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Outline

• Motivation and some questions

• The classical framework for Markov Chains: strong stochastic ordering,
total ordering of the state space, steady-state analysis of DTMC

• Getting more from the classical framework

• Beyond the classical framework: partial ordering of the states,
variability ordering among random variables
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Motivation

• Solving very large Markov chains.

• Solving a set of chains (worst case analysis).

• Qualitative properties of models based on Markov chains.

• Proof of algorithms based on Markov chains.
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Solving Large Chains

• The composition of submodels in interaction allows modeling of large
and complex systems.

• A tensor representation of MC, either in discrete-time or
continuous-time [30, 43]:

P =
∑

i

⊗jM
j
i .

• Associated to several High Level Formalisms (Stochastic Process
Algebra, Stochastic Automata Networks, Superposition of Stochastic
Petri Nets, etc..).

• An efficient storage of large chains.
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• But numerical analysis of chains in steady-state is still difficult [43].

• Compute performance indices R defined as reward functions on the
steady-state distribution:

R =
∑

i

r(i)π(i).

• In general the tensor representation is less efficient than the usual
sparse matrix form for basic operations required for numerical analysis.

ANR Projects Blanc SMS and SetIn Checkbound [5/134]

Bounding the Rewards

• Exact values of the performance indices are sometimes not necessary.

• It is often sufficient to satisfy the Quality of Service (QoS)
requirements.

• Bounding some reward functions is sufficient.
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Bounds

• Linear algebra problem (π = πP ), polyhedral properties (Courtois and
Semal [17, 18], Goyal, Muntz, Lui, Rubino and Buchholz [8]).

• Markov Decision Process (Van Dijk [49]).

• Stochastic Bounds (bounds of the sample-paths, coupling) (Stoyan
[44, 45], Kijima [32], Shaked, Shantikumar[42]).

• Here : stochastic comparison and stochastic monotonicity based on
linear algebra, not on sample-path theorem or coupling (stochastic
arguments).
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Methodology

• We have to model a problem using a very large Markov chain and
compute its steady-state distribution.

• Design algorithmically a new chain (transition matrix) such that:

– The reward functions will be upper or lower bounds of the exact
reward functions.

– The new matrix is simpler to solve (smaller or with an easy
structure).

• Based on stochastic ordering and monotonicity of Markov chains,
lumpability (Truffet) or censoring (Younès) for building smaller chains)
and patterns (Busic) for the derivation of structured DTMC.

ANR Projects Blanc SMS and SetIn Checkbound [8/134]



Motivation again: worst case analysis

• Models where some parameters are not perfectly known.

• For instance: transition probabilities are in some interval.

• Solving the worst case in the set of DTMC (i.e. the worst average
reward).

• How to find the ”worst” matrix in a set ?

• For steady-state and transient rewards, and absorption time or
probabilities.

• Based on stochastic orderings for random variables and Markov chains,
monotonicity of DTMC.
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Motivation continued: Qualitative Properties

• Prove that a steady-state or transient reward or an absorbing time is
increasing with a parameter or the DTMC.

• Prove the convergence of algorithms based on a Markov chain.

• Based on the monotonicity of the DTMC.
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The classical methodology and framework

• Total ordering of the states.

• Strong stochastic ordering of the chain.

• Steady-state analysis.
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Strong Stochastic Bounds

• Restriction (here) : Discrete Time Markov Chains (DTMC) with
finite state space E = {1, . . . , n} (n is the size of the chain) and
total order on the state space.

• Continuous-Time MC : will be studied in the next section

• Pi,∗ will refer to row i of P .
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Comparison of Random Variables

• The strong stochastic ordering is defined by the set of non-decreasing
functions or by matrix Kst (Stoyan [44]).

• Definition 1 Let X and Y be random variables taking values on a
totally ordered space. Then X <st Y if and only if E[f(X)] ≤ E[f(Y )]
for all non decreasing functions f whenever the expectations exist.
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Discrete states

• Definition 2 If X and Y take values on the finite state space
{1, 2, . . . , n} with p and q as probability distribution vectors, then
X <st Y if and only if

∑n
j=k pj ≤

∑n
j=k qj for k = 1, 2, . . . , n, or

briefly:

pKst ≤ qKst component-wise (i.e. pKst ≤el qKst).

• Kst =





1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1




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Example

(0.1, 0.3, 0.2, 0.1, 0.3) <st (0, 0.4, 0, 0.3, 0.3)

because





0.3 ≤ 0.3

0.1 + 0.3 ≤ 0.3 + 0.3

0.2 + 0.1 + 0.3 ≤ 0 + 0.3 + 0.3

0.3 + 0.2 + 0.1 + 0.3 ≤ 0.4 + 0 + 0.3 + 0.3

0.1 + 0.3 + 0.2 + 0.1 + 0.3 ≤ 0 + 0.4 + 0 + 0.3 + 0.3
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Example

• x = (0.1, 0.3, 0.2, 0.1, 0.3) and y = (0, 0.5, 0, 0.2, 0.3) are not
st-comparable because:

• 0.1 + 0.3 ≤ 0.2 + 0.3; thus y <st x is not true.

• 0.2 + 0.1 + 0.3 ≥ 0 + 0.2 + 0.3; thus x <st y is not true.
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st-bounds

• Average population, loss rates or tail probabilities are non decreasing
functions.

• Bounds on the distribution imply bounds on these performance indices
as well.

• St-bounds are valid for transient distributions as well as the steady
state (we first study the steady-state here).
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Comparison for Markov Chains

• Monotonicity [31] and comparability of the transition probability
matrices yield sufficient conditions for the stochastic comparison of
MC.

• Definition 3 (st-Comparison of Stochastic Matrices) Let P and
Q be two stochastic matrices. P <st Q if and only if PKst ≤ QKst.
This can be also characterized as Pi,∗ <st Qi,∗ for all i.
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st-Monotone Matrix

• Definition 4 (St-Monotone Matrix) Let P be a stochastic matrix,
P is st-monotone if and only if for all u and v, if u <st v then
uP <st vP .

• St-monotone matrices are completely characterized (this is not true for
other orderings, see [5]).

• Definition 5 Let P be a stochastic matrix. P is st-monotone if and
only if K−1

st PKst ≥ 0 component-wise.

• Property 1 Let P be a stochastic matrix, P is st-monotone if and
only if for all i, j > i, we have Pi,∗ <st Pj,∗
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Examples

•





0.1 0.2 0.6 0.1

0.1 0.1 0.2 0.6

0.0 0.1 0.3 0.6

0.0 0.0 0.1 0.9




is monotone.

•





0.1 0.2 0.6 0.1

0.2 0.1 0.1 0.6

0.0 0.1 0.3 0.6

0.1 0.0 0.1 0.8




is not monotone.
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Fundamental theorem

Theorem 1 Let X(t) and Y (t) be two DTMC and P and Q be their
respective stochastic matrices. If

• X(0) <st Y (0),

• st-monotonicity of at least one of the matrices holds,

• st-comparability of the matrices holds, that is, Pi,∗ <st Qi,∗ ∀i.

Then X(t) <st Y (t), t > 0.
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Proof

• By induction on t:

• Assume that X(t) <st Y (t) (true for t = 0).

• Then, X(t)P <st X(t)Q (simple lemma).

• Assume Q is st-monotone,
as X(t) <st Y (t) we have: X(t)Q <st Y (t)Q.

• Thus, X(t)P <st Y (t)Q.

• After identification X(t + 1) <st Y (t + 1).
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Relations

• Thus, assuming that P is not monotone, we obtain a set of inequalities
on the elements of Q:






∑n
k=j Pi,k ≤

∑n
k=j Qi,k ∀ i, j

∑n
k=j Qi,k ≤

∑n
k=j Qi+1,k ∀ i, j

(1)
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Algorithms

• It is possible to use a set of equalities, instead of inequalities:





∑n
k=j Q1,k =

∑n
k=j P1,k

∑n
k=j Qi+1,k = max(

∑n
k=j Qi,k,

∑n
k=j Pi+1,k) ∀ i, j

• Properly ordered (in increasing order for i and in decreasing order for
j in previous system), a constructive way to obtain a stochastic bound
(Vincent’s algorithm [1]).

ANR Projects Blanc SMS and SetIn Checkbound [24/134]



Vincent’s Algorithm

Construction of an upper bound Q :P <st Q and Q is <st monotone
Column n:
Q1,n = P1,n;
For i = 2 to n Do Qi,n = max(Pi,n, Qi−1,n);
Column j, n − 1 ≥ j ≥ 2:
For j = n − 1 downto 2 Do

Q1,j = P1,j ;
For i = 2 to n Do

Qi,j = max(
∑n

k=j Pi,k,
∑n

k=j Qi−1,k) −
∑n

k=j+1 Qi,k;
End

End
Column 1:
For i = 1 to n Do Qi,1 = 1 −

∑n
k=2 Qi,k;
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Technical details

• For the sake of simplicity, we use a full matrix representation for P

and Q.

• Stochastic matrices for real problems are usually sparse.

• The sparse matrix and tensor versions of most of the algorithms are
straightforward.

• Definition 6 We denote by v(P ) the matrix obtained after application
of Vincent’s Algorithm to a stochastic matrix P .
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An example

P1 =





0.5 0.2 0.1 0.2 0.0

0.1 0.7 0.1 0.0 0.1

0.2 0.1 0.5 0.2 0.0

0.1 0.0 0.1 0.7 0.1

0.0 0.2 0.2 0.1 0.5





• Once an element is obtained, we can compute the element on the left
and below.

• Begin with element (1, n).

• Proceed by row or by column.

• The summations
∑n

k=j Qi−1,j and
∑n

k=j+1 Qi,j are already computed
when we need them. Store to avoid computations.
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First steps

• First row is unchanged:




0.5 0.2 0.1 0.2 0.0




.
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First column

• Compute column n (st-monotonicity implies that the elements are non
decreasing): 



0.5 0.2 0.1 0.2 0.0

0.1

0.1

0.1

0.5





.
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Next Column

• Compute column n − 1 (st-monotonicity implies that the sums of the
last two elements in a row are non decreasing):





0.5 0.2 0.1 0.2 0.0

0.1 0.1

0.1 0.1

0.7 0.1

0.3 0.5





.
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• Finally Q = v(P1) =





0.5 0.2 0.1 0.2 0.0

0.1 0.6 0.1 0.1 0.1

0.1 0.2 0.5 0.1 0.1

0.1 0.0 0.1 0.7 0.1

0.0 0.1 0.1 0.3 0.5





.

• πP1 = (0.180, 0.252, 0.184, 0.278, 0.106).

• πQ = (0.143, 0.190, 0.167, 0.357, 0.143).

• We can check that: πP1 <st πQ.

• Expectation: 1.87 for P1 and 2.16 for v(P1).
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Irreducibility of Q

• Due to the subtraction operations, some elements of v(P ) may be zero
even if the corresponding elements in P are non zero.

• It may happen that matrix v(P ) computed by Vincent’s algorithm is
not irreducible, even if P is irreducible.

• If matrix v(P ) is reducible, it has one essential class of states. It is still
possible to compute the steady-state distribution for this class.
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• New algorithms which do not delete transitions while computing the
bound (see IMSUB below and the Patterns).

• A necessary and sufficient condition on P to obtain an irreducible
matrix.
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IMSUB

Construction of an st-monotone upper bounding DTMC, Q without
transition deletion, ε constant 0 < ε < 1
Q1,n = P1,n;
For i = 2 to n Do Qi,n = max(Pi,n, Qi−1,n);
For j = n − 1 downto 2 Do

Q1,j = P1,j ;
For i = 2 to n Do

Qi,j = max(0, max(
∑n

k=j Pi,k,
∑n

k=j Qi−1,k)) −
∑n

k=j+1 Qi,k;
If (Qi,j = 0) and (

∑n

k=j+1
Qi,k < 1) and ((Pi,j > 0) or (i = j − 1))

then Qi,j = ε × (1 −
∑n

k=j+1 Qi,k);
End

End
For i = 1 to n Do Qi,1 = 1 −

∑n
k=2 Qi,k;

ANR Projects Blanc SMS and SetIn Checkbound [34/134]



Theorem and Example

• Theorem 2 Let P be an irreducible finite stochastic matrix. Matrix Q

computed from P with IMSUB is irreducible if and only if

– P (1, 1) > 0,

– every row of the lower triangle of matrix P contains at least one
positive element.

P =





0.5 0.2 0.1 0.2 0.0

0.1 0.7 0.1 0.0 0.1

0.2 0.1 0.5 0.2 0.0

0.0 0.0 0.0 0.7 0.3

0.0 0.2 0.2 0.1 0.5



 Q =





0.5 0.2 0.1 0.2 0.0

0.1 0.6 0.1 0.1 0.1

0.1 0.2 0.5 0.1 0.1

0.0 0.0 0.0 0.7 0.3

0.0 0.0 0.0 0.5 0.5





• States 0, 1 and 2 are transient.
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Optimality

• Theorem 3 (Optimality) Vincent’s algorithm provides the smallest
st-monotone upper bound for a matrix P : i.e. if we consider U another
st-monotone upper bounding DTMC for P then v(P ) <st U [1].

• Proof based on properties of (max,+) equations.

• However bounds on the probability distributions may still be improved.

• The former theorem only states that Vincent’s algorithm provides the
smallest matrix according to the st-ordering of matrices.
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Lower Bound

• Based on the same relations.

• Consider another ordering for the index of the rows and the columns.

n → 1

n − 1 → 2

· · ·
1 → n

• Another operator (min instead of max).
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Lower Bound

Construction of lower bound Q <st P and Q is <st monotone
Column 1:
Qn,1 = Pn,1;
For i = n − 1 downto 1 Do Qi,1 = max(Pi,1, Qi+1,1);
Column j, 2 ≤ j ≤ n − 1:
For j = 2 to n − 1 Do

Qn,j = Pn,j ;
For i = n − 1 downto 1 Do

Qi,j = max(
∑j

k=1 Pi,k,
∑j

k=1 Qi+1,k) −
∑j−1

k=1 Qi,k;
End

End
Column n:
For i = 1 to n Do Qi,n = 1 −

∑n−1
k=1 Qi,k;
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Lower Bound

Construction of lower bound Q <st P and Q is <st monotone
Column n:
Qn,n = Pn,n;
For i = n − 1 downto 1 Do Qi,n = min(Pi,n, Qi+1,n);
Column j, n − 1 ≤ j ≤ 2:
For j = n − 1 downto 2 Do

Qn,j = Pn,j ;
For i = n − 1 downto 1 Do

Qi,j = min(
∑n

k=j Pi,k,
∑n

k=j Qi+1,k) −
∑n

k=j+1 Qi,k;
End

End
Column 1:
For i = 1 to n Do Qi,1 = 1 −

∑n
k=2 Qi,k;
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Time and Space complexity

• v(P ) is, in general, as difficult as P to analyze.

• matrix v(P ) may have many more positive elements than matrix P

and it may be even completely filled.

P4 =





0.5 0.2 0.1 0.1 0.1

1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0 0.0



 Q =





0.5 0.2 0.1 0.1 0.1

0.5 0.2 0.1 0.1 0.1

0.5 0.2 0.1 0.1 0.1

0.5 0.2 0.1 0.1 0.1

0.5 0.2 0.1 0.1 0.1




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Methodology for simplification

• Use the inequalities (degree of freedom) and build a matrix simpler to
analyze.

• Easy to solve : matrices with structural or numerical properties
(Pattern, Class C) or smaller matrices (lumpability, censored MC).

• Use ad-hoc algorithms for the numerical resolution of structured
matrices or usual algorithms when the size of the bounding chain is
small enough.

• No new assumptions on P .
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Ordinary lumpability

• Used by Truffet with st-comparison to model ATM switch [48].

• Lumpability implies a state space reduction. (decomposition of the
chain into macro-states)

• Definition 7 (ordinary lumpability) Let X be an irreducible finite
DTMC, Q its matrix, let Ak be a partition of the states. X is ordinary
lumpable according to Ak, iff for all states e and f in the same
arbitrary macro state Ai, we have:

∑

j∈Ak

qe,j =
∑

j∈Ak

qf,j ∀ macro − state Ak

• Ordinary lumpability constraints are consistent with st-monotonicity.

• An algorithm is proposed by Truffet [48].
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Truffet’s algorithm

• Assume that states are ordered according to the macro-state partition.

• Ordinary lumpability = constant row sum for the block

• The algorithm computes the matrix row by row with some particular
work for block boundaries.

• Due to st-monotonicity, the maximal row sum is reached for the last
row of the block (except for the last non-zero block).

• The values of the lumped matrix are obtained for the last row sum of a
block.

ANR Projects Blanc SMS and SetIn Checkbound [43/134]

Example

• P6 =





0.5 0.2 0.2 0.0 0.1

0.2 0.4 0.2 0.2 0.0

0.2 0.3 0.1 0.1 0.3

0.1 0.2 0.3 0.4 0

0.3 0.3 0.3 0 0.1





.

• We divide the state-space into two macro-states: (1, 2) and (3, 4, 5).
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• The bounding matrix and the row sums for the first block:




0.5 0.2 0.2 0.0 0.1

0.2 0.4 0.2 0.1 0.1





0.3

0.4

• The lumpable matrix and the lumped one:




0.4 0.2 0.3 0.0 0.1

0.2 0.4 0.2 0.1 0.1







 0.6 0.4



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Various implementations

• LMSUB: Sparse matrix implementation of Truffet’s algorithm [13].

• LIMSUB: add the irreducibility constraint (as IMSUB) [23].

• SAN2LMSUB: the input is a SAN (or a sum of tensor products). The
output is a sparse matrix [26].
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Censored Markov Chains

• Consider a DTMC with finite state space S = E ∪ Ec, E ∩ Ec = ∅.

• The censored DTMC with censoring set E watches the chain when it is
in block E.

• For the steady-state, equivalent to the stochastic complement proposed
by Meyer in [37].

Consider a block decomposition of Q:



 QE QEEc

QEcE QEc



 .

• The stochastic complement matrix for block E:
S = QE + QEEc(I − QEc)−1QEcE .
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• Q and QEc is in general very large, so it is difficult to compute
(I − QEc)−1.

• I − QEc is not singular if Q is not reducible [37].

• Deriving bounds on S may be interesting.

• πS = πSS with
∑

πS = 1

πS is the conditional steady-state probabilities for block E given that
the DTMC is in block E

πS = πE/
∑

πE .
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Bounds for Censored Chains

• How to obtain stochastic bounds without computing (I − QEc)−1?

• Avoid to build QEc during the generation of the model.

• – Construct S such that S <st S.

– Construct the monotone bound for S by Vincent’s algorithm (R).

– S <st R and R is <st-monotone.
πS <st πR
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• The simplest way [47] is to put the slack probability

to the last column for the upper bounding case,

to the first column for the lower bounding case.

• Better repartition of the slack probability : DPY algorithm [22]

ANR Projects Blanc SMS and SetIn Checkbound [50/134]



DPY Algorithm

Construction of an upper bounding stochastic matrix S : S <st S;

Let A1≤i≤nA,1≤j≤nA denote QE and AnA+1≤i≤n,1≤j≤nA denote QEcE

For i = 1 to nA Do ∆i = 1 −
∑nA

j=1
Ai,j ;

last column: nA:

For l = nA + 1 to n Do Vl =
Al,nA∑nA

k=1
Al,nA

;

c = maxnA+1≤l≤nVl;

For i = 1 to nA Do

Si,nA = Ai,nA + ∆ic; ∆i = ∆i − ∆ic; End

For j = nA − 1 downto 1 ( column j)

For l = nA + 1 to n Do Vl =

∑nA
k=j

Al,k∑nA
k=1

Al,k
;

c = maxnA+1≤l≤nVl;

For i = 1 to nA Do

Si,j = Ai,j + ∆ic; ∆i = ∆i − ∆ic; End

End
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Example

Q =





QE QEEc

0.1 0.2 0.4 0.2 0.1

0.3 0.1 0 0.4 0.2

0.1 0 0 0.6 0.3

0.1 0.2 0 0.3 0.4

0.2 0.4 0.2 0.1 0.1

QEcE QEc





Consider block QE

S =





0.1831 0.3661 0.4508

0.4661 0.4322 0.1017

0.3492 0.4983 0.1525



 S =





0.175 0.350 0.475

0.450 0.400 0.150

0.325 0.450 0.225




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Example (cont.)

• S ≤st S

• Monotone and upper-bounding matrix of S:

R =





0.1750 0.3500 0.4750

0.1750 0.3500 0.4750

0.1750 0.3500 0.4750





• πS = [0.3420, 0.4250, 0.2330]

πR = [0.1750, 0.3500, 0.4750]

πS <st πR
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Example (cont.)

Truffet’s algorithm gives S′ and we obtain R′ by Vincent’s algorithm:

S′ =





0.1000 0.2000 0.7000

0.3000 0.1000 0.6000

0.1000 0.0000 0.9000



 R′ =





0.1000 0.2000 0.7000

0.1000 0.2000 0.7000

0.1000 0.0000 0.9000





S <st S <st S′

πR′ = [0.1000, 0.0250, 0.8750]

πS <st πR <st πR′
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Pattern

• A matrix notation to define the graph of the bounding Markov chain.

• A pattern is a matrix of symbols. This matrix has the same size as the
original matrix (simplification of the structure, we do not modify the
number of states).

• 5 symbols :

– 0: the arc must not exist,

– 1: the transition must have a positive probability,

– w, s: if the transition exists in P , it must exist in the bounding
matrix (error handling differs),

– *: no constraint.
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Bušić’s algorithm for Pattern

• Input: a pattern and a stochastic matrix P .

• Output: an upper bound monotone matrix consistent with the pattern
or an error message (it is not possible to obtain such a bound).

• Complexity: at worst quadratic.

• a row by row algorithm.

• If you design a new numerical technique for a family of Markov chain
characterized by their graphs, you design the pattern and you obtain
(for free) a bounding algorithm already proved.

• Already known patterns: Upper-Hessenberg, Single Input Macro State
MC, Stochastic Complement with block QEc triangular, Vincent’s
algorithm and IMSUB.
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Example: Upper-Hessenberg Pattern

• Definition 8 A matrix H is said to be upper-Hessenberg if and only if
Hi,j = 0 for i > j + 1.

• The resolution by recursion for these matrices requires o(m) operations
(Stewart [43]).

• Upper-Hessenberg property is consistent with comparison and
monotonicity.

• Pattern :





∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗





.
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Bušić’s algorithm for Pattern

Construction of a st-monotone upper bounding DTMC, Q consistent with
pattern T ; ε constant 0 < ε < 1
For i = 1 to n Do

last = -1;
For j = n to 1 Do

sum =
∑n

k=j Pi,k ;
If (i > 1) then sum = max(sum,

∑n
j=k Qi−1,k) ;

If (j < n) then Qi,j = max(0, sum −
∑n

j=k+1 Qi,k);
else Qi,j = sum;
Switch Ti,j Do

See Next Slides
End

End
End
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Bušić’s algorithm-cont.

Case-block for symbols 0 and 1.
Case 0

If Qi,j > 0 then
If last > 0 then

Qi,last = Qi,last + Qi,j ;
Qi,j = 0;

else STOP : NOT CONSISTENT !;
End

Case 1
last = j;
If Qi,j = 0 then

If
∑n

k=j+1 Q1,k < 1 then Qi,j = ε × (1 −
∑n

k=j+1 Qi,k);
else STOP : NOT CONSISTENT !;

End
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Bušić’s algorithm-cont.

Case-block for symbols ∗, w and s.
Case ∗

last = j;
Case s, w

last = j;
If Pi,j > 0 then

If
∑n

k=j+1 Q1,k < 1 then Qi,j = ε × (1 −
∑n

k=j+1 Qi,k);
elsif Ti,j = s then STOP : NOT CONSISTENT !;

End
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Getting more from the classic framework

• Improving accuracy.

• Continuous Time Markov Chain.

• Transient analysis of rewards.

• Absorbing DTMC.

• Qualitative properties.

• Worst Case Analysis.
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Improving accuracy

• Apply some transformations [19] on P before Vincent’s algorithm.

• First, α(P, δ) = (1 − δ)Id + δP , for δ ∈ (0, 1).

• It has no effect on the steady-state distribution.

• It has a large influence on the effect of Vincent’s algorithm.

• Theorem 4 Let P be a DTMC, and two different values δ1, δ2 ∈ (0, 1)
such that δ1 < δ2, Then πv(α(P,δ1)) <st πv(α(P,δ2)) <st πv(P ).
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A good value for δ

• Definition 9 A stochastic matrix is said to be row diagonally
dominant (RDD) if all of its diagonal elements are greater than or
equal to 0.5.

• Corollary 1 Let P be a RDD DTMC, then v(P ) and v(α(P )) have
the same steady-state probability distribution.

• Idea : For a RDD matrix, the diagonal serves as a barrier for the
perturbation moving from the upper-triangular part to the strictly
lower-triangular part v(P ).

• δ = 1/2 is sufficient to make an arbitrary stochastic matrix RDD.

• Thus the transformation P/2 + Id/2 provides the best bound for these
linear transformations.
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Polynomials

• To obtain more accurate bounds.

• Definition 10 Let D be the set of polynomials Φ() such that Φ(1) = 1,
Φ different of Identity, and all the coefficients of Φ are non negative.

• Proposition 1 Let Φ() be an arbitrary polynomial in D, then Φ(P )
has the same steady-state distribution than P .

• Theorem 5 Let Φ be an arbitrary polynomial in D, Algorithm 1
applied on Φ(P ) provides a more accurate bound than the steady-state
distribution of v(P ) i.e.:

πP <st πv(Φ(P )) <st πv(P ).

• For a stochastic interpretation of this result and a proof based on
linear algebra see [20].
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Example

• Polynomials with larger degree may give more accurate bounds. This
is illustrated in the example below.

P3 =





0.1 0.2 0.4 0.3

0.2 0.3 0.2 0.3

0.1 0.5 0.4 0

0.2 0.1 0.3 0.4





• We study the polynomials φ(X) = X/2 + 1/2 and ψ(X) = X2/2 + 1/2.
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φ(P3) =





0.55 0.1 0.2 0.15

0.1 0.65 0.1 0.15

0.05 0.25 0.7 0

0.1 0.05 0.15 0.7





ψ(P3) =





0.575 0.155 0.165 0.105

0.08 0.63 0.155 0.135

0.075 0.185 0.65 0.09

0.075 0.13 0.17 0.625




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• Then, we apply operator v to obtain the bounds:

v(φ(P3)) =





0.55 0.1 0.2 0.15

0.1 0.55 0.2 0.15

0.05 0.25 0.55 0.15

0.05 0.1 0.15 0.7





v(ψ(P3)) =





0.575 0.155 0.165 0.105

0.08 0.63 0.155 0.135

0.075 0.185 0.605 0.135

0.075 0.13 0.17 0.625





ANR Projects Blanc SMS and SetIn Checkbound [67/134]

• And,

v(P3) =





0.1 0.2 0.4 0.3

0.1 0.2 0.4 0.3

0.1 0.2 0.4 0.3

0.1 0.2 0.3 0.4





• Finally, we compute the steady-state distributions:





πv(P3) = (0.1, 0.2, 0, 3667, 0.3333)

πv(φ(P3)) = (0.1259, 0.2587, 0, 2821, 0.3333)

πv(ψ(P3)) = (0.1530, 0.2997, 0, 2916, 0.2557)

πP3 = (0.1530, 0.3025, 0, 3167, 0.2278)

• Clearly, bounds obtained by ψ are more accurate than the other
bounds.
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But. . .

• But it is not always true that the higher the degree the more accurate
the bounds. . .

• See for instance antimonotone DTMC (see [20]).

• Finding good polynomials for preprocessing is still an open problem.
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Continuous Time Markov Chain

• The theory of comparison and monotonicity of CTMC exists.

• Less constraints on the matrices.

• A birth and death process is monotone while a tridiagonal DTMC may
be monotone or not depending of the values.

• An algorithm exists (TVP [46] but the input is a Stochastic Automata
Network without synchronizations).
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Basic constraints for an algorithm on CTMC

• Theorem 6 (Comparison) Let X and Y two CTMC with transition
rate matrix A and B. If the following two conditions are satisfied:

1. X0 <st Y0

2. For all i, j and m such that i ≤ j and m ≤ i or m > j we have:
∑

k>m

Ai,k ≤
∑

k≥m

Bj,k

then Xt <st Yt, t > 0.

• Slightly more difficult to make proofs (because we have exceptions on
the diagonal elements).
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Uniformization for steady-state analysis

• Let Q be the transition rate matrix and let γ = max(−Q(i, i)) and
ε ≥ 0.

• Uniformization uε(Q) = Q
γ+ε + Id.

• uε(Q) and Q have the same steady-state.

• A natural question: Is it more accurate to compute the bound on the
CTMC or on the uniformized version of the CTMC using Vincent’s
algorithm ?

ANR Projects Blanc SMS and SetIn Checkbound [72/134]



CTMC or DTMC

• If the uniformized version of the CTMC is RDD, the bounds are the
same, otherwise the bounds for the CTMC are more accurate (or
equal).

• Uniformization to RDD : it is sufficient to have ε = γ.

• Use the RDD-Uniformization and the algorithms on DTMC.

ANR Projects Blanc SMS and SetIn Checkbound [73/134]

Analysis of Rewards at time t

• For CTMC use the uniformization formula, π0 is the initial
distribution, λ the uniformization factor:

P (Xt ∈ U) = e−λt
∞∑

n=0

(λt)n

n!
π0P

n
λ 1U

• As usual, we truncate the summation index to Nβ to obtain a proved
accuracy smaller than β.

• If P <st Q and Q is monotone, then P n <st Qn.

• Check that 1U is increasing.

• For DTMC, matrix-product operation.
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Algorithms for DTMC

• Ordinary Lumpability = Strong Aggregation.

• The lumped process is still Markov.

• Truffet’s first algorithm, LMSUB and LIMSUB provide upper bounds
for transient distributions

• Transient distributions of class C matrices also have closed form [6].

• Pattern based and censored based bounds are still under study for
analysis of transient distributions and rewards.
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Analysis of absorbing time

• Theorem 7 [3] Let X and Y two DTMC on state space 0..n

absorbing in n (only one absorbing state), with stochastic matrices P

and Q assume that:

1. X0 = Y0

2. P or Q is st-monotone

3. P <st Q

then TY <st TX where TX is the absorbing time in n for chain X.

• The output of LMSUB may be a lumped matrix which is still
absorbing (some technical conditions to check).

• It is much easier to compute the fundamental matrix on the lumped
chain.

ANR Projects Blanc SMS and SetIn Checkbound [76/134]



Qualitative Properties

• A recent application (Valuetools 2007 [11]).

• How to prove that an absorbing time (or a st-st reward) is increasing
with a parameter of the model ?

• A simple example rather than a general theory.

• How to prove some algorithms based on Markov chains and mean
interaction.
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End to end delay with SP deflection routing

• Deflection routing: used when it is impossible to store packets waiting
for the best output (typically all optical switch).

• Shortest Path Deflection routing: try shortest paths but use deflection
when the number of packets exceeds the link capacity.

• Major Assumption: Topology + Independence of packets + Uniform
distribution for the O-D imply an aggregated Markov chain whose
state is the distance to the destination.

• 0 is an absorbing state.
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Effect of a deflection

• Definition 11 (Symmetric Graph) A graph G = (V, E) is
symmetric iff for all i and j nodes in V , if (i, j) is a directed edge in
E, (j, i) is also in E.

• Property 2 In a symmetric graph, the deflected packet originally at
distance k can jump at distance k − 1 or k + 1 or is still at distance k

(because of the shortest-path deflection routing).

• Let p (unknown) be the deflection probability and R(p) the transition
matrix.
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Topology

• An odd ring

• In the example, the size of the graph (sz) is 7.

• Thus the states of the chain are 0, 1, 2, 3.
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Transitions for an odd ring

• If k = 0 stay in the same state.

• If the packet is not deflected: transition form k to k − 1 with
probability 1 − p.

• If the packet is deflected: transition from k to k + 1 except when
k = sz where the packet is kept at distance sz after deflection (due to
the odd ring topology).

•

R(p) =





1 0 0 0

1 − p 0 p 0

0 1 − p 0 p

0 0 1 − p p




.
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Initial Distribution

• Uniform destination and source (but source -= destination).

• Two nodes at each distance.

• Initial distribution for the ring with 7 nodes: (0, 1/3, 1/3, 1/3).
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Properties

• The matrix is monotone for all value of p; this is always true for an
odd ring and always false for an even ring.

• If p1 > p2 then R(p2) <st R(p1).

• Absorption time in 0: end to end delay in the network (without taking
into account the insertion delay at the interface).

• E(X(p)) < ∞ if p < 1.
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Main Results

• If p1 > p2 X(p1) <st X(p2).

• E(X(p)) is increasing with p.

• If we are able to find bounds on p, we can derive bounds on X(p).

• For instance pmin ≤ p ≤ pmax implies than
E(X(pmin)) ≤ E(X(p)) ≤ E(X(pmax)).
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A proved approximate analysis

• Little’s law: E(N) = λE(X(p)).

• where λ is the accepted arrival rate.

• Link Utilization: u = E(N)
2sz because a directed ring with sz nodes has

2sz directed edges.

• This gives an increasing function f such that u = f(p).
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Assumptions

• You know another model which provides p = g(u) such that:

• g is increasing.

• and g(1) < 1. Indeed a conflict between k packets give k − 1 deflection.

• Thus you have a fixed point system u = f(p) and p = g(u).
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Proving the existence of a solution

• f and g are increasing.

• g(1) < 1.

• f and g are upper-bounded.

• Theorem 8 As the sequence (p0 = 0, pi+1 = g(f(pi))) is increasing
and upper-bounded, it has a limit which is a solution of the fixed point
system.

ANR Projects Blanc SMS and SetIn Checkbound [87/134]

First proved algorithm

• Iterative Algorithm: follow the sequence defined in the theorem.

• The convergence is proved.

• Stopping criteria: |pi+1 − pi| ≤ ε does not mean that |p∗ − pi| ≤ ε (p∗

is the limit).
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A better algorithm

• Based on a dichotomic search.

1. Begin with interval a = 0 and b = g(1).

2. Let c=(a+b)/2 and compute f(g(c)).

3. If |b − a| < ε Stop.

4. If f(g(c)) > c let a = c and go to step 2.

5. else let b = c and go to step 2.

• Also proved and the solution is in the interval [a, b].
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Two qualitative results

• Some performance indices are increasing functions of the parameters.

• Proof of the convergence of a method based on the iterative solution of
subproblems if one of the subproblems is the analysis of a Markov
chain.

• Is it possible to prove some well known approximate iterative methods
?
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Worst Case Analysis

• For analysis of stochastic matrices which are not completely specified.

• For instance, the transition probabilities are not exactly known; we
just give some intervals.

• M =





0 1 − a − b b a

1 − a/2 a/2 0 a/2

1 − b/2 0 b/2 b/2

1 − a − b 0 0 a + b





with 1/3 ≤ a ≤ 1/2 and 1/4 ≤ b ≤ 1/3.

• For steady-state analysis see recent paper by Buchholz [8] based on
polyhedral theory.
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A stochastic approach

• Allows more general results.

• Transient and steady state analysis.

• Time to Failure (absorption).

• Based on stochastic ordering and monotonicity.

• We only consider here matrices where elements are in intervals (a
different approach is used in the section on icx-ordering).
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Partially defined DTMCs

• Consider a set of stochastic matrices P ∈ P(L, U).

• L ≤el P ≤el U, ∀P ∈ P.

• Construction of extreme stochastic matrices P and P by Truffet [47]

such that P <st P <st P , ∀P ∈ P
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Truffet’s 2nd Algorithm

Construction of the extreme upper bound P for the set P(L, U)
For i = 1 to n Do
∆i = 1 −

∑n
j=1 Li,j ;

For j = n downto 1 Do
δ = min(∆i, (Ui,j − Li,j));
P i,j = Li,j + δ; ∆i = ∆i − δ;
End

End

• Lower Bound obtained by adding ∆ from beginning by the first column

• If Ui,∗ = Li,∗ + ∆i ∀i, it leads to complete in the last column for the
upper bound and in the first column for the lower bound

• A similar algorithm presented by Haddad and Moreaux for
substochastic matrices to improve the polyhedral approach [29].
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Optimality

• Let Q and Q be monotone matrices obtained by Vincent’s algorithm
for input matrices P and P .

• Q and Q are optimal monotone bounds for the set P(L, U):

If monotone stochastic matrices A, B exist such that

A <st P <st B ∀P ∈ P(L, U)

then A <st Q and Q <st B

• Stochastic bounds on the transient and steady-state distributions for
the set of matrices defined by P(L, U):

ΠQ(t) <st ΠP (t) <st ΠQ(t) ∀t, ∀P ∈ P(L, U)
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Beyond the classic method

• Partial ordering on the state space

– Monotony for free

– Non monotone systems

• Increasing convex ordering (icx).
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Increasing Convex Ordering

• A variability ordering.

• More complex than the usual st ordering.

• More accurate than st ordering when one deals with random variables.

• If X <st Y and E(X) = E(Y ) then X and Y are identically
distributed.

• It is possible to consider the set of random variables with the same
expectation and find the maximal or minimal r.v. according to the icx
ordering.
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Increasing Convex Ordering

• Definition 12 Let X and Y be two random variables taking values on
a totally ordered space space. Then we say that X is smaller than Y in
the increasing convex sense (icx),

X <icx Y if E(f(X)) ≤ E(f(Y ))

for all increasing and convex functions f whenever the expectations
exist.

• Thus ”st” ordering (defined by increasing functions) implies ”icx”
ordering (defined by increasing and convex).
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On discrete state space

X <icx Y ⇐⇒
∑n

k=i(k − i + 1) xk ≤
∑n

k=i(k − i + 1) yk, ∀i

⇐⇒






xn ≤ yn

xn−1 + 2xn ≤ yn−1 + 2yn

xn−2 + 2xn−1 + 3xn ≤ yn−2 + 2yn−1 + 3yn

. . .

x1 + 2x2 + . . . + nxn ≤ y1 + 2y2 + . . . + nyn
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Example

• Three probability vectors: x = (0.5, 0.1, 0.1, 0.3), y = (0.3, 0.2, 0.2, 0.3),
and z = (0.3, 0.2, 0.4, 0.1)

• x <icx y as

– 0.3 ≤ 0.3 and 0.1 + 2 ∗ 0.3 ≤ 0.2 + 2 ∗ 0.3

– 0.1 + 2 ∗ 0.1 + 3 ∗ 0.3 ≤ 0.2 + 2 ∗ 0.2 + 3 ∗ 0.3

• The vectors x and z are not icx-comparable as

– x3 = 0.3 > 0.1 = z3, but

– x1 + 2x2 + 3x3 = 1.2 < 1.3 = z1 + 2z2 + 3z3.
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icx-monotone DTMC

• Much harder constraints.

• Ben Mamoun’s characterization for finite DTMC:

P is icx-monotone iff ZicxPKicx ≥ 0 component-wise with:

Zicx =





1 0 0 . . . 0

−1 1 0 . . . 0

1 −2 1 . . . 0
...

. . . . . . . . .
...

0 . . . 1 −2 1





Kicx =





1 0 0 . . . 0

1 1 0 . . . 0

1 2 1 . . . 0
...

...
...

...
...

1 n − 1 n − 2 . . . 1




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No Optimal Bound for icx ordering of DTMC

• Consider P =





0.5 0.4 0.1

0.3 0.3 0.4

0.1 0.4 0.5



,

• and U1 and U2 which are icx monotone upper bound of P :

U1 =





0.5 0.4 0.1

0.3 0.3 0.4

0.1 0.2 0.7



 U2 =





0.5 0.2 0.3

0.3 0.3 0.4

0.1 0.4 0.5





• It is not possible to prove an optimal bound Q such that P <icx Q,
Q <icx U1 and Q <icx U2.

• Indeed the last column of Q must be (0.1, 0.4, 0.5)t which is not convex.
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Bušić’s method for an icx monotone upper bound

• By column, from column n to 1.

• The computation of the upper bound matrix is based on the resolution
of the following problem (for each column).

• Problem CV: Let a and b two vectors such that 0 ≤el a ≤el b. Find a
vector x increasing and convex such that a ≤el x ≤el b.

• Need two sequences φst and φicx built during the algorithm to provide
successive values for a and b.
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Details of Bušić’s method

1. Solve Problem CV with a = P∗,n and b = (1, . . . , 1)t. And Q∗,n = x,
φicx
∗,n = x, φst

∗,n = x

2. For all column index from n − 1 to 2 Solve Problem CV with:

a = max(φicx
i,j (P ), φicx

i,j+1(Q) + φst
i,j+1(Q))

and
b = φicx

i,j+1(Q) + 1

And φicx
i,j (Q) = x, φst

i,j(Q) = φicx
i,j (Q) − φicx

i,j+1(Q).

Finally Qi,j = φst
i,j − φst

i,j+1.

3. Row 1: Normalization.
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Solving the vector problem

• Many heuristics (see Bušić’s PHD [9]).

• None of them are optimal.

• Take care of the complexity.

• One must solve Problem CV n times.

• Avoid to obtain a trivial solution with the last column equal to
(1, . . . , 1)t.
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icx ordering for DTMC

• Proof that there is no optimal bound.

• Difficult to apply to a general matrix.

• Very accurate when the model is almost icx-monotone.
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A Batch/D/1/N queue

• Buffer size for optical packet switch with constant packet size

• Without electronic conversion (no electronic buffer) : use Fiber Delay
Loops instead

• Without wavelength conversion: 1 server per wavelength.

• K input links.

• ROM and ROMEO architectures (Alcatel)

• Batch/D/1/N queue

• We know the average arrival rate (easy to measure) and the maximal
batch size K.

• Can we dimension the buffer ?
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Steps of the analysis

• Note that the model is almost-icx monotone.

• Use icx-ordering.

• Find the worst arrival process according to icx-ordering and derive the
Markov chain of the queue.

• Scale the chain to allow icx-comparison.

• Make the scaled Markov chain icx monotone.
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Worst Case Arrival

• A = (a0, . . . , aK) = distribution of batch arrivals.

• α = E(A) is known.

• We assume: N > K (engineering) and α < 1 (stability).

• Fα = the family of all distributions on the space {0, · · · , N} having
expectation α

• icx-worst case distribution: q = (N−α
N , 0, . . . , 0, α

N ):

• Property 3 (Maximal R.V. (see Shantikumar))

q ∈ Fα and p 1icx q, ∀p ∈ Fα
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Matrix of the Chain

•

P =





a0 a1 · · · aK 0 · · · 0

a0 a1 · · · aK 0 · · · 0

0 a0 a1 · · · aK · · · 0

.

.

.
. . .

. . .
. . .

. . .
. . .

.

.

.

0
. . . 0 a0 a1 · · · aK

.

.

.
. . .

. . .
. . .

.

.

.

0 · · · · · · · · · 0 a0
∑K

i=1
ai





• A bound of the arrival rate is not sufficient.

• The matrix must be monotone (and P is not. . . ).

ANR Projects Blanc SMS and SetIn Checkbound [110/134]



4 Steps

1. Build an upper icx-bound Q for each row using the worst arrival
process.

Q =






Q0,0 = 1 − α
K Q0,K = α

K

0 < i ≤ N − K + 1 Qi,i−1 = (1 − α
K ) Qi,i+K−1 = α

K

N − K + 2 ≤ i < N Qi,i−1 = (1 − α
N−i+1 ) Qi,N = α

N−i+1

QN,N−1 = (1 − α) QN,N = α

Q is not monotone

2. Modify matrix Q: tδ(Q) = δQ + (1 − δ)Id

tδ: same steady-state distribution, move some probability mass to the
diagonal elements to allow step 4.
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3. Apply the forward algorithm to make the last row of tδ(Q) increasing
and convex

4. Change diagonal and sub-diagonal elements to make final matrix B

icx-monotone (only some of them)

B =






B0,0 = 1 − δ α
K B0,K = δ α

K

1 ≤ i ≤ N − K + 1 :

Bi,i−1 = δ(1 − α
K ) Bi,i = 1 − δ Bi,i+K−1 = δ α

K

N − K + 2 ≤ i < N :

Bi,i−1 = fi Bi,i = ei Bi,N = δ α
K (i − N + K)

BN,N−1 = δ(1 − α) BN,N = 1 − δ + δα

where ei = 1 − δ + δα − (N − i + 1)Bi,N and fi = 1 − ei − Bi,N .
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Main result

Theorem 9 Suppose that

δ ≤ 1
1 + αU

, (2)

where U = maxr=2...K−1
r(K−r+1)

K . Then,

1. B is a stochastic matrix.

2. B is irreducible.

3. Q <icx B.

4. B is icx-monotone.
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Accuracy

• The perturbation added by the monotonicity constraint is relatively
small (i.e. difference between st-st distribution of Q and B).

• The main error comes from the main assumption (we ONLY know the
average and the max batch size).

• What type of information can we add ? (p0: probability of an empty
batch).
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A numerical example

• A state dependent batch.

• Back-pressure mechanism. When the queue size is large, a signal is
sent to the sources of traffic to avoid congestion and shape the traffic.

• Shaping: same average (not that important, we can reduce) and
smaller variability.

• Smaller variability: smaller K.

• Threshold: 80% of the buffer size.
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Average number of packets in the queue

S B rel. error S B rel. error

0.5 5.000e+00 5.000e+00 < 10−15 5.00e+01 5.00e+01 2.7e-05

0.8 1.880e+01 1.880e+01 < 10−15 1.93e+02 1.97e+02 1.5e-02

0.9 4.140e+01 4.140e+01 8.9e-09 3.69e+02 3.92e+02 6.3e-02

0.95 8.644e+01 8.645e+01 9.1e-05 5.45e+02 6.06e+02 1.1e-01

0.99 3.780e+02 3.984e+02 5.3e-02 7.95e+02 9.00e+02 1.3e-01

Table 1: Comparison of the mean queue length at the steady-state between
the state dependent (S) and the monotone upper bound (B) for N = 1000,
K = 10 and K = 100.
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Is the model monotone ?

• From several years of practice: multidimensional models with a total
ordering are not st-monotone.

• But with the natural partial ordering, multidimensional models are
often monotone (with an intuitive definition of monotonicity) [10, 15].

• For instance Queuing networks (see Glasserman and Yao [27]).

• Also true for some families of Petri nets.

• If the model is monotone we do not need to build a monotone bound.
We just have to compute an upper bound simpler to solve (a simpler
task).
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St-Ordering of DTMC on partially ordered space

• Definition 13 (Massey) X 1st Y if and only if
P (X ∈ U) ≤ P (Y ∈ U), for all increasing sets U ⊂ S.

• Definition 14 (Increasing Set) A subset U ∈ S is called an
increasing set if its indicator function 1U is increasing. Or if and only
if x ∈ U and x 1S y imply y ∈ U .

• Finite totally ordered set (S,1S), |S| = n, there are exactly n different
increasing sets U -= ∅.

• For partial order, we may have an exponential number of increasing
sets: comparison of r.v. is not that simple.
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Example

• Let S = {1, 2, 3, 4, 5} and let the ordering relation 1A be defined as
1 1A i 1A 5, ∀i ∈ S. There are 9 increasing sets U -= ∅: {5}, {2, 5},
{3, 5}, {4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, {2, 3, 4, 5} and S.
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Example-cont.

• If we consider random variables X , Y and Z with distribution vectors:

x = (0.3, 0.3, 0.1, 0.1, 0.2),

y = (0.3, 0.1, 0.2, 0.1, 0.3),

z = (0.1, 0.2, 0.2, 0.1, 0.4),

• then, with ordering 1A on the states, we have X 1st,A Z and
Y 1st,A Z, but X and Y are not comparable in the 1st,A-sense since
P (X = 5) = 0.2 < P (Y = 5) = 0.3 but
P (X ∈ {2, 5}) = 0.5 > P (Y ∈ {2, 5}) = 0.4.

• However, if we consider the total order 1B on S, 1 1B 2 1B . . . 1B 5,

• We have X 1st,B Y 1st,B Z.
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Monotonicity and Comparison

• Proposition 2 Let {Xt} be a homogeneous DTMC on a partially
ordered state space (S,1S). The transition matrix P of {Xt} is
1st-monotone if for all i, j ∈ S,

i 1S j =⇒ Pi,∗ 1st Pj,∗,

i.e. if
∑

k∈U Pi,k ≤
∑

k∈U Pj,k for all increasing sets U .

• Definition 15 For transition matrices P and Q we say that P 1st Q

if
Pi,∗ 1st Qi,∗ for all i ∈ S,

i.e. if
∑

k∈U Pi,k ≤
∑

k∈U Qi,k for all increasing sets U .

• The comparison will be harder but we hope to avoid the monotonicity
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Example

•

P =





0.3 0.2 0.4 0.1 0

0.1 0.3 0.1 0.4 0.1

0.5 0.3 0.1 0.1 0

0.1 0.4 0 0.2 0.3

0.1 0.3 0 0.1 0.5





.

• Partial order 1 1A 2 1A 5 and 3 1A 4 1A 5

• The chain is 1st,A-monotone.

• πP = (0.182, 0.303, 0.115, 0.212, 0.188)
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Example-cont.

• Total Order 1 1B 2 1B 3 1B 4 1B 5

• The chain is not monotone

• Best monotone upper bounding matrix computed by Vincent’s
algorithm:

Q =





0.3 0.2 0.4 0.1 0

0.1 0.3 0.1 0.4 0.1

0.1 0.3 0.1 0.4 0.1

0.1 0.3 0.1 0.2 0.3

0.1 0.3 0 0.1 0.5





.

• πQ = (0.125, 0.287, 0.115, 0.245, 0.228).
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Is it really simpler ?

• If the chain is monotone, find some upper bound DTMC easier to solve
(Algorithm LL: lumpable and larger).

• If the system is not monotone, we still have to find a monotone upper
bound.

• The complexity is related to the number of increasing sets.

• Comparison of Stochastic matrix may be hard.

• And monotonicity may also be difficult.

• Still under study to find some simple families related to high level
formalisms (Petri nets, Queueing Networks).

• New Idea: Modify the ordering of the states and the rewards ?
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LL Algorithm

• To obtain a lumpable upper bound of a monotone DTMC.

• Designed to avoid the state-space and the matrix generation.

• Really huge models do not fit in memory.

• The description of the chain is based on a multidimensional
representation of states and events.

• The algorithm needs a description of the macro-states.

• We have considered lumpability but other methods are still under
study.
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Example: Availability of a multicomponent system

• Processors, Controllers, Disks, 2 types of faults, not independent, not
lumpable.

• More than 109 states.
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Example: Description of the model

• Events are simple or double failure (only the processors), and
replacement

• States are the configurations of failed components of each type

• Macro states are the number of failed components (without type)

• Preprocessing: Describe the macro-states

• For each event:

– Describe the set of initial states

– Describe the effect of the event

– Describe the probability of the event
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Example: Muntz Availability ctd..

• Main Operation: For each event e and Macro State C1:

– Find the macro state C2 with the largest number which is reached
by event e for a state in C1.

– Find the maximal probability of event e in C1.

• Upper bound : when a double fault occur for a state in a macro state it
occurs for all the states in the macro-state with the same probability.

• Generation of the lumped matrix (106 instead of 109 states).
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Many applications

• Performance Evaluation

• Reliability (MTTF, point availability)

• Model Checking [7, 25, 41] (but the answer may be ”With the bound I
am not able to answer True or False”) and some operators have to be
studied more carefully.

• Qualitative results.

• Proof of convergence.
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