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Motivation

@ Performability evaluation of computer and telecommunication
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@ Multidimensional Markov chains, state-space explosion problem
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Motivation

@ Performability evaluation of computer and telecommunication
(more parameters so more complexe)

@ Multidimensional Markov chains, state-space explosion problem
@ Numerical analysis may be very complex or intractable
@ Stochastic Comparison

@ |dea Find “simple models” to bound the considered performance
measures

o Method Application of stochastic comparison approach to construct
bounding models
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o {X(1),t>0} =t {Y(1),t >0} = 3, M (X)f(x) <
> vee M ()f(x)



Stochastic Comparison on multidimensional state
space

@ State space E with <
@ Stochastic orderings : <st, Swks Swk=
° X 2t Y & E(f(X)) < E(f(Y))
o {X(1),t>0} = {Y(1),t >0} & E(f(X(1)) < E(F(Y(t)),Vt >0
o {X(t),t>0} st {Y(1),t 20} = 35, M (X)f(x) <
Sovee MY (X)F(x)
@ Different methods : coupling, increasing set = transition rates
comparison
@ Comparison by mapping functions : easier process (reduced
state space or product form)



Comparison of the performance measures

For the Performability measure of the CTMC
R(t) =Y N(x,1)f(x)
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Comparison of the performance measures

For the Performability measure of the CTMC
R(t) =Y N(x,1)f(x)

xeE

From the stochastic ordering relation we have :

For the upper bound
R(1) < RY(t) = > MU(x, 1)f(x)
XEEY
R(t) > RI(t) = > N'(x, )f(x)

XeE!
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@ CTMC, {X(t), t > 0} with (n+ 1)(n+ 2)/2 states and ,
Vx = (X1, %) € A, X1 > Xo.



Telephone switching system analysis

Application : telecommunication system

Figure: Erlang Loss with performability Model, n=3

@ CTMC, {X(t), t > 0} with (n+ 1)(n+ 2)/2 states and ,
Vx = (X1, %) € A, X1 > Xo.

@ Performance study : T, = "} _, M[x;, X]
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The Trivedi approximation

Markov Reward Model contruction

MRM components: Pure Availability Model
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The Trivedi approximation

Markov Reward Model contruction

MRM components: Pure Performance Model
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The Trivedi approximation

Markov Reward Model contruction

MRM components: Pure Performance Model
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Figure: Pure Performance Model
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The total call blocking probability
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Product form model

System with a product form
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Product form model

System with a product form
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System with a product form
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Figure: Product form model,
Figure: Exact model, X(t) XSP1 (1)

Performability measure

@ Total blocking probability Tp = >3 _, M[x;, xi]
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@ Many to one mapping function g : E — A.
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Product form model

System with product form

@ Many to one mapping function g : E — A.

_ (y17y1) if )4 S}’2
9, y2) = { (y1,¥2) otherwise @

@ We define on A the following order < :

VX, y EAX Y= X1 —X2> Y1 — Vo )



Proofs: Coupling method

@ Proposition:

{X(1),t > 0} 2o {g(X**'(1)), t > 0} (6)



Product form model

Proofs: Coupling method

@ Proposition:

{X(1),t > 0} 2o {g(X**'(1)), t > 0} (6)

Theorem 1 (Stoyan, Doisy)

{X(1),t = 0} =5t {g(Y(t)), t >0} (7)
if there exists the coupling {()A((t), \A/(t)), t > 0} such that:

X(0) < g(Y(0)) = X(1) = g(Y(t)), ¥t > 0 (8)
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Product form model

Proofs

@ Assumption : X(t) < g(Xs¥'(t))
o Let see if X(t+ At) < g(X5P'(t + At))

A

(x1,% —1) (%1, %2) (1,52 —1)
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Proofs

@ Assumption : X(t) < g(Xs¥'(t))
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Product form model

Proofs

@ Assumption : X(t) < g(Xs¥'(t))
o Let see if X(t+ At) < g(X5P'(t + At))
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Product form model

Proofs

@ Assumption : X(t) < g(Xs¥'(t))
o Let see if X(t+ At) < g(X5P'(t + At))

[ ye = 2 1, 92) 2 1,02+ 1) |
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@ We can deduce that the proposition
{X(1),t >0} =g {g(XSU(1)),t > 0} is proved.
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Product form model

Proofs

@ We have:

D Nx) < Y NPH(X), VT € dgi(A) (9)

zel g(x)er

@ Letl ={(0,0),(1,1),...(n,n)} an increasing set of ®(A), then
from equation ?? we have :

Yoonx< Y ne(x). (10)
X | x1=x2 X€E | x1<x2
@ So we obtain :
To<Ty®' = > nP'(x). (11)

XEE | x1<x2
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Birth and death model

Bounding aggregation definition
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Birth and death model

Bounding aggregation definition
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@ Proof the monotonicity of the Birth and Death process with rates
state’s dependence
@ Define bounding systems according rates definition



Birth and death model

Bounding aggregation definition

@ Many to one mapping function h: A — F.
Vx = (x1,%2) € A h(x) = x4 — X2 (12)
@ We define on F the following order < :

VX1,X € F, X1 X Xo <= X1 > Xo (13)



Birth and death model

Proof

Theorem 2 (Massey, Stoyan)

If the following conditions 1, 2, 3 are satisfied:
@ 9(X(0)) =& Y(0)
Q Y(t)is <g-monotone
0 Zg(z)el’ Q1 (yaz) < Zzer 02()(’2)’ vl e ¢’51(F),
Vx €S, yeAlgly)=x
then we have:

{g(X(1)),t = 0} =& {Y(t), 1 >0}



Birth and death model

Proof: Monotonicity

Theorem 3 (Massey, Stoyan)
{X(t),t > 0} is < -monotone if and only if VI € ®4(A),

S ax,2) <> Qly.z),vx 2y |x.yel, orx,y &l

zerlr zel
Monotonicity proof
Y Q(x,2) <Y Qly,2) (14)
zel zel

For all states x, y € F, and all increasing sets I' € ®4(F) such that :

Vx<yeF|x,yelTorx,y¢&rl (15)



Birth and death model

Proof: Monotonicity
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We define the two increasing set:
Fx={x,...,¥,...} Mry_1={y—1,...}

rx ‘ ry—1




Birth and death model

Proof: Monotonicity
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We define the two increasing set:
Fx={x,...,¥,...} Mry_1={y—1,...}

[y ry 1
Zzerx 02()(’ Z) = —my Zzery 1 (X Z) 0
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Birth and death model

Proof: Monotonicity

Figure: Aggregated Model

We define the two increasing set:
Fx={x,...,¥,...} Mry_1={y—1,...}

Iy My_1
>ozer, (X, 2) = —myx | X cr,  Qa(X,2) =0
Zzerx QQ(ya Z) =0 Zzery,1 QZ(y’Z) = /,V

@ So the inequality >, Qz(x,2) < >, Qa(y, 2) is verified, and
proposition Y(t) is <s-monotone is proved.
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@ For any state x, we have:
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@ We denote: Y*sUP?(t), the birth death process defined so as an
Upper Bound

@ For any state x, we have:
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Birth and death model

Proof

@ We denote: Y*sUP?(t), the birth death process defined so as an
Upper Bound

@ For any state x, we have:

/sup2
X +1 X z x—1

m)s(upz

@ x € F for YSUP2(t), transition rates will be different from 0 for the
increasing sets 'y_1, and ',



Birth and death model

Proof

Upper bound system definition

Tx—1 Tx
SUp2 Sup2
Shizyer,_ Q2 S BPE vy € ALhy) = x | Spayer, Qy»2) = mgPe, vy € Al hly) = x
Sup2 _ sup2 _ .
I , = maxy | p(y)=x Zh(Z)EFX71 Q. 2) fife , = miny | py)=x Zh(z)er)(A Qly, 2)
ISUPE X 4 xy myPe = min(u, T)
We compute
7rsup2
and we derive
Tsup2 _ 7SUP2 ()
we obtain
Sup2
Ty = Q1:0 Nixy, x] <= T




Birth and death model

Proof

Lower boun stem definition

Tx—1

I'x

Shiz)er, _; Q0.2 = 72 vy € A hy) = x
inf2 _
IS = miny | pyy—x Zh(zyer,_, AV 2)
,)/(nfz _

A+ Xy

Shiz)ery QW 2) < M2, ¥y € A| h(y) = x
inf2
my

= M8y | p(y)=x Zh(z)ery_q A+ 2)

mf(”fz =7+ (n—xX)pn

We compute

inf2

and we derive

T[;"fz _ inf2 )

we obtain

Tp = X3 —o M1, x1] 2= T2
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Numerical results

Numerical results

@ n=10 and n=27 channels

@ Call arrival rate varing from 2 to 50 calls per min
@ Channel failure occurs every hour or 10 hours.
@ We use SHARPE package for computation.
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Blocking probability analysis
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Numerical results

Blocking probability analysis
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Numerical results

Blocking probability analysis

sssss

1l @ Parameters have an impact on
the quality of bounds

@ When the failure rate are low,
the lower bound is intersesting
and sup1 is better than sup2

@ When the failure rate are high,
sup? is better than sup1.

Lambaa

Figure: 1/u = 6min, v = 5/hours,1/7 =
2hours,n = 10



Numerical results

Conclusion

Conclusion

@ The Trivedi approximation is an upper bound
@ Ordering not usually easier to establish

@ Differents bounds for the original system

@ Generalize to several groups of channels.



