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ABSTRACT

Continuous Stochastic Logic (CSL) which lets to express
real-time probabilistic properties on Continuous-Time Markov
Chains (CTMC) has been augmented by reward structures
to check also performability measures. Thus Continuous
Stochastic Reward Logic (CSRL) defined on Markov Reward
Models (MRM) provides a framework to verify performance-
related and as well as dependability-related measures. Prob-
abilistic model checking can be provided through bound-
ing transient, steady-state distributions of the underlying
Markov chain, since models are checked to see if the consid-
ered measures are guaranteed or not. We propose to extend
the model checking algorithm that we have proposed for
CSL to the CSRL operators. This method is based on the
construction of bounding models having closed-form tran-
sient and steady-state distributions by means of Stochastic
Comparison technique. In the case when the model can be
checked by this method we gain significantly in time and
memory complexity. However in case when we can not con-
clude if the considered formula is satisfied or not, we may
apply classical model checking algorithms.

Keywords

Stochastic comparison, class C , Markov Reward Model, Stochas-
tic model checking , CSRL

1. INTRODUCTION
Model checking has been introduced as an automated tech-

nique to verify functional properties of systems expressed
in a formal logic like Computational Tree Logic (CTL) [5].
This formalism has been extended with some probabilistic
operators to Probabilistic CTL and Continuous Stochastic
Logic (CSL)[1] [3]. Stochastic Model Checking is typically
based on discrete time or continuous time Markov chains
or Markov decision processes. For performance and/or de-
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pendability applications, stochastic model checking has been
extended to models with some rewards on states and/or
transitions in which logic formalisms PRCTL(Probabilistic
Reward Computational Tree Logic) and CSRL(Stochastic
Reward Logic)[8] are used.

Probabilistic model checking can be performed by numer-
ical or statistical methods [20][4][3]. To perform numerical
model checking, one needs to compute transient and steady-
state distributions of the underlying Markovian model. This
has been studied extensively and numerous algorithms have
been devised and implemented in different model checkers
[10] [9]. Despite the considerable works in the numerical
Markovian analysis, the state space explosion still remains
a problem. Bounding techniques have been largely applied
to overcome the state space explosion problem of Markov
chains and they are different according to the construction
concepts and to the type of obtained bounds. We apply here
stochastic comparison largely used in different areas of ap-
plied probability as well as in reliability, performance eval-
uation, dependability applications [14] [19]. We construct
bounding chains in the sense of ≤st stochastic order belong-
ing to class C Markov chains for which closed-form solutions
of the transient and the steady-state distributions are given
in [11].

Bounding methods are useful for model checking since we
are interested in checking if the underlying formula meets the
bounds or not. In [17], the bounds on the state reachability
probabilities of Markov decision processes are computed by
abstraction of the underlying model defined on smaller state
spaces. In the case when the verification is not concluded
the abstraction is refined. In [15], we have proposed to check
PRCTL state formulas by stochastic bounding techniques by
considering aggregated bounding Markov chains. In [13], we
have proposed to apply the class C bounding models for CSL
formulas. Contrary to other bounding aggregation methods,
it is not possible to refine the bounding models when the ver-
ification can not be concluded but this method provides a
significant gain on computation, memory complexity when
the verification can be concluded. Thus it can be proposed
as first step rapid model checking algorithm. We first ap-
ply the proposed method, and if the verification can not be
concluded, we apply classical model checking algorithm.

In this paper we propose to extend this approach for CSRL.
In the case of reward state formulas, the extension is straight-
forward since ≤st order is associated to the increasing func-
tionals (rewards). In the case of time and reward bounded
until formulas, we show that it is possible to provide closed-
form lower or upper bounds for some cases.



The paper is organized as follows: we first present CSRL
model checking in section 2. Section 3 is devoted to a brief
introduction of stochastic comparison technique and class
C Markov chains. We present our bounding approach for
CSL in section 4 and give a case study in section 5.

2. CSRL MODEL CHECKING
In this section we briefly introduce MRMs [2] and CSRL

[6]. Then we present the model checking procedure based
on the computation of steady-state, transient and joint dis-
tributions to verify CSRL formulas [8].

2.1 Preliminaries
A (labelled) MRM [2] M is a 4-tuple (S,R, L, ρ) where S

is a finite set of states, R : S×S → R+ is the rate matrix and
L : S → 2AP is the labelling function which assigns to each
state s ∈ S the set L(s) of atomic propositions a ∈ AP that
are valid in s (AP denotes the finite set of atomic proposi-
tions) and ρ : S → R+ is a reward structure that assigns to
each state s ∈ S a reward ρ(s).
Remark that the infinitesimal generator Q can be easily
deduced as Q(s, s′) = R(s, s′) if s 6= s′ and Q(s, s) =
−
P

s′∈S R(s, s′).
In the sequel, we denote by Pλ the uniformized matrix

defined as Pλ = I + 1
λ
Q, where λ is the uniformization rate

and λ ≥ supi|qi,i|.
With state reward, MRM can be seen as two dimensional

stochastic process {(X(t), Y (t)), t ≥ 0} on S × R+. X(t)
takes values in discrete set S and describes the transition
behavior of M while Y (t) takes real values and describes
the accumulated reward gained over time. The stochastic
process {Y (t), t ≥ 0} is not Markovian and it represents the
accumulated reward from time 0 to t and it is determined
by X(t) and the reward structure ρ :

Y (t) =

Z t

0

ρ(X(x))dx

We can distinguish three basic measures over MRMs: tran-
sient distribution where the system is considered at time t,
steady-state distribution when the system reaches an equi-
librium (if it exists) and joint distribution with respect to
time and the accumulated reward. In the sequel, we denote
by ΠM

s (t) the transient distribution at time t of Markov
chain M starting from the initial state s. The probability to
be in state s′ at time t starting from the initial state s will be
denoted by ΠM

s (s′, t). ΠM
s (s′) = limt→∞ ΠM

s (s′, t) is the
steady-state probability to be in state s′. If M is ergodic,
ΠM

s (s′) exists and it is independent of the initial distribu-
tion that is denoted by ΠM(s′) and ΠM is the steady-state
probability vector. The joint distribution of state and re-
ward is used to check CSRL path formulas. Let ΥM

s (s′, t, r)

(resp. Υ
M

s (s′, t, r)) denote the probability that at time t,
MRM M is in state s′ and has accumulated a reward lower
or equal (resp. higher) than r having started in state s.

ΥM
s (t, r) and Υ

M

s (t, r) denote the corresponding joint prob-
ability vectors. We can remark that:

Υ
M
s (s′, t, r) = Pr{Y (t) ≤ r,X(t) = s

′ | X(0) = s}

= Pr{X(t) = s
′ | X(0) = s}

−Pr{Y (t) > r,X(t) = s
′ | X(0) = s}

= Π
M
s (s′, t) −Υ

M

s (s′, t, r)

For S′ ⊆ S and time t, we denote by ρMs (S′, t) the in-
stantaneous reward that denotes the rate at which reward is
earned in states of S′ at time t. It is defined as:

ρ
M
s (S′

, t) =
X

s′∈S′

Π
M
s (s′, t) · ρ(s′)

ρM(S′) is the expected (or long run) reward rate that is equal
to:

ρ
M(S′) =

X

s′∈S′

Π
M(s′) · ρ(s′)

We denote by ΥM
s (S′, t, r) (resp. Υ

M

s (S′, t, r)) the prob-
ability that at time t, MRM M is in subset S′ and has
accumulated a reward lower or equal (resp. higher) than r
having started from an initial state s.

Υ
M
s (S′

, t, r) =
X

s′∈S′

Υ
M
s (s′, t, r)

Υ
M

s (S′
, t, r) =

X

s′∈S′

Υ
M

s (s′, t, r)

2.2 Continuous Stochastic Reward Logic
Continuous Stochastic Reward Logic (CSRL)[8] is an ex-

tension of Continuous Stochastic Logic (CSL) [1] [3] by adding
constraints over rewards. In [2], CSRL is extended to sup-
port further reward-based measures by allowing more state
operators.

Syntax.
Let p be a probability threshold, ⊳ be a comparison oper-

ator such as ⊳ ∈ {≤,≥,<,>} and I (resp. J) be an interval
of real number which represents a timing constraint (resp.
bound for the cumulative reward). In the sequel, we denote
by Sφ or φ-states the set of states that satisfy φ and by |=
the satisfaction relation. The syntax of CSRL is as follows:

φ ::= true | a | φ ∧ φ | ¬φ | P⊳p(φ UI
Jφ) | EJ(φ) | E t

J (φ) |
CI

J(φ)

In this paper, for the sake of simplicity we do not consider
the next operator XI

J . We do not consider the other boolean
connectives (false, ∨, ⇒) that are derived in the usual way
[2]. The steady-state operator and the transient operator of
CSL logic are also omitted since we have already considered
these operators with bounding approach in [13]. The path
formula φ1 UI

Jφ2 asserts that φ2 will be satisfied at some
time t ∈ I and that at all previous times φ1 holds and the
earned cumulative reward up to time t lies in J . However the
formula P⊳p(φ1 UI

Jφ2) asserts that the probability measure
of paths satisfying φ1 UI

Jφ2 meets the bound given by ⊳p.
The state operator EJ (φ) asserts that the expected (long
run) reward rate for φ-states lies in J . E t

J(φ) asserts that
the expected instantaneous reward rate at time t for φ-states
lies in J . CI

J (φ) states that the expected amount of reward
accumulated in φ-states during interval I lies in J .

Semantics .
Let us present briefly the semantics of these formulae [1],



[2]:

s |= true for all s ∈ S

s |= a iff a ∈ L(s)

s |= ¬φ iff s 6|= φ

s |= P⊳p(φ1 UI
Jφ2) iff Prob

M
s (φ1U

I
Jφ2) ⊳ p (1)

s |= EJ(φ) iff ρ
M(Sφ) =
X

s′∈Sφ

Π
M(s′) · ρ(s′) ∈ J (2)

s |= E t
J(φ) iff ρ

M
s (Sφ, t) =
X

s′∈Sφ

Π
M
s (s′, t) · ρ(s′) ∈ J

(3)

s |= CI
J(φ) iff

Z

I

ρ
M
s (Sφ, t)dt =

Z

I

X

s′∈Sφ

Π
M
s (s′, t) · ρ(s′)dt ∈ J

(4)

where ProbM(s, φ1U
I
Jφ2) denotes the probability measure

of all paths starting from s satisfying φ1 UI
Jφ2.

2.3 Checking CSRL formulas
In this subsection, we briefly introduce how CSRL formu-

las may be checked by means of transient, steady-state and
joint distributions. We refer to [6] for further information
on CSRL model checking. First we explain the checking
procedure for reward operators EJ (φ), E t

J(φ) and CI
J(φ) by

means of steady-state or transient distribution of M or a
transformed version of it, then we consider time and reward
bounded until formula P⊳p(φ1U

I
Jφ2).

2.3.1 Reward operators

The verification of reward operators requires the compu-
tation of steady-state and transient distributions. Indeed,
to check the steady-state operator EJ (φ) (resp. the instan-
taneous operator E t

J(φ)), we compute the steady-state dis-
tribution ΠM (resp. transient distribution at time t, ΠM

s (t)
) and then we sum over the probabilities of φ-states multi-
plied with the corresponding rewards and finally we check if
the obtained reward value lies in J or not (see Eq. 2 and Eq.
3). The accumulated operator CI

J(φ) can be evaluated using
a variant of uniformization technique. Indeed, the verifica-
tion of the accumulated reward operator can be done simply
by computing the transient distribution at each moment of
time interval I (see Eq. 4). The exact verification procedure
has been given in [7].

2.3.2 Time and reward bounded until formula

In this subsection, we consider the verification of P⊳p(φ1U
I
Jφ2).

The checking of this formula requires the computation of
Probs(φ1U

I
Jφ2) (see Eq. 1). It has been shown in [6] [8]

that the computation of this probability, Probs(φ1U
I
Jφ2),

can be reduced to the computation of the joint distribution

of state and accumulated reward ΥM′

s (t, r) of a transformed
MRM M′ which is inhomogeneous with respect to time and
reward derived from the original homogeneous MRM M,
where t = sup(I) (resp. r = sup(J)) is the upper bound time

(resp. reward) of the given interval I (resp. J) (see Theo-
rem 3 of [6]). In fact, the computation is based on changing
the behavior of the considered MRM M when both, the
given lower time bound inf(I) and reward bound inf(J),
are exceeded. Recall that the MRM is homogeneous with re-
spect to time and reward if the transition rate matrix R and
the reward rates assigned to states of the MRM remain un-
changed with regard to the current time or the accumulated
reward. The evolution of the MRM has two phases: the first
phase lasts until both lower bounds inf(I) and inf(J) are
exceeded, after then the second phase begins.

However depending on reward and time intervals (I and
J), this MRM M′ can be reduced to a homogeneous one. In
these cases, only one phase (the first or the second ) of the
MRM M′ is used. For instance, if I = [t, t] and J = [0, r],
only the first phase of M′ is used because the two bounds
inf(I) and inf(J) are exceeded exactly at time t when we
have to evaluate the probability to be in states Sφ2 . In this
case there is not a second phase and hence the modified
chain M′ is homogeneous. We refer to [6] for more details,
where the author has established an intuitive interpretation
of the construction of the MRM M′ for all cases of intervals
I and J .

We can recapitulate that depending on reward and time
intervals I and J , the considered MRM M′ for checking
P⊳p(φ1U

I
Jφ2) can be homogeneous or inhomogeneous with

respect to time and reward. In our verification approach,
we consider only the interval cases where M′ is homoge-
neous. Indeed, our bounding approaches consider homoge-
neous Markov chains.

We present here the cases which can be reduced to a homo-
geneous case and explain the computation of Probs(φ1U

I
Jφ2)

that can be derived from the transient accumulated reward
distribution[6] . Let us remark that in some cases when M′

is homogeneous the verification of the until formula can be
reduced to the verification of a CSL formula (for instance
when I = [t, t] and J = [r, r]).

Let M[φ] be the MRM defined from M = (S,R, L, ρ),
by making all φ-states in M absorbing and assigning 0 as
reward, i.e.

M′ = M[φ] = (S,R′
, L, ρ

′)

where R′(s, s′) = R(s, s′), ρ′(s) = ρ(s) if s 6|= φ and R′(s, s′) =
0, ρ′(s) = 0 otherwise.

1. Case I = [t, t], J = [0, r].

To determine the probability ProbMs (φ1U
[t,t]

[0,r]φ2), we have

to compute the joint distribution Υ
M[¬φ1]
s (t, r) and then we

sum the probability of φ2-states:

Prob
M
s (φ1U

[t,t]
[0,r]φ2) = Υ

M[¬φ1]
s (Sφ2 , t, r) (5)

2. Case I = [t, t], J = (r,∞).
This is almost the same as the former case, the only dif-

ference is that the accumulated reward must be larger than
r instead at most r. Thus,

Prob
M
s (φ1U

[t,t]
(r,∞)φ2) = Υ

M[¬φ1]
s (Sφ2 , t, r)

3. Case I = [t, t], J = (r1, r2].



It can be observed that:

Prob
M
s (φ1U

[t,t]
(r1,r2]φ2) = Υ

M[¬φ1]
s (Sφ2 , t, r2)

−Υ
M[¬φ1]
s (Sφ2 , t, r1)

4. Case I = [0, t], J = [0, r].

It has been shown in [8, Theorem 1] that s satisfies P⊳p(φ1U
[0,t]

[0,r]φ2)

in M iff s satisfies P⊳p(true U
[t,t]
[0,r]φ2) in M[¬φ1 ∨ φ2], thus:

Prob
M
s (φ1U

[0,t]
[0,r]φ2) = Υ

M[¬φ1∨φ2]
s (Sφ2 , t, r)

Let us mention that the dual formulas of the four cases
presented above can be verified similarly by duality prin-
ciple. Duality is based on changing reward and time con-
straints to facilitate the verification of until formula Probs(φ1U

I
Jφ2).

It is derived from the fact that the progress of time can be
regarded as the earning of reward and vice versa [2]. For

instance, the dual formula of P⊳p(φ1U
[t,t]

[0,r]
φ2) is the until

formula P⊳p(φ1U
[0,r]
[t,t] φ2). So, when I = [0, t] and J = [r, r],

the verification of P⊳p(φ1U
[0,t]

[r,r]
φ2) requires the computation

of ProbMs (φ1U
[0,t]
[r,r]φ2) that can be computed using Eq. 5 and

interchanging time and reward intervals as follow [2]:

Prob
M
s (φ1U

[0,t]
[r,r]φ2) = Prob

M−1

s (φ1U
[r,r]
[0,t] φ2)

= Υ
M−1[¬φ1]
s (Sφ2 , r, t)

where M−1 = (S,R−1, L, ρ−1) is the MRM derived from
M such that:

R
−1(s, s′) =

R(s, s′)

ρ(s)
and ρ−1(s) =

1

ρ(s)

Different algorithms have been proposed to compute the
joint distribution and a detailed comparison of the algorith-
mic intricacies can be found in [8][6]. In this paper we are
interested in the analytical uniformization-based solution al-
gorithm proposed by Sericola. In [18], Sericola derived a re-
sult for the distribution of occupation times in CTMCs for
a given time t. The distribution of this occupation time can
be used to compute ΥM

s (t, r). It has been observed that
if O(s, t) is the occupation time of state s prior to t then
ρ(s) · O(s, t) is the accumulated reward for this state prior
to t.

Suppose that the considered MRM M has m+1 different
rewards ρ0 < ρ1 < · · · < ρm, ρ0 = 0, and the initial distribu-
tion ΠM(0) is defined as ΠM(s, 0) = 1 and ΠM(s′, 0) = 0
for s 6= s′ then for r ∈ [ρh−1t, ρht) and 1 ≤ h ≤ m:

Υ
M

s (t, r) =
∞
X

n=0

e
−λt (λt)n

n!

n
X

k=0

 

n

k

!

r
k
h(1 − rh)n−k

Π
M(0)CM

s (h, n, k)

(6)

where rh =
r−ρh−1t

ρht−ρh−1t
and CM

s (h, n, k) is a square matrix

defined recursively in terms of h, n and k[18]. It represents

the complementary distribution Υ
M

s (t, r) conditioned on n
and k.
The main result that we use in this paper to propose our
bounding approach to check Pp(φ1U

I
Jφ2) is given in [18,

corollary 5.8] where author proves that if PM
λ is the uni-

formized matrix of M then CM
s (h, n, k) is positif and smaller

than the power of n of PM
λ i.e.

C
M
s (h, n, k) ≤ (PM

λ )n

It can be deduced from the above inequality and Eq. 6 that
if Πs(n) is the transient distribution at time n of PM

λ , then:

Υ
M

s (t, r)≤
∞
X

n=0

e
−λt (λt)n

n!

n
X

k=0

 

n

k

!

r
k
h(1 − rh)n−k

Πs(n) (7)

Υ
M
s (t, r)≥

∞
X

n=0

e
−λt (λt)n

n!
(1 −

n
X

k=0

 

n

k

!

r
k
h(1 − rh)n−k)Πs(n)

(8)

3. STOCHASTICCOMPARISONWITHCLASS

C MATRICES
In this section we first give a brief overview on stochastic

comparison [14] and then we introduce the class C matrices
and their main properties [11].

3.1 Stochastic comparison
Let denote by Fst the class of all increasing real functions

on a totally ordered state space E and by ≤st the strong
stochastic order relation.

Definition 1. Let X and Y be two random variables tak-
ing values on a totally ordered space E,

X ≤st Y ⇐⇒ Ef(X) ≤ Ef(Y ), ∀f ∈ Fst

whenever the expectations exist.

In the case of finite state space {1, 2, . . . , N}, the comparison
of random variables are defined through following probabil-
ity inequalities.

Proposition 1. Let X and Y be two random variables
taking values on {1, 2, . . . , N}, and p = [p1 . . . pi . . . pN ], q =
[q1 . . . qi . . . qN ] be probability vectors which are respectively
denoting distributions of X and Y .

X ≤st Y ⇔
N
X

k=i

pk ≤
N
X

k=i

qk 1 ≤ i ≤ N (9)

We apply the following definition to compare Markov chains:

Definition 2. Let {X(n), n ≥ 0} (resp. {Y (n), n ≥ 0})
be a DTMC. We say {X(n)} ≤st {Y (n)}, if :

X(n) ≤st Y (n), ∀n.

Let Πn

X (resp. Πn

Y) be transient distribution at time n, and
ΠX (resp. ΠY) its steady-state distribution (if it exists).

If {X(t)} ≤st {Y (t)} then Π
n

X ≤st Π
n

Y , ∀n and ΠX ≤st ΠY.

The comparison of CTMCs can be established through the
embedded DTMCs associated to them using uniformization
technique.

Theorem 1. Let {X(t), t ≥ 0} and {Y (t), t ≥ 0} be two
uniformizable CTMCs and {Xλ(n), n ≥ 0} and {Yλ(n), n ≥
0} be the uniformized DTMCs associated to them. We have:

If {Xλ(n)} ≤st {Yλ(n)} then {X(t)} ≤st {Y (t)}.



In this work, the stochastic comparison is applied to con-
struct a bounding chain within a particular class called class
C chains by means of the stochastic monotonicity. We intro-
duce this class in the following subsection and present its
main properties. We first give the monotonicity and the
comparability of transition matrices yield sufficient condi-
tions to compare stochastically the underlying chains [14,
p.186].

Theorem 2. Let P (resp. Q) be the probability transition
matrix of the time-homogeneous Markov chain {X(n), n ≥
0} (resp. {Y (n), n ≥ 0}). The comparison of Markov chains
is established ({X(n)} ≤st {Y (n)}), if the following condi-
tions are satisfied :

• X(0) ≤st Y (0),

• at least one of the probability transition matrices is
monotone, that is, either P or Q (say P) is ≤st mono-
tone, if for all probability vectors p and q,

p ≤st q =⇒ pP ≤st qP

• the transition matrices are comparable in the sense of
the ≤st order :

P ≤st Q ⇐⇒ P[i, ∗] ≤st Q[i, ∗], ∀i ∈ E

where P[i, ∗] denotes the ith row of matrix P.

In this paper, we apply the stochastic comparison to con-
struct a bounding chain within a particular class called class
C chains. In the following subsection we present this class
and we give its main properties.

3.2 Class C matrices and closed-form distribu-
tions

We first introduce class C stochastic matrices and then
give the closed-form solution for transient and steady-state
distributions of time-homogeneous discrete (resp. contin-
uous) time Markov chains for which probability transition
(resp. the uniformized) matrices belong to this class.

Definition 3 (class C matrix). A stochastic matrix
P belongs to class C , if for each column j there exists a real
constant cj such that :

P(i, j) = P(1, j) + (i− 1) cj , 1 ≤ i, j ≤ N. (10)

In fact, stochastic matrices of class C are defined by their
first row and a set of real constants cj , 1 ≤ j ≤ N . This reg-
ular form yields interesting properties as the closed-form so-
lution to compute transient distributions [12] and the steady-
state distribution [11]. A stochastic matrix P in class C can
be also represented by means of vectors:

P = e p + d c

where p is the row vector representing the first row of P; c is
the row vector for constants cj . The column vectors e and d

are defined as follows : ei = 1, di = (i−1), 1 ≤ i ≤ N .
Since P is a stochastic matrix, c e = 0. The following

theorems give the closed-form computation for transient and
steady-state distributions in case time-homogeneous discrete
(and continuous) time Markov chain of this class. The proof
of these theorems can be found in [13][11].

Theorem 3 (discrete time transient distribution).
Let a, b and g be the constants defined as follows :

a = c d =
N
X

k=1

(k − 1) ck, b = p d =
N
X

k=1

(k − 1) p1,k

g = Π
0

d =

N
X

k=1

(k − 1) π0
k

Let {X(n), n ≥ 0} be a time-homogeneous discrete time
Markov chain with probability transition matrix P. Let us
note by Πn the transient distribution of {X(n), n ≥ 0} at
time n. If P belongs to class C , then for all n ≥ 0,

Π
n = p + αn c (11)

where αn is the constant defined as

αn = b

n−2
X

k=0

a
k +g an−1 =

(

b
(1−an−1)

1−a
+ g an−1, a 6= 1

b (n− 1) + g, a = 1.

Theorem 4 (continuous time transient distribution).
Let a, b and g be the constants defined in the previous the-
orem and {X(t), t ≥ 0} be a time-homogeneous continuous
time Markov chain with infinitesimal generator Q. Let us
note by Pλ it uniformized matrix and by Π(t) the transient
distribution at time t . If Pλ belongs to class C , with row
vectors p representing the first row of Pλ and c representing
column constants cj , then for all t ≥ 0,

Π(t) = e
−λt

Π(0) + (1 − e
−λt)p + α(t) c (12)

where α(t) is defined as

α(t) = e
−λt

∞
X

n=1

(λt)n

n!
αn

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

b 1−e−λt

1−a
+

( g

a
− b

a(1−a)
)e−λt(eλta − 1), if a 6= 1, a 6= 0

e−λt(λtg − λtb− b) + b, if a = 0

bλt+ (g − b)(1 − e−λt), if a = 1

Theorem 5 (steady-state distribution). Let Π the
stationary distribution of {X(n), n ≥ 0}. If Π exists and
transition probability matrix P belongs to class C then

Π = p +
b

1 − a
c (13)

The proof of this theorem can be found in [11] where it
has been demonstrated that a can never be equal to 1 if
P is irreducible. Moreover let us remark here that in the
case of CTMCs, the closed-form solution for steady-state
distribution can be applied if the uniformized matrix Pλ

belongs to class C .
Obviously, in general the underlying model does not be-

long to class C . We propose to construct class C bounding
chain for the underlying Markov chain. Construction algo-
rithms can be found in [11] for the ≤st order case.



4. PROPOSEDCHECKINGMETHODOLOGY
We have proposed in [13] to check CSL formulas with

bounding distributions. We extend this approach to CSRL
formulas. In this section we propose our methodology based
on the stochastic comparison method to check reward opera-
tors EJ(φ), E t

J(φ), and CI
J (φ) and time and reward bounded

until operator P⊲p(φ1U
I
Jφ2). It can be seen from subsec-

tion 2.3 that model checking of these operators requires the
computation of steady-state, transient or joint distribution
in the considered Markov chain.

In our approach we will avoid to compute the required
exact distributions, but using stochastic comparison tech-
nique (see section 3), we determine bounding distributions
by means of closed-form solution of class C Markov chains.
The proposed checking procedure exploits the quickness of
computing the steady-state, the transient and therefore the
joint bounding distributions through the closed-form solu-
tions of class C matrices (θ(N) for computation and memory
complexities). To do so, we compute class C bounding dis-
tributions rather than the exact distributions to check the
underlying operators. The overall complexity to check the
considered CSRL formula is determined by the complexity
to construct bounding matrices which is θ(N2) in the worst
case [11]. Thus the computation complexity is largely di-
minished: θ(N2) instead of θ(N3) for steady-state reward
operator EJ (φ) , and θ(N2) instead of θ(λtN3) for transient
reward operator E t

J (φ), accumulated reward operator CI
J(φ)

and until operator P⊳p(φ1 UIφ2).
Let us emphasize here that the proposed method consti-

tutes a first step rapid model checking. Since we check a
CSRL formula through a bounding distribution, it is not al-
ways possible to conclude if the underlying formula is checked
or not. In the case if we can not conclude, the model check-
ing must be performed by the usual methods. However to
include the proposed method as a first step checking would
not increase significantly the complexity but may let to de-
crease largely the overall complexity for some cases. Let us
give the proposed model checking approach for reward op-
erators EJ (φ), E t

J(φ) and CI
J(φ) and then we give for until

operator P⊲p(φ1U
I
Jφ2)

4.1 Model checking of reward operators
It can be seen from Eq. 2, Eq. 3 and Eq. 4 that to check

EJ (φ), E t
J(φ) and CI

J(φ) we should compute respectively the
steady-state distribution ΠM, the transient distribution at
time t, ΠM

s (t) and the accumulated transient distributions
during time interval I ,

R

I
ΠM

s (t)dt of the underlying Markov
chain M. Then we sum under Sφ states, the steady-state,
transient or accumulated transient probabilities multiplied
with their corresponding rewards to check if these bounding
reward values meets the bound of J or not. We denote by
R(φ) this reward value. Recall that in our approach we
will compute bounding distributions rather than the exact
distributions. Let us denote by Msup the upper bounding

chain of M in the sense of ≤st order and by Π
Msup
s (t) (resp.

ΠMsup) its transient (resp. steady-state) distribution.

Proposition 2. Assume that the chains M and Msup

are comparable in the sens ≤st (see definition 2). Moreover
assume that the state space is reordered to put Sφ in the last
and states belonging to Sφ are reordered according to their
increasing rewards. We have:

• Bound on steady-state reward rate:

ρ
M
s (Sφ) =

X

s′∈Sφ

Π
M(s′) · ρ(s′)

≤
X

s′∈Sφ

Π
Msup(s′) · ρ(s′)

• Bound on instantaneous reward rate at time t:

ρ
M
s (Sφ, t) =

X

s′∈Sφ

Π
M
s (s′, t) · ρ(s′)

≤
X

s′∈Sφ

Π
Msup
s (s′, t) · ρ(s′)

• Bound on accumulated reward during the interval I:
Z

I

ρ
M
s (Sφ, t) =

X

s′∈Sφ

ρ(s′) ·

Z

I

Π
M
s (s′, t)dt

≤
X

s′∈Sφ

ρ(s′) ·

Z

I

Π
Msup
s (s′, t)dt

Proof. By construction the Markov chain Msup is an
upper bound to M in the sens of ≤st:

M ≤st Msup

We can deduce so from definition 2 that the transient dis-
tributions of M and Msup are ≤st comparable:

Π
M
s (t) ≤st Π

Msup
s (t)

and the steady-state distributions of M and Msup are ≤st

comparable:

Π
M ≤st Π

Msup

Therefore we have the inequalities between the increasing
functionals of these distributions (see definition 1) for states
Sφ which are put at the end of the state space and ordered
according to their increasing rewards.

Let us recall here that in [11], authors have proposed algo-
rithms to construct upper and lower bounding chains in the
sens of ≤st belonging to class C . Therefore, lower bound-
ing chain Minf , that is ≤st monotone and belongs to class
C can be provided. Hence, we can deduce lower bounds to
the steady-state reward rate, ρMs (Sφ), to the instantaneous
reward rate at time t, ρMs (Sφ, t), and to the accumulated
reward during the interval I ,

R

I
ρMs (Sφ, t). We give only the

upper bounding case in the verification of reward operators,
as the lower bounding case is similar.

Suppose now that we want to check a reward formula Fr.
First we start by reordering the state space by putting Sφ

states at the end and states belonging to Sφ are reordered
according to increasing rewards since ≤st stochastic order-
ing is associated to increasing reward functions. Then we
construct the uniformized matrix for the obtained MRM
that is denoted by PM

λ . Once the state space is reordered
and the uniformized matrix is computed, we construct for
the uniformized matrix Pλ, a monotone, bounding matrix
in the sense of ≤st order which belongs to class C . The
construction algorithms are not given here because of the
lack of space but they can be found in [11]. We denote by



P
Msup

λ the upper bounding matrix and discuss only upper
bounding case, since lower bounding case is similar. Since

bounding matrix P
Msup

λ belongs to class C , we compute the

closed-form bounding transient distribution Π
Msup
s (t) and

steady-state distribution ΠMsup by means of Eqs. 12 and
13.

In the case of checking the accumulated reward operator

CI
J (φ),

R

I
Π

Msup
s (t)dt, it can be deduced easily by applying

R

I
to the closed-form transient distribution. Once bound-

ing distributions are computed, we sum under Sφ bound-
ing probabilities multiplied with the corresponding rewards
to obtain bounding reward values Rinf (φ) and Rsup(φ) for
R(φ). The following proposition gives how we can check the
underlying reward formula Fr to check if R(φ) meets the
bound of reward interval J ∈ [rmin, rmax] or not.

Proposition 3. 1. if Rinf (φ) ≥ rmin and Rsup(φ) ≤
rmax then we can conclude that Fr is true

2. if Rinf (φ) > rmax or Rsup(φ) < rmin then we can
conclude that Fr is false

3. otherwise, we cannot conclude if Fr is true or not,
through these bounding distributions.

Proof. It follows obviously from the fact that by con-
struction (see proposition 2), we have:

Rinf (φ) ≤ R(φ) ≤ Rsup(φ)

Thus, case 1 allows us to conclude that the considered
formula Fr is satisfied:

rmin ≤ Rinf (φ) ≤ R(φ) ≤ Rsup(φ) ≤ rmax

Similarly, case 2 lets us to conclude that Fr is not satisfied.
Otherwise the reward computed on closed-form bounding
distributions do not let us to conclude if the formula Fr is
satisfied or not.

4.2 Model checking of until operator
In Subsection 2.3, we have summarized how model check-

ing of P⊲p(φ1U
I
Jφ2) over a MRM M can be reduced to the

computation of joint distribution of another MRM M′ ob-
tained by transforming M. For instance, if the time interval
I = [0, t] and the reward interval J = [0, r] then to check

P⊲p(φ1U
[0,t]

[0,r]
φ2), we must compute the joint distribution at

time t and for reward r, Υ
M[¬φ1∨φ2]
s (t,r) of the Markov chain

M[¬φ1 ∨ φ2] and then we sum probabilities of states be-
longing to Sφ2 . Moreover, it can be seen from Eq. 8 and
Eq. 7 that there is a lower bound to the joint distribu-

tion ΥM′

s (t, r) and an upper bound to its complementary

Υ
M′

s (t, r) that we will denote by respectively B and B. B

and B are equal respectively to:

B =
∞
X

n=0

e
−λt (λt)n

n!
(1 −

n
X

k=0

 

n

k

!

r
k
h(1 − rh)n−k)Πs(n)

B =
∞
X

n=0

e
−λt (λt)n

n!

n
X

k=0

 

n

k

!

r
k
h(1 − rh)n−k

Πs(n)

Let us remark here that these bounds are not necessarily
probability vectors but positive vectors. Moreover we ex-
tend the definition of the ≤st order to positive vectors as
the satisfaction of inequalities given in Proposition 1. These
bounds require the computation of transient distributions

ΠM′

s (n) of the uniformized matrix PM′

λ of M′. Likewise, us-
ing stochastic comparison technique we will not compute the

exact value of ΠM′

s (n) and so for ΥM′

s (t, r) and Υ
M′

s (t, r),

but we will compute bounding distributions to ΠM′

s (n) that

we denote by Π
M′

sup
s (n) (resp. Π

M′
inf

s (n)) its upper (resp.
lower) bounding distribution. Since by construction bound-
ing chains belong to class C , bounding distributions have
closed-form solution and thus we can deduce closed-form

bounds to ΥM′

s (t, r) and Υ
M′

s (t, r) as we give in the follow-
ing theorem.

Theorem 6. Let M′
inf (resp. M′

sup) the lower (resp.
upper) bounding chain to M′ that belongs to class C , we
have:

• Stochastic upper bound to Υ
M′

s (t, r) defined as:

Υ
M′

s (t, r) ≤st R
M′

sup
s (t, r) (14)

R
M′

sup
s (t, r) = e

−λt
Π

M′
sup

s (0) + (1 − e
−λrht)p

+(α(t) − ψ(t)) c

• Stochastic lower bound to ΥM′

s (t, r) defined as:

Υ
M′

s (t, r) ≥st R
M′

inf
s (t, r) (15)

R
M′

inf
s (t, r) = e

−λt
Π

M′
inf

s (0) + (e−λrht − e
−λt)p

+ψ(t) c

where p, c and α(t) were already defined in subsection 3.2,
ψ(t) is defined as:

ψ(t) = e
−λt

∞
X

n=1

(λ(1 − rh)t)n

n!
αn

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

b
1−a

(e−λrht − e−λt)

+( g

a
− b

a(1−a)
)e−λt(eλ(1−rh)ta − 1), if a 6= 1, a 6= 0

e−λt(λ(1 − rh)tg

+beλ(1−rh)t − (1 − rh)λtb− b), if a = 0

bλ(1 − rh)te−λrht

+(g − b)(e−λrht − e−λt), if a = 1

Proof. By construction M′
inf and M′

sup are monotone
bounding Markov chain to M′ in the sense of ≤st and they
belong to class C . This involves that their corresponding
uniformized transient distributions at time n are comparable
(see Definition 2):

Π
M′

inf
s (n) ≤st Π

M′

s (n) ≤st Π
M′

sup
s (n)



and Π
M′

inf
s (n), Π

M′
sup

s (n) have closed-form (see Eq. 11) .

Let us denote respectively by R
M′

inf
s (t, r) and R

M′
sup

s (t, r)
the following vectors:

R
M′

inf
s (t, r) =

∞
X

n=0

e
−λt (λt)n

n!
(1 −

n
X

k=0

 

n

k

!

r
k
h(1 − rh)n−k)Π

M′
inf

s (n)

and

R
M′

sup
s (t, r) =

∞
X

n=0

e
−λt (λt)n

n!

n
X

k=0

 

n

k

!

r
k
h(1−rh)n−k

Π
M′

sup
s (n)

From the fact that terms that multiply Π
M′

inf
s (n) and Π

M′
sup

s (n)
are positif in each time n we can conclude that:

R
M′

inf
s (t, r) ≤st B and R

M′
sup

s (t, r) ≥st B

Recall that:

B ≤ Υ
M′

s (t, r) and B ≥ Υ
M′

s (t, r)

We can deduce so that:

R
M′

inf
s (t, r) ≤st Υ

M′

s (t, r) and R
M′

sup
s (t, r) ≥st Υ

M′

s (t, r)

Using the closed-form that have bounding distributions
and taking under account that:

n
X

k=1

 

n

k

!

r
k
h(1 − rh)n−k = 1 − (1 − rh)n

we obtain easily a closed-form to R
M′

inf
s (t, r) and R

M′
sup

s (t, r)
as we show in the following:

R
M′

inf (t, r) = e
−λt

Π
M′

inf
s (0) +

∞
X

n=1

e
−λt (λt)n

n!
(1 −

n
X

k=1

 

n

k

!

r
k
h(1 − rh)n−k)Π

M′
inf

s (n)

= e
−λt

Π
M′

inf
s (0) +

∞
X

n=1

e
−λt (λt)n

n!
(1 − rh)n

Π
M′

inf
s (n)

= e
−λt

Π
M′

inf
s (0) +

∞
X

n=1

e
−λt (λt)n

n!
(1 − rh)n(p + αn c)

= e
−λt

Π
M′

inf
s (0) + (e−λrht − e

−λt)p + ψ(t) c

Closed-form solution for R
M′

sup
s (t, r) is similarly derived.

Moreover to check the until operator, we have to sum the
probability of states belonging to Sφ2 and we check if this
probability meets the threshold p. Indeed,

Π
M′

inf
s (n) ≤st Π

M′

s (n) ≤st Π
M′

sup
s (n)

we can deduce that:

Π
M′

inf
s (Sφ2 , n) ≤ Π

M′

s (Sφ2 , n) ≤ Π
M′

sup
s (Sφ2 , n)

if we reorder the state space and we put Sφ2 states at the
end (see Eq. 9).

If we denote by R
M′

inf
s (Sφ2 , t, r) (resp. R

M′
sup

s (Sφ2 , t, r))

the probability sum in vector R
M′

inf
s (t, r) (resp. R

M′
sup

s (t, r))
to be in states belonging to Sφ2 , we can deduce from the fol-

lowing proposition an upper bound to Υ
M′

s (Sφ2 , t, r) and a

lower bound to ΥM′

s (Sφ2 , t, r):

Proposition 4. By reordering the state space and putting
Sφ2 states at the end, we have:

Υ
M′

s (Sφ2 , t, r) ≤ R
M′

sup
s (Sφ2 , t, r) (16)

Υ
M′

s (Sφ2 , t, r) ≥ R
M′

inf
s (Sφ2 , t, r) (17)

Proof. It follows obviously from the fact that:

Π
M′

inf
s (Sφ2 , n) ≤ Π

M′

s (Sφ2 , n) ≤ Π
M′

sup
s (Sφ2 , n)

5. EXAMPLE
We illustrate our proposed approach under a cellular mo-

bile system where the effect of handoff arrivals and the use
of guard channels are included [16]. The phenomenon of
handoff occurs when a mobile station moves across a cell
boundary. The channel in the earlier cell is released and an
idle channel is required. If there is no idle channel offered by
the new base station, the handoff call is dropped. There is
a fixed number of channels called guard channels which are
reserved to handoff calls. We consider in this example that
the mobile station has to treat two types of calls: best effort
calls (or new calls) that have low priority and handoff calls
that have the high priority. A best effort call is said to be
blocked, if there are not enough channels available for them.
Moreover, due to the quality of service (QoS) requirements
of advanced applications, some calls claim more bandwidth
(expressed by channels in this example) than others to be
established. So, in the considered model, we distinguish two
types of best efforts calls and two types of handoff calls.

In the sequel, we design by b1 (resp. b2) best effort calls
that use one (resp. two) channels and by h1 (resp. h2)
handoff calls that need one (resp. two) channels. Let N be
the total number of idle channels of the base station and
g the number of guard channels reserved to handoff calls
(h1 and h2). We consider Poisson arrivals and exponential
service times for all types of calls.

Under these Markovian arrival hypothesis, the considered
system can be modelled as a CTMC with state space S =
{(nb1 , nb2 , nh1 , nh2) | C = nb1 + 2nb2 + nh1 + 2nh2 ≤ N}
where C represents the total number of channel occupied,
nb1 (resp. nb2 , nh1 and nh2) represents the number of calls
b1 (resp. b2, h1 and h2) currently in the cell.

We note that the size of the underlying Markov chain
increases if more service class calls are considered. We as-
sociate to each state s atomic propositions that characterize
the state s. In this example, we assign the following atomic
propositions

• we assign guardused to states in which number of
channels used (i.e. C > N − g).

• we assign canalbusy for states that all channels are
busy (i.e. C = N).



Reward values assigned to states of the considered system
depends on the reward measure that we want to evaluate
(see first column of table 1).

Based on these atomic propositions and the considered
reward function, the considered chain is a labelled MRM
characterized by the state space S, the rate matrix, the set
of atomic propositions and the considered reward structure.

Different performance measures can be checked through
checking CSRL formulas for the considered system. For in-
stance, we check E50

[0,0.6](true) to evaluate the occupation
channel rate at time 50 and the occupation rate of guard
channel at time 60 by checking E60

[0,0.05](guardused). The

formula C
[0,50]
[0,8] (canalbusy) is checked to estimate the accu-

mulated time during [0, 50] that all channels are busy. By

checking the until formula P≤0.01(trueU
[15,15]

[30,30]
canalbusy), we

evaluate the probability that at time 15 all channels are
busy and in that time the number of channels occupied
by handoff calls is equal to 30. Moreover the until for-

mula P≤0.1(trueU
[20,20]
[30,30] canalbusy) is checked to evaluate the

probability at time 20. We give in table 1 some numerical
results obtained when we check some CSRL formulas using
our proposed approach. In the last column of the table,
the symbol ? indicates that we cannot conclude whether the
formula is satisfied or not through these bounding distribu-
tions.

We can observe that if the bound computed is not suf-
ficently accurate, we cannot conclude if the considered for-
mula is verified or not. Contrary to the other bounding ap-
proaches that we have employed in the verification of model
checking formulas [15], it is not possible to refine the class
C bounding models considered in this paper. So if we cannot
conclude if the considered formula is verified or not we have
to use classical model checking algorithms or use another
bounding approach.

We note that numerical results have been obtained with-
out the use of a particular model checker but it based on
the use of Markov chain resolution tool. We have consid-
ered that N = 30, g = 5, the arrival rate λb1 = λh1 = 0.001,
λb2 = λh2 = 0.0005, and the service rate of b1, b2, h1 and
h2 calls equal to 0.0001.

6. CONCLUSIONS
In this paper, we presented a bounding approach based

on stochastic comparison to check CSRL operators. By con-
structing bounding class C Markov chains, we can compute
transient and steady-state distributions through closed-form
solutions which reduces significantly memory and computa-
tion complexities for checking CSRL operators. We can not
always conclude if the studied property is validated or vio-
lated from bounding distributions. However this approach
provides a first step model checking algorithm, if we can
not concluded, then we must apply classical model checking
algorithms.
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Reward Formulas Exact Bound Valid?

Occupation channel rate E
50
[0,0.6](true) 4.5e−1 5.4e−1 yes

Occupation guard channel rate E
60
[0,0.05](guardused) 3.1e−2 4.6e−2 yes

Occupation interval time C
[0,50]

[0,8]
(canalbusy) 0.44 3.83 yes

Number of channels used by handoff calls P≤0.01(trueU
[15,15]

[30,30]
canalbusy) 7.7e−5 2.3e−2 ?

Number of channels used by handoff calls P≤0.1(trueU
[20,20]

[30,30]
canalbusy) 3.2e−4 3.1e−2 yes

Table 1: Checking CSRL formulas


