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Motivation

Performability evaluation of computer and telecommunication
(more parameters so more complexe)
Multidimensional Markov chains, state-space explosion problem
Numerical analysis may be very complex or intractable

Stochastic Comparison
Idea Find “simple models” to bound the considered performance
measures
Method Application of stochastic comparison approach to construct
bounding models
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Stochastic Comparison on multidimensional state
space

State space E with �
Stochastic orderings : �st , �wk , �wk∗

X �st Y ⇔ E(f (X )) ≤ E(f (Y ))
{X (t), t ≥ 0} �st {Y (t), t ≥ 0} ⇔ E(f (X (t)) ≤ E(f (Y (t)),∀t ≥ 0
{X (t), t ≥ 0} �st {Y (t), t ≥ 0} ⇒

∑
x∈E ΠX (x)f (x) ≤∑

x∈E ΠY (x)f (x)

Different methods : coupling, increasing set V transition rates
comparison
Comparison by mapping functions : easier process (reduced
state space or product form)
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Comparison of the performance measures

For the Performability measure of the CTMC

R(t) =
∑
x∈E

Π(x , t)f (x)

From the stochastic ordering relation we have :

For the upper bound

R(t) ≤ Ru(t) =
∑

x∈Eu

Πu(x , t)f (x)

For the lower bound

R(t) ≥ R l (t) =
∑
x∈E l

Πl (x , t)f (x)
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Application : telecommunication system
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Figure: Erlang Loss with performability Model, n=3

CTMC, {X (t), t ≥ 0} with (n + 1)(n + 2)/2 states and ,
∀x = (x1, x2) ∈ A, x1 ≥ x2.
Performance study : Tb =

∑n
xi =0 Π[xi , xi ]
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The Trivedi approximation

Markov Reward Model contruction

MRM components: Pure Availability Model
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Figure: Pure Availability Model

Ā = π0 = [
n∑

i=0

1
i!

(τ/γ)i ]−1 πi = ((τ/γ)i/i!)π0 (1)



The Trivedi approximation

Markov Reward Model contruction

MRM components: Pure Performance Model
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pb(i) =
(λ/µ)i/i!)∑i
j=0(λ/µ)j/j!

(2)

The total call blocking probability

T ∗b =
n∑

i=0

riπi =
n∑

i=1

pb(i)πi + π0 (3)
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Product form model

System with product form

Definition
Many to one mapping function g : E → A.

g(y1, y2) =

{
(y1, y1) if y1 ≤ y2
(y1, y2) otherwise (4)

We define on A the following order � :

∀x , y ∈ A, x � y ⇐⇒ x1 − x2 ≥ y1 − y2 (5)
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Product form model

Proofs: Coupling method

Proposition:

{X (t), t ≥ 0} �st {g(X sup1(t)), t ≥ 0} (6)

Theorem 1 (Stoyan, Doisy)

{X (t), t ≥ 0} �st {g(Y (t)), t ≥ 0} (7)

if there exists the coupling {(X̂ (t), Ŷ (t)), t ≥ 0} such that:

X̂ (0) � g(Ŷ (0))⇒ X̂ (t) � g(Ŷ (t)), ∀t > 0 (8)
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Proofs

Assumption : X̂ (t) ≤ g(X̂ sup1(t))

Let see if X̂ (t + ∆t) ≤ g(X̂ sup1(t + ∆t))

(x1, x2 − 1)

We can deduce that the proposition
{X (t), t ≥ 0} �st {g(X sup1(t)), t ≥ 0} is proved.
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Product form model

Proofs

We have: ∑
z∈Γ

Π(x) ≤
∑

g(x)∈Γ

Πsup1(x),∀Γ ∈ Φst (A) (9)

Let Γ = {(0,0), (1,1), . . . (n,n)} an increasing set of Φst (A), then
from equation ?? we have :∑

x | x1=x2

Π(x) ≤
∑

x∈E | x1≤x2

Πsup1(x). (10)

So we obtain :

Tb ≤ T sup1
b =

∑
x∈E | x1≤x2

Πsup1(x). (11)
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Figure: Exact model

Figure: Birth and death model
(Upper and Lower)

Proof the monotonicity of the Birth and Death process with rates
state’s dependence
Define bounding systems according rates definition
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Birth and death model

Bounding aggregation definition

Definition
Many to one mapping function h : A→ F .

∀x = (x1, x2) ∈ A,h(x) = x1 − x2 (12)

We define on F the following order � :

∀x1, x2 ∈ F , x1 � x2 ⇐⇒ x1 ≥ x2 (13)



Birth and death model

Proof

Theorem 2 (Massey, Stoyan)

If the following conditions 1, 2, 3 are satisfied:
1 g(X (0)) �st Y (0)

2 Y (t) is �st -monotone
3
∑

g(z)∈Γ Q1(y , z) ≤
∑

z∈Γ Q2(x , z), ∀Γ ∈ Φst (F ),
∀x ∈ S, y ∈ A | g(y) = x

then we have:

{g(X (t)), t ≥ 0} �st {Y (t), t ≥ 0}



Birth and death model

Proof: Monotonicity

Theorem 3 (Massey, Stoyan)

{X (t), t ≥ 0} is �st -monotone if and only if ∀Γ ∈ Φst (A),∑
z∈Γ

Q(x , z) ≤
∑
z∈Γ

Q(y , z),∀x � y | x , y ∈ Γ, or x , y 6∈ Γ

Monotonicity proof ∑
z∈Γ

Q2(x , z) ≤
∑
z∈Γ

Q2(y , z) (14)

For all states x , y ∈ F , and all increasing sets Γ ∈ Φst (F ) such that :

∀x � y ∈ F | x , y ∈ Γ or x , y 6∈ Γ (15)



Birth and death model

Proof: Monotonicity

Figure: Aggregated Model

We define the two increasing set:
Γx = {x , . . . , y , . . .}; Γy−1 = {y − 1, . . .}

Γx Γy−1

∑
z∈Γx

Q2(x , z) = −mx
∑

z∈Γy−1
Q2(x , z) = 0∑

z∈Γx
Q2(y , z) = 0

∑
z∈Γy−1

Q2(y , z) = ly

So the inequality
∑

z∈Γ Q2(x , z) ≤
∑

z∈Γ Q2(y , z) is verified, and
proposition Y (t) is �st -monotone is proved.
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Birth and death model

Proof

We denote: Y sup2(t), the birth death process defined so as an
Upper Bound
For any state x , we have:

x

x ∈ F for Y sup2(t), transition rates will be different from 0 for the
increasing sets Γx−1, and Γx
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Birth and death model

Proof

Upper bound system definition
Γx−1 Γx∑

h(z)∈Γx−1
Q(y, z) ≤ lsup2

x , ∀y ∈ A | h(y) = x
∑

h(z)∈Γx Q(y, z) ≥ msup2
x , ∀y ∈ A | h(y) = x

lsup2
x = maxy | h(y)=x

∑
h(z)∈Γx−1

Q(y, z) msup2
x = miny | h(y)=x

∑
h(z)∈Γx−1

Q(y, z)

lsup2
x = λ + xγ msup2

x = min(µ, τ)

We compute

πsup2

and we derive

Tsup2
b = πsup2(0)

we obtain

Tb =
∑n

x1=0 Π[x1, x1 ] ≤= T sup2
b



Birth and death model

Proof

Lower bound system definition
Γx−1 Γx∑

h(z)∈Γx−1
Q(y, z) ≥ l inf2

x , ∀y ∈ A | h(y) = x
∑

h(z)∈Γx Q(y, z) ≤ minf2
x , ∀y ∈ A | h(y) = x

linf2
x = miny | h(y)=x

∑
h(z)∈Γx−1

Q(y, z) minf2
x = maxy | h(y)=x

∑
h(z)∈Γx−1

Q(y, z)

l inf2
x = λ + xγ minf2

x = τ + (n − x)µ

We compute

πinf2

and we derive

T inf2
b = πinf2(0)

we obtain

Tb =
∑n

x1=0 Π[x1, x1 ] ≥= T inf2
b
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Numerical results

Numerical results

Definition
n=10 and n=27 channels
Call arrival rate varing from 2 to 50 calls per min
Channel failure occurs every hour or 10 hours.
We use SHARPE package for computation.
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Figure: 1/µ = 6min, γ = 5/hours, 1/τ =
2hours, n = 10

Remark
Parameters have an impact on
the quality of bounds
When the failure rate are low,
the lower bound is intersesting
and sup1 is better than sup2
When the failure rate are high,
sup2 is better than sup1.



Numerical results

Conclusion

Conclusion
The Trivedi approximation is an upper bound
Ordering not usually easier to establish
Differents bounds for the original system
Generalize to several groups of channels.


