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Un peu de vocabulaire

• Chaine de Markov en temps discret: DTMC = (une distribution

initiale, et une matrice stochastique)

• Espace d’états (fini, infini)

• Matrice stochastique: matrice positive (P [i, j] ≥ 0) avec
∑

j P [i, j] = 1

pour tout i.

• Type de pb: existence d’un équilibre unique, distribution à l’équilibre,

existence de plusieurs régimes, temps avant absorption, probabilité

d’absorption.

• Les réponses dépendent de propriétés structurelles (finitude,

irréductibilité) ou numériques (sur la matrice et la distribution

initiale).

ANR Projects Blanc SMS and SetIn CheckBound [2/38]



Basic Ideas for Censoring

• Consider a DTMC X with stochastic matrix Q and state space S.

• Consider a partition of the state space into (E, Ec) and the associated

block representation for Q:

Q =





A B

C D





• The censored Markov Chain (CMC) only matches the chain when its

state is in E (also known as watched Markov chain (Levy 57)).

• Not proved (but helpful) the CMC is associated to the chain where the

uncensored states have immediate transitions (we must prove that...).
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Basic...

• Transition matrix of the CMC:

SA = A + B

(

∞
∑

i=0

Di

)

C

• Not completely true.... OK if the chain is ergodic.

• If the chain is finite but not ergodic, all the states in Ec must be

transient (no recurrent class or absorbing states).

• If the chain is infinite and not ergodic, some work is necessary.
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Censored Chains and St-St Analysis

• The steady state of the CMC is the conditional probability.

πCMC(i) =
πQ(i)

∑

j πQ(j)1j∈E

• If Ec does not contain any recurrent class, the fundamental matrix is:

∞
∑

i=0

Di = (I − D)−1

• But computing SA is still difficult when Ec is large.

• Analytical: truncated solution for CMC

• Numerical: Avoid to compute (I − D)−1,

• Avoid to generate all blocks.
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Transient Problems

• Assumptions: the chain is finite and contains several absorbing states

which are all censored. Let the initial distribution be π0.

• Property: Assume that
∑

i∈E π0(i) = 1. Assume also that the states

which immediately precede absorbing states are also in E. The

absorbing probabilities in the CMC are equal to the absorbing

probabilities of the original chain.

• Proof: Algebraic. Remember that when we have a block

decomposition of a transition matrix with absorbing states:




Id 0

F H



,

matrix M = (Id − H)−1 exists and is called the fundamental matrix.

The entry [i, j] of the product matrix M ∗ F gives the absorption

probability in j knowing that the initial state is i.
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Proof

• Gather the absorbing states at the beginning of E.








Id 0 0

R A B

0 C D









• The transition matrix of the censored chain is:
[

Id 0

R A

]

+

[

0

B

]

∑

i

[D]i
[

0 C

]

which is finally equal to:
[

Id 0

R A + B

∑

i
DiC

]

.

• As D is transient, we have:
∑

i Di = (Id − D)−1. And the

fundamental matrix of the censored chain is:

(Id − A − B(Id − D)−1C)−1.
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Proof

• The fundamental matrix of the initial chain is:

M =





Id − A B

C Id − D





−1

.

• To obtain the probability we must multiply by





R

0



 and consider an

initial state in E.

• Thus we only have to compute the upper-left block of F which is equal

to:

(Id − A − B(Id − D)−1C)−1

if blocks (Id − A) and its Schur complements are non singular.

• we have the same absorption probability in Q and in SA.
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Transient Problems II

• Same Assumptions.

• The expectation of the first passage time (or absorbing time) in CMC

are smaller than the expectation of these times in the original chain.

Proof: Algebraic. Same proof. Remember that the average number of

visits in j when the initial state is i is entry [i, j] of the fundamental

matrix.

• Conjecture: the first passage time (or absorbing time) in CMC are

stochastically smaller than these times in the original chain. [A direct

consequence in the model with 0-time delays for uncensored states]
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Truncated Solution

• Truncated st-st solution: the st-st distribution for the censored process

is the initial solution with an appropriate normalization (see Kelly for

truncation of reversible processes).

• Theorem 1 the CMC has a truncated st-st solution.

• Proof: algebraic.

• Does not change the structure of the solution: Product form for the

DTMC implies Product Form for the CMC (false in continuous-time).

• If the reward is the ratio of two homogenous polynomials of degree k

on the steady-state distribution of states in E, the reward has the

same value on the DTMC and on the CMC.
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Approximation of Infinite MC

• The augmentation problem for infinite MC: adding appropriate

probabilities to A such that the st-st distribution of the augmented

chain converges to the original one (Seneta 67, Wolf, Heyman,

Freedman)

• Censoring is the best method to approximate an infinite MC (in some

sense) (Zhao, Liu).

• (B(I − D)−1C)(i, j) is the taboo probability of the paths from i in E

to j in E which are not allowed to visit E in between.

ANR Projects Blanc SMS and SetIn CheckBound [11/38]



In real life...

• Simulation: you only visit a small part of the state space without any

control.

• selection of A: transitions are sampled according to their

probabilities... What about state ?

• Partial generation: you chose the number of states, the initial state.

• Selection of A: DFS or BFS or based on probability...

• Heuristics to select a good set of states and good rules.
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Numerical Computation of Bounds

• Computing bounds rather than exact results.

• Stochastic bounds (not component-wise bounds).

• With complete state space, we use lumpability to reduce the

state-space (Truffet) or Patterns to simplify the structure of the chain

(Busic).

• With censoring, we compute bounds with only a small part of the state

space.
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Comparison for Markov Chains

• Monotonicity and comparability of the transition probability matrices

yield sufficient conditions for the stochastic comparison of MC.

• Pi,∗ is row i of P .

• Definition 1 (st-Comparison of Stochastic Matrices) Let P and

Q be two stochastic matrices. P ≤st Q if and only if Pi,∗ ≤st Qi,∗ for

all i.

• Definition 2 Let P be a stochastic matrix, P is st-monotone if and

only if for all i, j > i, we have Pi,∗ ≤st Pj,∗
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Examples

•















0.1 0.2 0.6 0.1

0.1 0.1 0.2 0.6

0.0 0.1 0.3 0.6

0.0 0.0 0.1 0.9















is monotone.

•















0.1 0.2 0.6 0.1

0.2 0.1 0.1 0.6

0.0 0.1 0.3 0.6

0.1 0.0 0.1 0.8















is not monotone.
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Vincent’s Algorithm

• It is possible to use a set of equalities, instead of inequalities:







∑n
k=j Q1,k =

∑n
k=j P1,k

∑n
k=j Qi+1,k = max(

∑n
k=j Qi,k,

∑n
k=j Pi+1,k) ∀ i, j

• Properly ordered (in increasing order for i and in decreasing order for

j in previous system), a constructive way to obtain a stochastic bound

(Vincent’s algorithm).

• Written as V = r−1v where r is the summation, and v the max of the

sums.
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An example

P1 =





















0.5 0.2 0.1 0.2 0.0

0.1 0.7 0.1 0.0 0.1

0.2 0.1 0.5 0.2 0.0

0.1 0.0 0.1 0.7 0.1

0.0 0.2 0.2 0.1 0.5





















V (P1) =





















0.5 0.2 0.1 0.2 0.0

0.1 0.6 0.1 0.1 0.1

0.1 0.2 0.5 0.1 0.1

0.1 0.0 0.1 0.7 0.1

0.0 0.1 0.1 0.3 0.5





















.
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Bounds for the CMC

• Avoid to build the whole chain.

• Assume that we build block A by a BFS from an initial state 00.

• Possible to find monotone upper and lower bound for SA (Truffet).

Proved optimal if we only know A.

• Improve Truffet’s bound if we build A and C (Dayar, Pekergin,

Younnes). Conjectured to be optimal if we know A and C

• Improve Truffet’s bound if we build A and some columns of C (less

accurate than DPY but needs less information)

• More accurate bounds then Truffet’s using some information (not all)

from blocks B, C and D. Based on graph theory to find paths and two

fundamental theorems to link element-wise lower bound and stochastic

upper bound.
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Truffet’s Algorithm to bound SA

• Only use block A.

• 2 steps:

– Compute of a stochastic upper bound of SA (operator T ()): add

the slack probability in the last column of A.

– Make it st-monotone (Vincent’s algorithm) (operator V ()).

• Simple, but needs to obtain something more accurate.

• A lower bound is obtained when we add the slack probability to the

first column of A.
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Example

Q =







0.2 0.3 0.2 0.2 0.1

0.4 0.2 0.2 0.0 0.2

0.2 0.3 0.3 0.1 0.1

0.1 0.2 0.2 0.3 0.2

0.0 0.3 0.3 0.3 0.1







SlackP robability =

[

0.3

0.2

0.2

]

T (A) =

[

0.2 0.3 0.5

0.4 0.2 0.4

0.2 0.3 0.5

]

V (T (A)) =

[

0.2 0.3 0.5

0.2 0.3 0.5

0.2 0.3 0.5

]

SA =

[

0.23 0.43 0.33

0.41 0.29 0.29

0.22 0.38 0.38

]

SA ≤st T (A) ≤st V (T (A))
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DPY

• My own presentation...

• Assume that one must compute a matrix M such that M1 ≤st M and

M2 ≤st M .

• M1 ≤st M2 is equivalent to r(M1) ≤el r(M). And we also have:

r(M2) ≤el r(M).

• Thus max(r(M1), r(M2)) ≤el r(M). Or

r−1(max(r(M1), r(M2))) ≤st M

• Easily generalized to n matrices = StMax(M1,M2,...Mn)
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DPY

• Turn back to the CMC and its matrix SA = A + Z, Z = B(I −D)−1C.

• Define G as G(i, j) = C(i, j)/
∑

k C(i, k): normalization of C

• Define Gk as matrix whose rows are all equal to row k of G

• DPY: Define U = ~βStMax(G1, G2, ..., Gn),

• Theorem 2 A + U is a st-bound of SA.

• U has rank 1.
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Examples

A =





0.1 0.3 0.2 0.1

0.1 0.4 0.2 0.0

0.2 0.1 0.5 0.2

0.2 0.0 0.4 0.0



, ~β =





0.3

0.3

0.0

0.4



, C =









0.1 0.0 0.1 0.2

0.0 0.1 0.0 0.0

0.2 0.2 0.1 0.1

0.0 0.0 0.0 0.0

0.0 0.1 0.0 0.0

0.1 0.1 0.1 0.1









.

Normalized Matrix :

G =



























0.25 0.0 0.25 0.5

0.0 1 0.0 0.0

1/3 1/3 1/6 1/6

0.0 0.0 0.0 0.0

0.0 1 0.0 0.0

0.25 0.25 0.25 0.25



























.

And finally U is ~β(0, 0.25, 0.25, 0.5).
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An algorithm based on Euclidean Division

• Definition 3 (Euclidean Division) Let V and W be two columns

vector of the same size whose elements are non negative. We define the

Euclidean division of W as follows:

W = qV + R

where R is a vector and q is the maximum positive real such that all

components of R are non negative.

• Property 1 We compute q and R as follows:

q = mini(
W (i)

V (i)
)

where the min is computed on the values of i such that V (i) is positive.

• Let us denote ~σ(i) =
∑

j C(i, j)

• It can be obtained from a high level specification of the model.
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Theory

• The bounding algorithm is based on the Euclidean division of ~σ by

each column vector of C.

• Theorem 3 Consider ~σ and an arbitrary column index k. Let Z be

B(I − D)−1C. Perform the Euclidean division of ~σ by C(∗, k) to

obtain qk and Rk. Column k of Z is upper bounded by
~β
qk

.

• Proof: Algebraic

Z = B(I − D)−1C and
∑

j

Zi,j = ~β(i)

After some algebra: ~β = B(I − D)−1C~σ

Thus:~β = B(I − D)−1(qkC∗,k + Rk)

Rk, B and (I − D)−1 are positive. Therefore:

B(I − D)−1qkC∗,k ≤el
~β
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Examples

A =





0.1 0.3 0.2 0.1

0.1 0.4 0.2 0.0

0.2 0.1 0.5 0.2

0.2 0.0 0.4 0.0



, ~β =





0.3

0.3

0.0

0.4



, C =









0.1 0.0 0.1 0.2

0.0 0.1 0.0 0.0

0.2 0.2 0.1 0.1

0.0 0.0 0.0 0.0

0.0 0.1 0.0 0.0

0.1 0.1 0.1 0.1









, ~σ =









0.4

0.1

0.6

0.0

0.1

0.4









.

Euclidean divisions:

q1 = 3 and R
t
1 =

[

0.1 0.1 0.0 0.0 0.1 0.1

]

q2 = 1 and R
t
2 =

[

0.4 0.0 0.4 0.0 0.0 0.3

]

q3 = 4 and R
t
3 =

[

0.0 0.1 0.2 0.0 0.1 0.0

]

q4 = 2 and R
t
4 =

[

0.0 0.1 0.4 0.0 0.1 0.2

]

And finally the bounding matrix is ~β(1/3, 1, 1/4, 1/2) and the st bound is
~β(0, 1/4, 1/4, 1/2).

ANR Projects Blanc SMS and SetIn CheckBound [26/38]



Theory again

• It is even possible to find a bound if we are not able to compute

exactly ~σ.

• Assume that we are able to compute ~δ such that ~δ ≤el ~σ.

Theorem 4 Consider ~δ and an arbitrary column index k. Perform

the Euclidean division of ~δ by column k of C to obtain q′k and Rk. If

q′k ≥ 1, column k of Z is upper bounded by
~β
q′

k

.

• Proof: As ~δ ≤el ~σ, we have q′k ≤ qk and we apply the former theorem.
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Examples

• Assume now that we are not able to compute the second column of C.

We have: ~δt =
[

0.4 0.0 0.4 0.0 0.0 0.3
]

.

• Then we perform the Euclidean divisions.

q1 = 2 and R1 =









0.2

0.0

0.0

0.0

0.0

0.1









q3 = 3 and R3 =









0.1

0.0

0.1

0.0

0.0

0.0









q4 = 2 and R4 =









0.0

0.0

0.0

0.0

0.0

0.1









• As we cannot compute another bound than 1 for the second column,

the bound is: ~β(1/2, 1, 1/3, 1/2) and the st bound is ~β(0, 1/6, 1/3, 1/2).
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Paths and Graphs: Theoretical Results

• Theorem 5 Let L such that A ≤el L ≤el SA. Then

SA ≤st T (L) ≤st T (A) and SA ≤st V (T (L)) ≤st V (T (A))

• Finding some component-wise lower bound of B
(
∑

∞

i=0 Ci
)

D helps to

obtain a more accurate bound.

• Theorem 6 Let L1 and L2 such that A ≤el L1 ≤el L2 ≤el SA

element-wise. Then:






SA ≤st T (L2) ≤st T (L1) ≤st T (A)

SA ≤st V (T (L2)) ≤st V (T (L1)) ≤st V (T (A))

• The more information you get, the more accurate the bounds (but all

informations are not created equal).
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Improving the bound-heuristics

• All the rows do not have the same importance for the computation of

the bound.

• Due to the monotonicity constraint, the last row is often completely

modified by Vincent’s algorithm.

• More efficient to try to improve the first row of A than the last one.
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Improving the bound-example

A =















0.1 0.3 0.2 0.1

0.1 0.4 0.2 0.

0.2 0.1 0.5 0.2

0.2 0 0.4 0















T (A) =















0.1 0.3 0.2 0.4

0.1 0.4 0.2 0.3

0.2 0.1 0.5 0.2

0.2 0 0.4 0.4















V (T (A)) =















0.1 0.3 0.2 0.4

0.1 0.3 0.2 0.4

0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4














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Improving the bound-example

Suppose that one have compute the probability [0.1, 0.1, 0., 0.1] of some

paths leaving E from state 4 and entering again set E after a visit in Ec.

L1 =













0.1 0.3 0.2 0.1

0.1 0.4 0.2 0.

0.2 0.1 0.5 0.2

0.3 0.1 0.4 0.1













T (L1) =













0.1 0.3 0.2 0.4

0.1 0.4 0.2 0.3

0.2 0.1 0.5 0.2

0.3 0.1 0.4 0.2













V (T (L1)) =













0.1 0.3 0.2 0.4

0.1 0.3 0.2 0.4

0.1 0.2 0.3 0.4

0.1 0.2 0.3 0.4













The bound does not change. . .
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Improving the bound-example

Assume now one have improved the first row and we have got the same

vector of probability for the paths: [0.1, 0.1, 0., 0.1].

L2 =













0.2 0.4 0.2 0.2

0.1 0.4 0.2 0.

0.2 0.1 0.5 0.2

0.2 0 0.4 0













T (L2) =













0.2 0.4 0.2 0.2

0.1 0.4 0.2 0.3

0.2 0.1 0.5 0.2

0.2 0. 0.4 0.4













V (T (L2)) =













0.2 0.4 0.2 0.2

0.1 0.4 0.2 0.3

0.1 0.2 0.4 0.3

0.1 0.1 0.4 0.4













The bound is now much better than the original one.
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Graph techniques to find L

• x = B
(
∑

∞

i=0 Di
)

C: sum of probability of paths leaving E (i.e. matrix

B) and returning into E (matrix C) after an arbitrary number of visits

inside Ec (matrix D).

• We select some paths instead of generating all of them.

• Well-known graph algorithms (Shortest Path, Breadth First search) to

select some paths and compute their probability.
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Some Details about Paths and Probability

• BFS: only takes into account the number of states in a path.

• Give a depth for the analysis tree.

• The probability of a path is the product of the probability of the arcs.

• SP: the weight of a an arc is equal to −log(P (i, j)).

• Thus the SP according to this weight is the path with the highest

probability.
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Taking Self-Loops into account

• Let Z be a path selected by the algorithm, p its probability and x a

node of Z.

• If there is a self loop in x (i.e. P (x, x) = q > 0), consider Li = Z + i

loops in state x (for an arbitrary i > 0).

• Li has probability pqi.

• Li is also a path which can be aggregated to Z in the analysis and the

global probability is p/(1 − q).

• The algorithm computes the probability of the path and the list of self

loops (with their probability) along the path.
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Open Questions I

• BFS, DFS, Random Search: which strategy is the best one (i.e. more

accurate) in the path selection Algorithm?

• Is DPY optimal when we only know A and C ?

• If D has several connected component, we can improve DPY.

• Proof that the CMC is the chain with immediate transitions in Ec (see

Donatelli in Qest06: GSPN with immediate transitions). Links with

the theory of Markov chains with fast transitions developped by

Markovski in Epew06 and 07 ?
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Open Questions II

• Accuracy of the bound for Pr(A): not bounded.

• With a simple Birth and Death process, we can build a chain where

Pr(A) is not lower bounded and inside A the steady-state probability

is decreasing with any rate < 1.

• Adding information for D to bound Pr(A) ?

• Type of information we can add in the model: number of strongly

connected component, rank ?
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