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Discrete Event System

System description: (X , π0, E , p, φ)

I Finite state space X .
Without loss of generality, X = {1, . . . ,N}.

I Probability measure π0 on X :
π0

x ≥ 0, x ∈ X is the probability that the system is in state x
at time 0.

I Finite set of events E .

I Probability measure p on E :
pe > 0, e ∈ E is the probability of event e.

I Transition function φ : X × E → X .



Discrete Event System (II)

Evolution of the system (over n steps):

1. Choose initial state X0 with probability measure π0.

2. For i = 1 to n do:
I Choose an event ei ∈ E with probability measure p
I Xi := φ(Xi−1, ei )
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Let pa = 1/3, pb = 2/3, and π0 = (1/4, 1/4, 1/4, 1/4).

A possible trajectory of the system is
1− 3− 3− 2− 4− 1− 3− 3− · · · starting from state 1 and for
sequence of events bbababb . . ..



Remarks

Random sequence {Xn}n∈N is a discrete time Markov chain
(DTMC) with transition probability matrix:

Pi ,j
def
= P(Xn = j |Xn−1 = i) =

∑
e∈E

pe1φ(i ,e)=j .

Furthermore, every DTMC can be represented in a form
(X , π0, E , p, φ). For a chain with N states, we can construct an
event representation with at most N2, with complexity O(N2).



Sampling the Steady-state

Assumption: {Xn}n∈N is ergodic.

Question
How to sample its stationary distribution π?

Answer: solve the linear system π = πP to find π, then use
discrete probability measure sampling.
Complexity of computing π: O(N3) (where N = |X |).

Question
How to avoid computing π?
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Monte-Carlo Simulation

Algorithm:

I Sample X0 from π0.
I For i = 1 to n:

I Sample ei from p.
I Xi = φ(Xi−1, ei ).

Output: a sample from the probability measure π0Pn.

Complexity: O(C(φ)n).
(Remark: sampling from discrete probability measure can be done
in O(1) using alias method [Walker, 74].)

Inconvenient: approximation.
Error estimation is difficult: depends on the second eigenvalue of P
which is hard to compute [Brémaud, Glynn, Whitt, Hordijk].
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Perfect Simulation

Goal:

I unbiaised samples of π without coputing it (nor P).

I finite stopping time.

First results (theoretical and existential) [Borovkov 75, Glynn 96]

Propp and Wilson (1996) proposed backward coupling algorithm.



Backward coupling

1

2

3

4

b

a
a

a
b

b

a, b 4

3

2

1

a



Backward coupling

1

2

3

4

b

a
a

a
b

b

a, b 4

3

2

1

a a



Backward coupling

1

2

3

4

b

a
a

a
b

b

a, b 4

3

2

1

ab a



Backward coupling

1

2

3

4

b

a
a

a
b

b

a, b 4

3

2

1

b ab a



Backward coupling

1

2

3

4

b

a
a

a
b

b

a, b 4

3

2

1

b ab aa



Backward coupling (II)

Φn (x , e1→n)
def
= Φ (. . .Φ (Φ (x , e1) , e2) , . . . , en) .

For A ⊂ X , Φn (A, e1→n)
def
= {Φn (x , e1→n) , x ∈ A} .

Theorem ([Propp and Wilson (1996)])

There exists ` ∈ N such that

lim
n→∞

∣∣Φn (X , e−n+1→0)
∣∣ = ` almost surely.

The system couples if ` = 1. In that case, the value of
Φn(X , e−n+1→0) is steady state distributed.

Coupling time: τb def
= min{n ∈ N : |Φn (X , e−n+1→0) | = 1}.

Inconvenient: Complexity O(τbC(φ)N).
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Monotone systems

Assumption: state space is partially ordered (≺) and transition
function is monotone:

x ≺ y ⇒ ∀e ∈ E , φ(x , e) ≺ φ(y , e).

0 Time

States
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Non-monotone case

Question
What to do with non-monotone events?
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Non-monotone case (II)

Assumption: (X ,≺) is a complete lattice.

Let T
def
= supX and B

def
= inf X .

New transition function Γ : X × X × E → X × X

Γ1(m,M, e)
def
= inf

m≺x≺M
φ(x , e)

Γ2(m,M, e)
def
= sup

m≺x≺M
φ(x , e).

Theorem
If Γn(B,T , e−n+1→0) hits the diagonal D (i.e. states of the form

(x , x)) in finite time: τ e def
= min

{
n : Γn(B,T , e−n+1→0) ∈ D

}
,

then Γτe (B,T , e−τe+1→0) has the steady state distribution π.

Proof: If (m0,M0)
def
= Γn(B,T , e−n+1→0), then the set

φn(X , e−n+1→0) is included in {x : m0 ≺ x ≺ M0}. If the latter is
reduced to one point, so is the set φn(X , e−n+1→0).
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Envelope perfect simulation

Data: - Φ , {e−n}n∈N
- Γ the pre-computed envelope function

Result: A state x∗ ∈ X generated according to the stationary
distribution of the system

begin
n = 1; M := T ; m := B;
repeat

for i = n − 1 downto 0 do
(m,M) := Γ(m,M, e−i );

n := 2n;
until M = m ;
x∗ := M;
return x∗;

end

Complexity: O(C(Γ)τ e) (to compare with O(C(φ)Nτb)).



Comments

1. Everything works the same if Γ1 (resp. Γ2) is replaced by a
lower (resp. upper) bound on the infimum (res. supremum).

2. The definition of the envelopes is based on the constructive
definition Φ of the Markov chain. For a new event
representation Φ′ of the Markov chain envelopes are modified
accordingly.

3. If the function Φ(., e) is non-decreasing for all event e, then
for any m ≤ M, Γ1(m,M, e) = Φ(m, e) and
Γ2(m,M, e) = Φ(M, e), so that Algorithm EPSA coincides
with the classical monotone perfect simulation algorithm for
monotone Markov chains.



Problems

I The envelopes may not couple even if the trajectories do.

Example: a single queue with batch arrivals of size 3 and
batch services of size 2. (Notation: (+3,−2) queue.)
If the whole batch cannot be accepted, the batch is rejected
(blocking).

I When the envelopes couple, the coupling time of envelopes
can be much longer.

Example: as above, with individual and batch arrivals.

I The complexity of envelope computation might be too high.
Complexity of EPSA: O(C(Γ) · τ e).
C(Γ) should not depend on N!
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Queuing networks

Most of the events are piece-wise space homogeneous
(i.e. φ(x , e) = x + vR for x in region R) and we often have:
C(Γ) ∼ C(φ).
Difference between PSA and EPSA in Nτb and τ e .

λ1 = 0.8

λ2

C2 = 15

µ2 = 1.5µ1 = 1

C1 = 15

negative client with prob. 0.8

Figure: A network with negative customers.



Queuing networks (II)
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Figure: Mean coupling times of PSA and EPSA algorithms for the
network in Figure 1 as a function of λ2.



Beyond enveloppes

When the coupling time for envelopes is too long (or if they do not
couple):

I bounds

I splitting
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Example

 10

 100

 1000

 10000

 100000

 1e+06

 0  0.2  0.4  0.6  0.8  1

arrival rate

Mean coupling time

EPSA
PSA
split

Figure: Mean coupling times for PSA, EPSA and EPSA with splitting for
a (+2,+3,−1) queue.



Classes

E1

M1M2M3M4

E ′2
E2

E3

E4

Classes:

I M1 - monotone MC

I M2 - non-monotone MC,
where envelope perfect
simulation can be used
efficiently

I M3 - envelopes do couple but
take a much larger time

I M4 - envelopes do not couple
(bounds, splitting)

Examples:

I E1 - a network of finite queues
with monotone routing.

I E2 - a network as E1 with
negative customers
E ′2 - a network as E1 with fork
and join nodes

I E3 - a network with individual
customers and batches

I E4 - a network of queues with
only batches larger than two.
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