Statistical Model Checking of Markov Chains
using Perfect Simulation *

Diana EI Rabih and Nihal Pekergin

LACL, University of Paris-Est (Paris 12),
61 avenue Général de Gaulle 94010, Créteil, France
email : delrabih@univ-paris12.fr, nihal.pekergin@Quniv-paris12.fr

Abstract. In this paper, we propose to perform the statistical model
checking of Markov chains by generating sample paths by means of per-
fect simulation. The model checking of probabilistic models by statis-
tical methods has received increasing attention in the last years since
they provide an interesting alternative to the model checking by numer-
ical methods which is poorly scalable with the increasing model size.
In the previous statistical model checking works, the unbounded un-
til formula can not be efficiently verified and the steady-state formulas
have not been considered due to the burn-in time problem to detect the
steady-state. Perfect simulation by coupling in the past is a Monte Carlo
method letting to obtain the samples according to the steady-state dis-
tribution of the underlying Markov chain. Therefore we propose to check
the unbounded until and steady-state formulas for large Markov chains
by combining perfect simulation and statistical hypothesis testing.

1 Introduction

Probabilistic model checking is an extension of the formal verification methods
for systems exhibiting stochastic behavior. The system model is usually speci-
fied as a state transition system, with probabilities attached to transitions, for
example Markov chains. A wide range of quantitative performance, reliability,
and dependability measures can be specified using temporal logics such as Con-
tinuous Stochastic Logic (CSL) defined over Continuous Time Markov Chains
(CTMC)[?,?] and Probabilistic Computational Tree Logic (PCTL) defined over
Discrete Time Markov Chains (DTMC) [?]. There are two distinct approaches
to perform probabilistic model checking: numerical techniques based on compu-
tation of transient-state or steady-state distribution of the underlying Markov
chain and statistical techniques based on hypothesis testing and on sampling by
means of discrete event simulation or by measurement. The numerical approach
is highly accurate but it suffers from the state space explosion problem. The
statistical approach overcomes this problem but it does not guarantee that the
verification result is correct. However it is possible to bound the probability of
generating an incorrect answer so they provide probabilistic guarantees of cor-
rectness. Hence statistical model checking techniques constitute an interesting

* This work is supported by a french research project, ANR-06-SETI-002

alternative to numerical techniques for large scale systems. The comparison of
numerical and statistical techniques for probabilistic model checking is done in
[?].

The statistical approaches for model checking have been received increasing
attention in the last years [?,7,7,7,7,2,?]. Younes et al. have proposed and refined
the approach based on the hypothesis testing and discrete event simulation but
with a focus on time bounded until formula [?,?]. The steady-state formula
was not studied before and the unbounded until formula can not be checked
efficiently by this approach because of the problem of detecting the steady-state.
In [?] Sen et al. has proposed a statistical approach for verifying unbounded until
properties by introducing a stopping probability, p,, which is the probability of
terminating the generation of a trajectory after each state transition. In fact,
this stopping probability must be extremely small to give correctness guarantees
and the accuracy of their verification result would depend on the state space size,
making the approach impractical, except for models with small state spaces.

In this paper we propose to perform statistical probabilistic model check-
ing by combining perfect simulation and statistical hypothesis testing in order
to check the steady-state and unbounded until formulas. Perfect simulation is
an extension of MCMC methods and allows to obtain exact steady-state sam-
ples of the underlying Markov chain thus it avoids the burn-in time problem
to detect the steady-state. Propp and Wilson has designed the algorithm of
coupling from the past to perform perfect simulation [?]. A web page dedi-
cated to this approach is maintained by them (http://research.microsoft.com/en-
us/um/people/dbwilson/exact/). As perfect sampler, we use 1?2 proposed in
[?,?], designed for the steady-state evaluation of various monotone queuing
networks (http://psi.gforge.inria.fr/website/Psi2-Unix-Website/). This tool per-
mits to simulate stationary distribution or directly a cost function or a reward of
large Markov chains by keeping only trajectories issued from the set of minimal
and maximal states.

The rest of this paper is organised as follows. In section 2, we present some
preliminaries on considered temporal logics CSL and PCTL and on the concept
of statistical hypothesis testing. Section 3 is devoted to the perfect simulation. In
section 4, we present our contribution for statistical probabilistic model checking
using perfect simulation. Section 5 presents the case study with experimental
results. Finally, we conclude in section 6.

2 Preliminaries

2.1 Temporal logics for Markov chains

In this subsection we give a brief introduction for the syntax and the semantic
for the considered temporal logic operators. We consider essentially until formu-
las for the verification over execution paths and the steady-state operator for
long run behaviours of the underlying model. The stochastic behaviour of the
underlying system is described by a labelled Markov chain, M, which may be

in discrete or continuous time. These operators are defined in CSL defined over
CTMC s [?,?7] and in PCTL defined over DTMC [?]. We do not distinguish these
cases while transition probabilities are computed from the transition probabil-
ity matrix for PCTL and from the associated embedded DTMC obtained by
uniformisation of the underlying infinitesimal generator for CSL [?].

Let M take values in a finite set of states S, AP denote the finite set of atomic
propositions. L : § — 247 is the labeling function which assigns to each state
s € S the set L(s) of atomic propositions a € AP those are valid in s. Let p be
a probability, I a time interval, and < a comparison operator: <€ {<, >, <, >}.
The syntax is given as follows:

pu=true|al o Ao | = | Puplpr U p2) | Poop(pr Upa) | Seap()

The satisfaction operator is denoted by |=, then for all state s € S, s |= true.
Atomic proposition a is satisfied by state s (s = a) iff a € L(s). The logic
operators are obtained using standard logic equivalence rules : s = —p iff s |~
0, s Ep1Agy iff s p1As |E pa. Until formulas are evaluated over the paths
initiated from a given initial state s. A state s satisfies P, (01 U 2), iff the sum
of probability measures over paths starting from s, passing through only states
satisfying 1 and reaching to a state satisfying ¢- in time interval I meets the
bound 6. The until formula without time interval is the time unbounded until
which means that I € [0, oo[. The steady-state operator Sy, () lets us to analyze
the long-run behaviour of the system. If the sum of steady-state probabilities of
states satisfying ¢ meets 6, this operator is satisfied. In the case M is ergodic,
the steady-state distribution is independent of the initial state, then this formula
is satisfied or not whatever the initial state.

2.2 Statistical model checking

The probabilistic model checking consists in deciding whether the probability
that the considered system satisfies the underlying property ¢ meets a given
threshold 6 or not. Without lack of generality, we consider the case Pxg(¢p)
where ¢ is a path formula. Obviously, this is equivalent to verify P<i_g(—¢)
and = Py(p). Let p be the probability that the system satisfies ¢, then this
verification problem Pxg(p) can be formulated as a hypothesis testing: H : p > 0
against the alternative hypothesis K : p < 6. For solving hypothesis testing
problems with statistical approaches it is not possible to guarantee a correct
result but the probability to accept a false hypothesis can be bounded. The
strength of the statistical test was determined by two parameters, a and (3,
where « is a bound on the probability of accepting K when H holds (known as
a type I error, or false negative) and 3 is a bound on the probability of accepting
H when K holds (a type II error, or false positive), where « + 8 < 1. Thus the
probability of accepting H can be determined for an hypothesis testing with
ideal performance in the sense that the probability of a type I error is exactly
«a and the probability of a type II error is exactly 8. The above formulation is
problematic since it is impossible to control two probability errors independently.

These conditions are relaxed by introducing an indifference region |p1,pg| of
width 20, where pg = 6 + § and p; = 6 — 4. Then, instead of testing H : p > 0
against K : p < 0, we test Hy : p > po against H; : p < p;. The probability of
accepting H is therefore at least 1 —a if p > 646 and at most 3 if p < 6 —4. For
the indifference region | p— 6 |< 4, the test gives no bound on the probability of
accepting false hypothesis, thus we are indifferent whether H or K is accepted.

Suppose that we have generated n samples (simulations), and a sample X;
is a positive sample (X; = 1) if it satisfies ¢ and negative (X; = 0) otherwise.
X; is a random variable with Bernoulli distribution with parameter p. Thus
the probability to obtain a positive sample is p. There are mainly two methods
for statistical model checking decision with constraints on error bounds [?,?,7].
One is based on the acceptance sampling with fixed sample size with a given
acceptance strength «, 8. If Z?:l X; > m, then Hy is accepted otherwise H;
is accepted, where m is the acceptance threshold. The hypothesis H; will be
accepted with probability F'(m,n,p) and the null hypothesis Hy will be accepted
with the probability 1 — F(m,n,p), where F'(m,n,p) is a binomial distribution:
F(m,n,p) => 1", C(n,i)p"(1 — p)"~* with C(n,) is the combination of ¢ from
n. It is required that the probability of accepting H; when Hj holds is at most
«, and the probability of accepting Hy when Hi holds is at most 3. These
constraints can be illustrated as below:

— Pr[H; is accepted | Hy is true] < a which implies F (m, n, pg)< « (C1)
— Pr[Hy is accepted | Hy is true] < § which implies 1- F (m, n, p;)< 5 (C2)

The sample size and acceptance threshold must be chosen under these con-
straints and for optimal performance n must be minimised. The approximations
of n to optimise performance are given in [?,7].

This second method is based on the sequential probability ratio test in which
observations are taken into account ina sequential manner [?,?]. After making
the " simulation, one computes the following quotient:

i

a=]] PriX;=a;[p=p] _pl'(L—p)"*

o PriXs =zl p=p] pfi(1—po)—t

where di:z;d X denoting the number of positive samples. Hy is accepted if
¢; < B, and H; is accepted if g; > A. Finding A and B with a given strength
a, (is non trivial, in practice A is chosen as (1-3)/a and B as 3/(1-«). Then a
new test whose strength is (a*,8*) is obtained, but such that a* + 0* < o + S,
meaning that either o* < « or 8* < . In practice, it is often found that both
inequalities hold.

3 Perfect simulation

Let {X;,7 > 0} be a time-homogeneous DTMC taking values in a finite set S.
The dynamic of the chain can be defined by the following stochastic recursive
function:

Xnt1 = n(Xn, En) (1)

where X,, is the n'® observed state of the system, and {FE,} an innovation
process, n € N. Clearly, if {E,} are independent and identically distributed
then stochastic process {X;,7 > 0} defined by an initial value X, and recursive
equations of Eq. 77 is a Markov chain. In the sequel, we consider the notations
of discrete event systems (the system is governed by a set of events) thus E;s in
Eq. 7?7 are events e € X.

Conversely, given a transition probability matrix P = (p; ;), it is possible to
find a function 7 such that Markov chain given by Eq. 7?7 has P as transition
matrix: pij = > g, n6.5e)=; P (Ek). A natural way to construct the transition
function 7 is to consider the inverse of probability distribution function.

Let us remark that this characterization is suitable for discrete event simu-
lation. Practically, the sequence {E;} can be generated by a standard random
function of programming languages which is uniformly distributed in the inter-
val [0, 1]. Sample paths (trajectories) initiated from all possible initial values are
generated with the same sequence of random numbers (events) by considering
Eq. 7?7. If two sample paths reach to the same state, we say that they couple
and then their trajectories will be the same. If the sample paths are generated
beginning at time t=0 and evolving in the future ¢ = 1,2, ... then it is called
coupling in the future (forward coupling). It has shown that if samples (obser-
vations) are constituted from states where all paths initiated at time 0 from all
possible initial values are coupled, then this set of samples is not distributed
according to the steady-state distribution [?].

Prop and Wilson [?] have ingeniously overcome this problem by reversing the
time (by coming from the past to the present). In their algorithm called coupling
from the past (backward coupling), they have shown that if trajectories begin
at time —oo and are generated by coupling in the future, then the set of states
where coupling of all trajectories occurred at time 0 (if it exits), are generated
according to the steady-state distribution. We do not give here mathematical
background but only present an intuitive sketch of proof to be able to explain
its application for the verification of path formulas.

In the case E; are independently and identically distributed random variables,
the evolution in n steps from time 0 to n or from time —n to 0 are stochastically
equivalent (they have the same distribution)

(- 77(77(807 Eo), Ev),-), Eno1) =se n(---n(n(s0, E—ny1), E—ny2), -), EO())

2

Let suppose that all the trajectories initiated at time —7 from all initial
values are coupled at time 0. Even if these trajectories have initiated earlier in
the past, the coupling at time 0 would occur at the same state for identical
E_,E 11, - Fy. Therefore if the coupling at time 0 occurs, then it can be also
considered as the sample state when trajectories have initiated at time —oo.
This corresponds indeed to the limiting behavior due to Eq. ??7. Thus we can
generate samples according to the steady-state distribution by coupling from
the past. We now present the algorithm given in [?], which is an adaptation of
[?] from the implementation point of view. Generate — event() is a function to
generate the random events. For the first iteration the trajectories begin at time

Algorithm 1 Backward coupling simulation
1: t < 1; E[1] « Generate — event();
2: repeat
3: t — 2.t;
for all x € S do
y(z) <« x; {initialization of trajectories}
end for
for i=t downto t/2+1 do
E[i] «— Generate — event(); {generation of new events from -t/2 +1 to -t}
9: end for
10: for i=t downto 1 do

11: for all x € S do

12: y(z) «— n(y(x), Ei]); {generation of trajectories through events E[i], }
13: end for

14: end for

{y(z) is the state reached at time 0O for the trajectory issued from x at time -t}
15: until all y(z) are equal; {coupling of trajectories at time 0}
16: return y(z)

t = —2, if there is no coupling at time 0 (line 15), then ¢ = —4 for the next
iteration (line 4). Therefore if coupling exists, 7 = —(2%). The optimality of this
scheme has been discussed in [?]. Let us remark that when one goes more back
to the past, we keep already generated events (lines 8-9). Thus Algorithm ?? let
us to generate the samples of the limiting behavior (steady-state) of the Markov
chain described by 7 (see Eq. ??). Obviously, the coupling time depends on 7
and we refer to the web page of perfect simulation for the large literature on
these issues.

3.1 Monotone perfect simulation

It has been shown that if the underlying model has monotone dynamic, it is suf-
ficient to consider only trajectories issued from the minimal and maximal states
since all other trajectories are evolved between them [?]. Obviously, this leads
to a considerable reduction of the simulation time and the storage complexity.
It has been shown that many of the discrete event systems have a monotone
dynamic [?,?]. Note that, a system defined by Eq. ?? is said to be monotone if
all events e € X' are monotone where X' is the set of events. Formally, an event
e is said to be monotone, if it preserves the considered partial ordering (<) on
the state space S:

r<y=n(z,e) <nlye) (3)

Since state space is finite, there exists a set M (respectively m) of maximal
(respectively minimal) elements. Going from the past when all trajectories issued
from M U m states couple at time 0 then global coupling occurs. Note that, in
the case the model is monotone, the monotone perfect simulation algorithm will
be same as Algorithm 1 unless lines 4 and 11. In fact, we consider only the

maximal and minimal states as initial values among all states. So lines 4 and 11
will be

4 and 11: for all x¢ M U m

In the sequel, we will call this algorithm as Algorithm 1(monotone version).

3.2 Functional perfect simulation

In many studies, the steady-state distribution is needed to compute steady-state
rewards (functional of the steady-state distribution). In this case, it is possible
to do functional coupling by generating directly reward values at the steady-
state. [?]. The backward simulation is stopped when all the trajectories collapse
at time 0 on the same reward regardless the coupling state. Since the reward
set is generally smaller than the state space, the coupling occurs more quickly
in functional perfect simulation. Note that the functional perfect simulation
algorithm will be the same as Algorithm 1 unless lines 15,16. In fact, we modify
the stopping criteria of this algorithm on a reward value. So lines 15, 16 will be

15: until all reward(y(z)) are equal

16: return reward(y(zx))

In the sequel, we will call this algorithm as Algorithm 1(functional version).

3.3 Monotone functional perfect simulation

It is possible to do functional perfect simulation for monotone models, if the
considered reward function r on the state space is monotone that means

V(z,y) € S, if <y then r(z)<r(y) (4)

Consequently, if for some states x <y, r (x) =r (y), then for all z such that x < z
<y r(z) =1 (x) =r (y). In fact, when rewards are monotone,the improvement
is twofold: the number of trajectories that must be coupled is diminished (only
that issued maximal and minimal states) and the number of possible outcomes is
diminished. Thus this leads to an important reduction of the coupling time and
the storage complexity [?]. Note that, the monotone functional perfect simulation
algorithm will be the same as Algorithm 1 unless lines 4,11,15 and 16. In fact, we
consider only the maximal and minimal states as initial values among all states:

4 and 11: for all xe M U m ,

the stopping criteria:

15: until all reward(y(x)) are equal ,

16: return reward(y(z)) .

In the sequel, we will call this algorithm as Algorithm I1(monotone functional
version,).

4 Statistical Probabilistic Model Checking using Perfect
Simulation

In this section, we present how sample paths are generated and tested for the
verification of the steady-state formula =S4 () and the unbounded until for-

mula ¢=Psy(p1 Ups) through perfect simulation. Sample generation for the
time bounded until is straightforward: starting from from an initial state Xy = s,
the evolution in time interval I is generated by Eq. 7?7. Once sample paths are
generated, the statistical hypothesis testing can be applied on these observations
(see section ?7?) for the decision procedure. Moreover, the case of nested formulas
are not considered here and we refer to [?,7,7,7]. Let us remark here that the
proposed sample path generation is compatible with these proposed methods to
check nested formulas either by combining numerical and statistical methods or
by computing new precision bounds.

4.1 Steady-state operator

Without lack of generality we consider steady-state formula 9)=S>(¢). As it has
been stated in section ?7?, there are different cases to provide perfect samples
depending on the monotonicity or not of the underlying model and depending
also on the monotonicity or not of the associated reward in the case of monotone
model. However the samples are generated essentially from perfect simulation
Algorithm 1 with some modifications for each case.

In fact, in order to perform statistical model checking using monotone and/or
functional perfect simulation of the steady-state formula ¥)=S>¢(¢), we need to
test if the obtained steady-state samples satisfy ¢ or not. Thus we associate the
reward 7,(x) to each state x € S for the given property ¢:

ro@) =1, if o (5)
ro(x) =0, otherwise z j= ¢

Therefore at time 0, we test if the rewards are coupled at reward 0 or 1. In
other words, we test if it is a positive or negative sample. There are two cases:

— Case 1: the underlying model is not monotone. Thus perfect simulation
samples can be generated by Algorithm 1(functional version) by considering
reward function 7, (z)

— Case 2: the underlying model is monotone. We keep only trajectories issued
from the set of maximal and minimal states. The functional monotone perfect
simulation can be applied depending on the monotonicity of 7.

The following proposition lets us to know, if we can apply functional perfect
simulation to check a given state formula ¢.

Proposition 1. For a given ¢, to be able to apply functional perfect simulation,
one must show that Va,y € S? such that © < y, if rp,(x) =1 then r,(y) =1 .

Proof We can see from the definition of the reward function r, (see Eq. 77)
that it suffices to consider only the case when r,(z) = 1. If in this case r,(y) = 1
is verified then r,(x) is monotone.

— Case 2.1: Case reward r,, is monotone. In this case, samples are generated
by Algorithm 1 (monotone, functional version).

— Case 2.2: Case reward 7, is not monotone. then samples are generated
through Algorithm 1(monotone version). Once the sample state is obtained,
let say x, it is a positive sample if ,(z) = 1 and a negative sample otherwise.

4.2 TUnbounded Until formula

The time unbounded until formula P>g (@1 Ups) is checked for an initial state s,
by considering probabilities over paths starting from sg. Thus we must generate
a sample path starting from sg, and test if it is a positive sample or not. We
modify backward simulation algorithm to generate samples for the verification
of unbounded until formula to design Algorithm 2. There are three stopping
conditions (conclusions) for the path starting from initial state so:

1. the sample path reaches a @5 state, this path satisfies the property, we can
conclude that it is a positive sample (lines 13 and 14 of Algorithm 2).

2. the sample path reaches a —p; V @9 states, we can conclude that it is a
negative sample (see 15 and 16 of Algorithm 2).

3. the sample path visits always 1 A -9 states, it must be stopped when the
steady-state is reached (line 24 of Algorithm 2). If the perfect sample state
(steady-state) satisfies @o, it is a positive sample, otherwise it is a negative
one.

Let us remind that evolution in n steps from the past to present and from
the present to the future are stochastically equivalent (see Eq. ??). Thus if the
algorithm is stopped for iteration t = —2* due to the first two conditions, then it
means that in time interval I = [0,¢] a 9 or -, state is reached. For the third
condition, we need to test if the steady-state is reached or not. This is done by
means of the coupling from the past : we must verify if the coupling at time 0
has occurred or not. The sample paths that must be considered for the coupling
at time 0 depends on the monotonicity properties of the model. If any of three
stopping conditions is verified we continue to go back to the past by increasing
time interval T = [0, 2¢] (line 3).

In the case when the underlying model is monotone, the considered sample
paths are generated by keeping only trajectories issued from the set of maximal
and minimal states (see Algorithm 1(monotone version)).

Then lines 4 and 18 of Algorithm 2 will be modified as below:

4: for all x€ sy U Max U Min
18: for all x¢ Max U Min

5 Case study: Multistage interconnection delta queueing
network

We present as case study the verification of a multistage interconnection queueing
network to illustrate the efficiency of the proposed methodology. In telecommu-
nication networks, multistage models are used for modelling switches [?]. The

Algorithm 2 Sample generation for unbounded Until

1: t < 1; E[1] <« Generate — event(); STOP «— false; Result < 0;
2: repeat

3 te 2t

4: for allz € spUS do
5: y(z) < x; {initialisation of trajectories}
6: end for
7: for i=t downto t/2+1 do

8: E[i]J=Generate-event() {generate new events from -t/2 +1 to -t}
9: end for

10: 1 — 1

11: while (¢ > 1) A=STOP do

12: y(s0) — n(y(x), E[i]);

13: if y(so) E @2 then

14: STOP «— true; Result «— 1;

15: else if y(so) = —¢1 then

16: STOP «— true; Result < 0;

17: else

18: for all x € S do

19: y(z) — n(y(x), E[i]);

20: end for

21: end if

22: i —1—1;

23: end while
24: until STOP Vv (all y(z) are equal) { @2 or —p; state or the steady-state reached}
25: return Result

considered model is a delta network with 4 stages and 8 buffers at each stage (see
Fig. 7?). Thus the total number of queues (buffer) is n = 32. With markovian
arrival and service hypothesis, the model can be defined as a CTMC with a state
vector (N1 Ny --- N,,) where N; is the number of packets in the i** queue. The
size of the state space is then (Nyqe + 1)32, if the maximum queue size is Npqq-
We suppose homogeneous input trafic with arrival rate A to the first stage and
service rate is u = 1 in each queue. The routing policy is rejection (packets are
lost if the queue is full) and at the end of a service the routing probabilities are
1/2 for both buffers in the next stage. There are 64 events (8 external arrivals at
the 1°¢ level + 8 departures at the 4" level + 2*8 routing events in first three
levels). The monotonicity of these events (with respect to the component-wise
order) and so the monotonicity of the model has been shown in [?].

The availability and saturation properties at long run of the considered model
can be checked through the CSL steady-state formula. State labels are defined
through atomic propositions depending on the number of packets in queues. For a
given k € {0, , Ny }, a; (k) is true if N; > k and false otherwise. For example,
a; (Npmagz) 18 true if the it" buffer is full. The underlying CTMC is labelled with
these atomic propositions depending on the considered property. For instance,
with formula 1)=S_4(a; (Nyaz)) we can check the saturation property in the it"

Fig. 1. Interconnection delta network

buffer to see whether the long run saturation probability of the i*” buffer is less
than 6 or not. This lets us also to check the availability property, Ss1-¢(— a;
(Nmaa))-

Let @1 (resp. o) be the state formula to specify if at least a queue (resp.
all queues) at the fourth level is saturated, thus it is defined as the disjunction
(resp. conjuction) of atomic propositions a;(Npmaz),25 < i < 32. Steady-state
formulas 1¥1=S<9, (p1), ¥Y2=S<g,(v2) let us to study saturation or availability
properties (S>1—91 (_‘ 801)7 S>1—92 (_‘ 902))

Since the underlying model is monotone, sample paths are generated by ap-
plying the monotone perfect simulation (Algorithm 1 (monotone version)). In
order to apply functional monotone perfect simulation (Algorithm 1 (functional
monotone version)), one must show that the underlying reward r,, is monotone.
In fact, it follows from proposition 7?7 that for a state formula ¢ which can be
defined as the conjunction or the disjunction of the a;(k)s for any set of queues,
the corresponding reward function (Eq. ?7?) is monotone. Therefore the underly-
ing formulas 17 and 5 can be checked by applying functional monotone perfect
simulation. Contrary if the state formula is defined from a,(k) for some queues
and —a;(k) for others, we can only apply (Algorithm 1 (monotone version)),
since the reward is not monotone.

We suppose that Np,q. = 30 and A=0.75 at the first stage. Remark that
the state space size is huge and intractable by conventional techniques (3132 ~
5.107). The perfect samples are generated by using tool ¥? which provides
monotone perfect samples [?]. In this tool, the number of samples n is an input
parameter, and we consider the acceptance threshold m = [nf + 1|. We com-
pute the strength of the hypothesis testing «, 3 from condition C1, C2 given
in section ??7. We give in the following for different values of 6, ¢, the decision
for the considered steady-state formulas and values of « and (. In the follow-
ing tables, Nsamp denotes the sample size, SM CD;: statistical model checking
decision for the formula Scg(p1), SMCDy: statistical model checking decision
for the formula Scy(p2), a: the computed hypothesis testing Type I error(false
negative), 3: the computed hypothesis testing Type II error(false positive).

We have verified properties on a very large system (state space 5.10%7) having
threshold probabilities very close to zero. The time per simulation (observation)

0 |Nsamp|SMCD1|SMC D2 « I6]
10° Yes Yes 0.043 0.010
1073 10° Yes Yes [0.183.1078|0.341.10~11
10° No Yes 0.043 0.010
10~4| 107 No Yes [0.186.1078]0.347.10~ 11
107 No Yes 0.043 0.010
1075 108 No Yes [0.187.1078]0.348.10~ 11

Table 1. SMC Decision for S<o(p1) and for S<o(p2) with 6=2¢

0 |Nsamp|SMCD;|SMCDy o I6]

10° Yes Yes 0.210 0.114
1073 10° Yes Yes [0.129.1072|0.429.1073
10° No Yes 0.210 0.114
1074 107 No Yes [0.129.1072]|0.429.1073
107 No Yes 0.210 0.114
107°| 108 No Yes [0.129.1072]0.429.1073

Table 2. SMC Decision for S<o(¢1) and for S<o(p2) with 6=-%

0 |Nsamp|SMCD1|SMCD- Q@ 16}

10° Yes Yes 0.396 0.355

1073 107 Yes Yes 0.163 0.153
108 Yes Yes [0.821.1072|0.737.1073
107 No Yes 0.396 0.355

1074 108 No Yes 0.163 0.153
10° No Yes [0.825.1072]0.740.1072
108 No Yes 0.396 0.355

10~°| 10° No Yes 0.163 0.153
1010 No Yes [0.826.1072]|0.741.1073

Table 3. SMC Decision for S<g(p1) and for S<g(p2)with 52%

is just a few milli-seconds on a standard PC, and it must be multiplied by the
number of samples depending on the required correctness bounds. The monotone
perfect sampling with statistical decision techniques provide a really interesting
alternative for the probabilistic verification of large systems. Since the discrete
event systems have in general monotone dynamics this condition is not very
restrictive hypothesis for real world models. Even for non monotone systems,
functional perfect simulation is very interesting, because the reward space is
only {0,1}.

In terms of precision, we obtained a between the order of 1078 and 102 and
we obtained 3 between the order of 107! and 10~2. Note that, our computed «
and (8 depend on the sample size Nsamp, the term Nsamp.0 and the indiffer-
ence region parameter 0. Moreover, the sample size is approximately inversely
proportional to the squared width of the indifference region (2.4), which explains
our consideration of Nsamp=Nsamp * 102 in the table 3 in order to get more
precision.

Finally, let note that with N,,,,=30 and A = 0.75 we can see that the mean
queue length is relatively small, so saturation could be considered as a rare
event, which explains our decision SMC D, about saturation probability of all
queues at fourth stage to be always Yes. Our main goal here is to illustrate
the feasibility of the proposed approach for very large systems and rare events.
We consider here the steady-state operator since it is more difficult to obtain
numerical experiences (sample generation is stopped only when steady-state is
reached while there 3 conditions to stop for until formula). The sample paths
for until formulas can be generated from Algorithm 2 and then can be combined
with statistical decision techniques.

6 Conclusion

We propose to apply perfect simulation to genereate sample paths in order to per-
form statistical model checking of Markov chains. The statistical model checking
by Monte Carlo simulation has been already proposed for time bounded until for-
mula. However the steady-state operator and the unbounded until operator can
not be (efficiently) checked by this approach because of the problem of detecting
steady-state. Perfect simulation is a relatively recent extension of Monte Carlo
simulation which allow to sample steady-state without any bias. We propose
to do statistical model checking by combining perfect sampling and hypothesis
testing. Therefore it will be possible to check steady-state and unbounded time
until formulas of temporal logics for Markov chains. The proposed approach will
be integrated to the perfect sampler ¥? [?], to be able to model check large
performability models.

Acknowledgment The authors thank to Jean-Marc Vincent for fruitful
discussions and for his help on ¥2 tool.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, Model Checking Continuous Time
Markov Chains, ACM Trans. on Comp. Logic, 1(1), pp. 162-170, 2000.

C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen, Model-Checking Algo-
rithms for Continuous-Time Markov Chains, IEEE Trans. Software Eng. 29(6),
pp- 524-541, 2003.

P. Glasserman and D. Yao, Monotone Structure in Discrete-Event Systems, John
Wiley &Sons, 1994.

H. Hansson, B. Jonsson, A logic for reasonning about time and reliability, Formal
Aspects Compt. 6, pp. 512-535, 1994.

. T. Hérault, R. Lassaigne, F. Magniette and S. Peyronnet, Approximate probabilis-

tic model checking, VMCAI, LNCS 2937, pp 73-84, 2004.

H. Hermanns, J.P. Katoen, J. Meyer-Kayser, and M. Siegle, A tool for model-
checking Markov chains. In International Journal on Software Tools for Technology
Transfer, 4(2), pp.153-172, 2003.

M. Kwiatkowska, G. Norman, and D. Parker, ” Prism : Probabilistic symbolic model
checker. In Proceedings of PAPM/PROBMIV 2001 Tools Session, September 2001.
S. Keshav, An Engineering approach to computer networking, Addison Wesley,
1997.

. D. Propp, J.and Wilson, Exact sampling with coupled Markov chains and appli-

cations to statistical mechanics. Random Structures and Algorithms, 9(1 and 2),
pages 223-252, 1996.

K. Sen and M. Viswanathan and G. Agha, Statistical model checking of black-box
probabilistic systems, CAV’04, LNCS 3114, pp. 202-215, 2004.

K. Sen, M. Viswanathan, G. Agha, On Statistical Model Checking of Stochastic
Systems, LNCS 3576, 2005.

J.M. Vincent and C. Marchand, On the exact simulation of functionals of stationary
Markov chains, Linear Algebra and its Applications, 386:285-310, 2004.

J.-M. Vincent and J. Vienne, Perfect simulation of index based routing networks,
Performance Evaluation Review, 34(2):24-25, 2006.

J.-M. Vincent and J. Vienne, PSI2 a Software Tool for the Perfect Simulation of
Finite Queuing Networks, In QFEST, Edinburgh, September 2007.

H. L. S. Younes and R. G. Simmons, Probabilistic verification of discrete event
systems using acceptance sampling, CAV02, p. 223-235, 2002.

H.L. Younes, M. Kwiatkowska, G. Norman and D. Parker, Numerical vs. statistical
probabilistic model checking, Software Tools for Technology Transfer, no. 8(3), 216-
228, 2006.

H. L. S. Younes, Error Control for Probabilistic Model Checking, VMCAI 2006,
LNCS 3855, p. 142-156, 2006.

H. L. S. Younes and R. G. Simmons, Statistical probabilistic model checking with
a focus on time-bounded properties, Information and Computation 204, no. 9:
1368-1409, 2006.

