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@A partir des résultats de N. Pekergin, S. Younes, T. Dayar, L. Truffet, beaucoup

d’autres, et un peu moi
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e Chaine de Markov en temps discret: DTMC = (une distribution

initiale, et une matrice stochastique)
e Fspace d’états (fini, infini)

e Matrice stochastique: matrice positive (P[z, j| > 0) avec ) _; Pli, j| = 1

pour tout 7.

e Type de pb: existence d’un équilibre unique, distribution a 1’équilibre,
existence de plusieurs régimes, temps avant absorption, probabilité

d’absorption.

e Les réponses dépendent de propriétés structurelles (finitude,
irréductibilité) ou numériques (sur la matrice et la distribution

initiale).
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Consider a DTMC X with stochastic matrix () and state space S.

Consider a partition of the state space into (F, E€) and the associated

block representation for Q):

Q =

A|B

The censored Markov Chain (CMC) only matches the chain when its
state is in E (also known as watched Markov chain (Levy 57)).

Not proved (but helpful) the CMC is associated to the chain where the

uncensored states have immediate transitions (we must prove that...).

C|D
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e Transition matrix of the CMC:
Si=A+B <ZD@'> C
i=0
e Not completely true.... OK if the chain is ergodic.

e If the chain is finite but not ergodic, all the states in £ must be
transient (no recurrent class or absorbing states).

e If the chain is infinite and not ergodic, some work is necessary.

\_ /

PrUsM \Qﬁ‘%fong' ANR Projects Blanc SMS and SetIn CheckBound [4/38]




\_

The steady state of the CMC is the conditional probability.

mo (1)
j WQ(j)]‘jEE

Temc () = >

If £ does not contain any recurrent class, the fundamental matrix is:
o
> D'=(I-D)"
i=0

But computing S is still difficult when E° is large.
Analytical: truncated solution for CMC
Numerical: Avoid to compute (I — D)1,

Avoid to generate all blocks.
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e Assumptions: the chain is finite and contains several absorbing states

which are all censored. Let the initial distribution be mg.

Property: Assume that ) ., m(i) = 1. Assume also that the states
which immediately precede absorbing states are also in /. The
absorbing probabilities in the CMC are equal to the absorbing
probabilities of the original chain.

Proof: Algebraic. Remember that when we have a block
decomposition of a transition matrix with absorbing states:

1d| 0
F|H

matrix M = (Id — H)~! exists and is called the fundamental matrix.
The entry [¢, j] of the product matrix M * F' gives the absorption
probability in 5 knowing that the initial state is .
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e Gather the absorbing states at the beginning of FE.

1d| 0| 0
R|A| B
o0 |C||D

e The transition matrix of the censored chain is:
1d | 0 i
> oc]

R | A
which is finally equal to: [ 11-: % A+B£; g }

0
_|_—
B

e As D is transient, we have: > . D" = (Id — D)~*. And the
fundamental matrix of the censored chain is:

(Id—A—-B(Id—- D) *C)™.
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e The fu_ndamental matrix (_)f tihe initial chain is:
1d-A| B

M =
C ‘Id—D_

e To obtain the probability we must multiply by |——| and consider an

initial state in E.

e Thus we only have to compute the upper-left block of F' which is equal
to:
(Id — A— B(Id— D) 'C)™!

if blocks (Id — A) and its Schur complements are non singular.

e we have the same absorption probability in () and in Sy4.
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e Same Assumptions.

e The expectation of the first passage time (or absorbing time) in CMC

are smaller than the expectation of these times in the original chain.

Proof: Algebraic. Same proof. Remember that the average number of
visits in j when the initial state is i is entry |7, j] of the fundamental

matrix.

e Conjecture: the first passage time (or absorbing time) in CMC are
stochastically smaller than these times in the original chain. [A direct
consequence in the model with 0-time delays for uncensored states]
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|_Truncated Solution |

e Truncated st-st solution: the st-st distribution for the censored process
is the initial solution with an appropriate normalization (see Kelly for

truncation of reversible processes).
e Theorem 1 the CMC has a truncated st-st solution.
e Proof: algebraic.

e Does not change the structure of the solution: Product form for the
DTMC implies Product Form for the CMC (false in continuous-time).

e If the reward is the ratio of two homogenous polynomials of degree k

on the steady-state distribution of states in E, the reward has the
same value on the DTMC and on the CMC.
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e The augmentation problem for infinite MC: adding appropriate
probabilities to A such that the st-st distribution of the augmented
chain converges to the original one (Seneta 67, Wolf, Heyman,

Freedman)

e Censoring is the best method to approximate an infinite MC (in some
sense) (Zhao, Liu).

e (B(I-D)"*C)(i,j) is the taboo probability of the paths from 7 in E
to 7 in £ which are not allowed to visit £ in between.
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e Simulation: you only visit a small part of the state space without any

control.

e selection of A: transitions are sampled according to their
probabilities... What about state 7

e Partial generation: you chose the number of states, the initial state.
e Selection of A: DFS or BFS or based on probability...

e Heuristics to select a good set of states and good rules.
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Computing bounds rather than exact results.

Stochastic bounds (not component-wise bounds).

With complete state space, we use lumpability to reduce the
state-space (Truffet) or Patterns to simplify the structure of the chain

(Busic).

With censoring, we compute bounds with only a small part of the state

space.
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e Monotonicity and comparability of the transition probability matrices
yield sufficient conditions for the stochastic comparison of MC.

o P, .isrow ¢ of P.

e Definition 1 (st-Comparison of Stochastic Matrices) Let P and
Q) be two stochastic matrices. P <g Q) if and only if P; . < Qi for
all 7.

e Definition 2 Let P be a stochastic matriz, P is st-monotone if and
only if for all i, 7 > 1, we have P; . <g P; «
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0.1 0.2 0.6 0.1
0.1 0.1 0.2 0.6 .
° 1S monotone.
0.0 0.1 0.3 0.6

0.0 0.0 0.1 0.9

0.1 0.2 0.6 0.1
0.2 0.1 0.1 0.6 [,
° 1S not monotone.
0.0 0.1 0.3 0.6

0.1 0.0 0.1 0.8
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e It is possible to use a set of equalities, instead of inequalities:

> Qe = D Pk
Dohej Qivre = maz(Y_; Qiks D gy Pivrk) Vi J

e Properly ordered (in increasing order for ¢ and in decreasing order for
j in previous system), a constructive way to obtain a stochastic bound
(Vincent’s algorithm).

e Written as V = r~!v where r is the summation, and v the max of the

SUIIS.
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0.5 02 0.1 0.2 0.0
0.1 0.7 0.1 0.0 0.1
Pl=1{02 01 05 02 0.0
0.1 0.0 0.1 0.7 0.1
0.0 02 0.2 01 0.5

0.5 02 0.1 0.2 0.0
0.1 06 0.1 0.1 0.1
V(P1l)=1 01 02 05 01 0.1
0.1 0.0 0.1 0.7 0.1
0.0 0.1 0.1 03 0.5
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e Avoid to build the whole chain.
e Assume that we build block A by a BFS from an initial state 00.

e Possible to find monotone upper and lower bound for S, (Truffet).

Proved optimal if we only know A.

e Improve Truffet’s bound if we build A and C (Dayar, Pekergin,
Younnes). Conjectured to be optimal if we know A and C

e Improve Truffet’s bound if we build A and some columns of C' (less
accurate than DPY but needs less information)

e More accurate bounds then Truffet’s using some information (not all)
from blocks B, C' and D. Based on graph theory to find paths and two
fundamental theorems to link element-wise lower bound and stochastic

upper bound.
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Only use block A.

2 steps:

— Compute of a stochastic upper bound of S4 (operator 7'()): add
the slack probability in the last column of A.

— Make it st-monotone (Vincent’s algorithm) (operator V()).
Simple, but needs to obtain something more accurate.

A lower bound is obtained when we add the slack probability to the
first column of A.
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0.2 0.3 0.2 ] 02 0.1 ]
0.4 0.2 0.2 0.0 0.2 0.3
Q = 0.2 0.3 0.3 ]| 0.1 0.1 SlackProbability = | 0.2
0.1 0.2 0.2 0.3 0.2 0.2
| 0.0 03 03|03 01 |
0.2 0.3 0.5 0.2 0.3 0.5
T(A)=| 0.4 0.2 0.4 V(T(A)=| 02 03 0.5
0.2 0.3 0.5 0.2 0.3 0.5
0.23 0.43  0.33
Sa=| 0.41 0.29 0.29
0.22 0.38 0.38

SA Sst T(A) Sst V(T(A))
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e Assume that one must compute a matrix M such that M1 <, M and
M2 <, M.

e My own presentation...

o M1 <, M2 is equivalent to r(M1) <. r(M). And we also have:
r(M2) < r(M).

e Thus max(r(M1),r(M2)) <g r(M). Or
r~L(max(r(M1),r(M2))) <g4 M

e Easily generalized to n matrices = StMax(M1,M2,...Mn)
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e Turn back to the CMC and its matrix Sy = A+ Z, Z = B(I—- D) 'C.
e Define G as G(¢,5) = C(i,5)/ >, C(4, k): normalization of C

e Define GG;. as matrix whose rows are all equal to row k£ of GG

e DPY: Define U = gStMaw(Gl,Gg, ey G),

e Theorem 2 A+ U is a st-bound of S,.

e U has rank 1.
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0.1 0.3
0.1 0.4
0.2 0.1
0.2 0.0

[ 0.25
0.0
1/3
0.0
0.0

0.2
0.2
0.5
0.4

1

1/3
0.0

1

Normalized Matrix :

0.0

_ _ _ 0.1
0.1 0.3 0.0
0.0 B—»: 0.3 o= 0.2
0.2 0.0 0.0
0.0 0.4 0.0
B - - 0.1
025 05 |
0.0 0.0
1/6 1/6
0.0 0.0
0.0 0.0

0.25 0.25 0.25 0.25

And finally U is 5(0,0.25,0.25,0.5).

0.0
0.1
0.2
0.0
0.1
0.1

0.1
0.0
0.1
0.0
0.0
0.1

0.2
0.0
0.1
0.0
0.0
0.1
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e Definition 3 (Euclidean Division) Let V and W be two columns
vector of the same size whose elements are non negative. We define the
Fuclidean division of W as follows:

W=qV +R

where R is a vector and q s the mazrimum positive real such that all
components of R are non negative.

e Property 1 We compute g and R as follows:

W(i))

V(i)

where the min is computed on the values of i such that V(i) is positive.

e Let us denote &'(i) = Zj C(,7)

q = min;(

\ e It can be obtained from a high level specification of the model. /
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e The bounding algorithm is based on the Euclidean division of & by
each column vector of C.

e Theorem 3 Consider & and an arbitrary column index k. Let Z be
B(I — D)~'C. Perform the Euclidean division of & by C(x*,k) to
obtain qr and Ry. Column k of Z is upper bounded by q%.

e Proof: Algebraic

Z=B(I-D)"'C and) Z;;= (i)
J
After some algebra: 3 = B(I — D)"1C&
Thus:# = B(I — D)~ (qxCux + Ru)
Ry, B and (I — D)™ ! are positive. Therefore:
B(I-D) 'qCi < B
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_ _ ~ _ 0.1 0.0 0.1 0.2 7 0.4 ]
0.1 0.3 0.2 0.1 0.3 0.0 0.1 0.0 0.0 0.1
0.1 0.4 0.2 0.0 _ 0.3 0.2 0.2 0.1 0.1 0.6
A= B = L C = , & =
0.2 0.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.0 0.4 0.0 0.4 0.0 0.1 0.0 0.0 0.1
B - B - 0.1 0.1 0.1 0.1 | 0.4 _
Fuclidean divisions:
g1 =3 and RE=[ 01 01 00 00 01 01
gp =1 and R%:-o.zx 0.0 04 00 00 0.3 |
g3 =4 and R§ = 00 01 02 00 01 0.0 |
q4 = 2 and RZ = [ 0.0 0.1 0.4 0.0 0.1 0.2 |
And finally the bounding matrix is 5(1/3,1,1/4,1/2) and the st bound is
kﬂ(O, 1/4,1/4,1/2).
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e It is even possible to find a bound if we are not able to compute

exactly &.

e Assume that we are able to compute § such that & <, O.

Theorem 4 Consider & and an arbitrary column index k. Perform
the Euclidean division 0f5 by column k of C to obtain q; and Ry. If

q,. > 1, column k of Z is upper bounded by qﬁ,.
k

e Proof: As ¢ <, g, we have q;, < g and we apply the former theorem.
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e Assume now that we are not able to compute the second column of C.

We have: §t = [ 04 0.0 04 0.0 0.0 0.3 }

e Then we perform the Euclidean divisions.

q1 =2 and Ry =

e As we cannot compute another bound than 1 for the second column,
the bound is: 4(1/2,1,1/3,1/2) and the st bound is 5(0,1/6,1/3,1/2).

0.2
0.0
0.0
0.0
0.0
0.1

qz3 = 3 and Rg =

0.1
0.0
0.1
0.0
0.0
0.0

qq =2 and Ry =

0.0
0.0
0.0
0.0
0.0
0.1
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e Theorem 5 Let L such that A <., L <. S4. Then

Su <o T(L) <ot T(A) and Su <y V(T(L)) <s V(T(A))

e Finding some component-wise lower bound of B (Z;;)io C’i) D helps to
obtain a more accurate bound.

e Theorem 6 Let L1 and L2 such that A <. L1 <. L2 <. Sx
element-wise. Then:
SA Sst T<L2) Sst T(Ll) Sst T(A)
Sa < V(T(L2)) < V(T(L1)) <5 V(T(A))

e The more information you get, the more accurate the bounds (but all
informations are not created equal).
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e All the rows do not have the same importance for the computation of
the bound.

e Due to the monotonicity constraint, the last row is often completely
modified by Vincent’s algorithm.

e More efficient to try to improve the first row of A than the last one.
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0.1
0.1
0.2
0.2

0.3
0.4
0.1

0.2
0.2
0.5
0.4

0.2

0.4
0.3
0.2
0.4

0.1 03 0.2 0.1 |
01 04 0.2 O
02 0.1 05 0.2

0 04 0
0.1
0.1
V(T(A)) =
0.1
0.1

0.3
0.3
0.2
0.2

0.2
0.2
0.3
0.3

0.4
0.4
0.4
0.4
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T(L1)

01 03 02 01
0.1 04 02 0.

L1 =
02 01 05 0.2
03 01 04 0.1 |
01 03 02 04 0.1 0.3
01 04 02 0.3 0.1 0.3
V(T(L1)) =
02 01 05 0.2 0.1 0.2
03 01 04 02 0.1 0.2

The bound does not change. ..

0.2
0.2
0.3
0.3

Suppose that one have compute the probability [0.1,0.1,0.,0.1] of some
paths leaving F from state 4 and entering again set E after a visit in E*.

0.4
0.4
0.4
0.4
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T(L2)

Assume now one have improved the first row and we have got the same
vector of probability for the paths: [0.1,0.1,0.,0.1].

0.2
0.1
0.2

0.2

0.4

0.4

0.1
0.

L2 =

0.2
0.2
0.5
0.4

[ 0.2
0.1
0.2

0.2

0.2 |
0.3
0.2
0.4

04 02 0.2 |

0.4 0.2

0 04

V(T(L2))

0.
0.1 0.5 0.2

0

0.2
0.1
0.1
0.1

The bound is now much better than the original one.

0.4
0.4
0.2
0.1

0.2
0.2
0.4
0.4

0.2
0.3
0.3
0.4
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e x =B (> 72, D") C: sum of probability of paths leaving E (i.e. matrix
B) and returning into £ (matrix C') after an arbitrary number of visits
inside £¢ (matrix D).

e We select some paths instead of generating all of them.

e Well-known graph algorithms (Shortest Path, Breadth First search) to
select some paths and compute their probability.
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BFS: only takes into account the number of states in a path.

Give a depth for the analysis tree.

The probability of a path is the product of the probability of the arcs.
SP: the weight of a an arc is equal to —log(P(¢,7)).

Thus the SP according to this weight is the path with the highest
probability.

[
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e Let Z be a path selected by the algorithm, p its probability and x a
node of Z.

e If there is a self loop in z (i.e. P(z,z) =¢q > 0), consider £; = Z + ¢

loops in state = (for an arbitrary i > 0).
e £; has probability pq*.

e [, is also a path which can be aggregated to Z in the analysis and the
global probability is p/(1 — q).

e The algorithm computes the probability of the path and the list of self
loops (with their probability) along the path.
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e BFS, DFS, Random Search: which strategy is the best one (i.e. more
accurate) in the path selection Algorithm?

e Is DPY optimal when we only know A and C' ?
e If D has several connected component, we can improve DPY.

e Proof that the CMC is the chain with immediate transitions in E° (see
Donatelli in Qest06: GSPN with immediate transitions). Links with
the theory of Markov chains with fast transitions developped by

Markovski in Epew(06 and 07 7
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e Accuracy of the bound for Pr(A): not bounded.

e With a simple Birth and Death process, we can build a chain where
Pr(A) is not lower bounded and inside A the steady-state probability
is decreasing with any rate < 1.

e Adding information for D to bound Pr(A) 7

e Type of information we can add in the model: number of strongly

connected component, rank 7
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