. states of the form (x,x)) in finite time: $\tau^e \stackrel{\mathrm{def}}{=} \min \left\{ n : \Gamma^n(B, T, e_{-n+1\to 0}) \in \mathcal{D} \right\}$, then $\Gamma^{\tau_e}(B, T, e_{-\tau_e+1\to 0})$ has the steady state distribution π .

Proof: If $(m_0, M_0) \stackrel{\text{def}}{=} \Gamma^n(B, T, e_{-n+1\to 0})$, then the set $\phi^n(\mathcal{X}, e_{-n+1\to 0})$ is included in $\{x : m_0 \prec x \prec M_0\}$. If the latter is reduced to one point, so is the set $\phi^n(\mathcal{X}, e_{-n+1\to 0})$.

Envelope perfect simulation

```
Data: -\Phi, \{e_{-n}\}_{n\in\mathbb{N}}
       - Γ the pre-computed envelope function
Result: A state x^* \in \mathcal{X} generated according to the stationary
         distribution of the system
begin
   n = 1; M := T: m := B:
   repeat
       for i = n - 1 downto 0 do
      (m, M) := \Gamma(m, M, e_{-i});
      n := 2n;
   until M = m;
   x^* := M;
    return x^*:
end
```

Complexity: $O(\mathcal{C}(\Gamma)\tau^e)$ (to compare with $O(\mathcal{C}(\phi)N\tau^b)$).

Comments

- 1. Everything works the same if Γ_1 (resp. Γ_2) is replaced by a lower (resp. upper) bound on the infimum (res. supremum).
- 2. The definition of the envelopes is based on the constructive definition Φ of the Markov chain. For a new event representation Φ' of the Markov chain envelopes are modified accordingly.
- 3. If the function $\Phi(.,e)$ is non-decreasing for all event e, then for any $m \leq M$, $\Gamma_1(m,M,e) = \Phi(m,e)$ and $\Gamma_2(m,M,e) = \Phi(M,e)$, so that Algorithm EPSA coincides with the classical monotone perfect simulation algorithm for monotone Markov chains.

Problems

► The envelopes may not couple even if the trajectories do. Example: a single queue with batch arrivals of size 3 and batch services of size 2. (Notation: (+3, -2) queue.) If the whole batch cannot be accepted, the batch is rejected (blocking).

Problems

- ► The envelopes may not couple even if the trajectories do. Example: a single queue with batch arrivals of size 3 and batch services of size 2. (Notation: (+3, -2) queue.) If the whole batch cannot be accepted, the batch is rejected (blocking).
- ▶ When the envelopes couple, the coupling time of envelopes can be much longer.
 - Example: as above, with individual and batch arrivals.

Problems

- ► The envelopes may not couple even if the trajectories do. Example: a single queue with batch arrivals of size 3 and batch services of size 2. (Notation: (+3, -2) queue.) If the whole batch cannot be accepted, the batch is rejected (blocking).
- When the envelopes couple, the coupling time of envelopes can be much longer.
 - Example: as above, with individual and batch arrivals.
- ► The complexity of envelope computation might be too high. Complexity of EPSA: $O(\mathcal{C}(\Gamma) \cdot \tau^e)$. $\mathcal{C}(\Gamma)$ should not depend on N!

Queuing networks

Most of the events are piece-wise space homogeneous (i.e. $\phi(x,e) = x + v_R$ for x in region R) and we often have: $\mathcal{C}(\Gamma) \sim \mathcal{C}(\phi)$.

Difference between PSA and EPSA in $N\tau^b$ and τ^e .

Figure: A network with negative customers.

Queuing networks (II)

Figure: Mean coupling times of PSA and EPSA algorithms for the network in Figure 1 as a function of λ_2 .

Beyond enveloppes

When the coupling time for envelopes is too long (or if they do not couple):

- bounds
- splitting

Figure: Mean coupling times for PSA, EPSA and EPSA with splitting for a (+2,+3,-1) queue.

Classes

Classes:

- $ightharpoonup M_1$ monotone MC
- M₂ non-monotone MC, where envelope perfect simulation can be used efficiently
- ► M₃ envelopes do couple but take a much larger time
- M₄ envelopes do not couple (bounds, splitting)

Examples:

- ► *E*₁ a network of finite queues with monotone routing.
- ► E₂ a network as E₁ with negative customers E'₂ - a network as E₁ with fork and join nodes
- ► E₃ a network with individual customers and batches
- \triangleright E_4 a network of queues with only batches larger than two.