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Place du Maréchal de Lattre de Tassigny

75775 cedex 16, France
lynda.mokdad@lamsade.dauphine.fr

Nihal Pekergin
LACL Laboratory
Université Paris Est
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Abstract—This paper presents an algorithm based on stochas-
tic comparisons in order to check formulas with rewards on
multidimensional Continuous Time Markov Chains (CTMC).
These formulas are expressed in Continuous Stochastic Logic
(CSL) which includes means to express transient, steady-state and
path performance measures. However, computation of transient
and steady state distribution are limited to relatively small sizes
because of the state space explosion problem.
We propose a model checking algorithm based on aggregated

bounding Markov processes in order to perform the verification
on the bounds values instead of the exact one. The stochastic
comparison has been largely applied in performance evaluation
however the state space is generally assumed to be totally ordered
which induces less accurate bounds for multidimensional Markov
processes. We use the increasing set theory and the comparison
by mapping functions in order to derive bounds on reduced
state spaces. The relevance of the proposed checking algorithm
is the possibility of a parametric aggregation scheme in order to
improve the accuracy of the bounds and in the same time the
precision of the checking, but in return with an increasing of the
complexity.

I. INTRODUCTION

Continuous Time Markov Chain (CTMC) is the most use-
ful mathematical model underlying many formalisms for the
description and the quantitative analysis of stochastic discrete-
event dynamic systems. Once a CTMC has been generated,
the next step is to compute performance measures such
as throughput, loss probabilities, etc. Continuous Stochastic
Logic CSL can be used to express constraints on such mea-
sures and model checking techniques are applied to automated
analysis of these constraints. The CSL [1] was developed as
a stochastic extension of the branching-time Temporal Logic
(CTL) [5]. Stochastic model checking has been extended to
models with some rewards on states and transitions in which
logic formalisms as Probabilistic Reward Computational Tree
Logics (PRCTL) and Stochastic Reward Logic (CSRL) [9] are
used for performance and dependability applications.
We propose to check the rewards based formulas of stochas-

tic models by applying stochastic comparison approach. To
check these formulas, transient or steady-state distribution of
underling Markov chain must be computed. However, these
models are usually represented by multidimensional processes

with very large state spaces. As a result, quantitative analysis
to check formulas, is difficult if there is no specific solution
form (product form solutions, ...). Since exact performance
measures can only be obtained using numerical methods [18]
with small sizes, it is important to develop new powerful
mathematical tools for large state systems.

Related works. In this paper, we propose a model checking
algorithm in order to verify reward formulas on aggregated
bounding Continuous Time Markov Chain (CTMC). In [15], a
stochastic comparison based method is proposed to check state
formulas defined over Discrete Time Markov Chain (DTMC)
rewards. The authors have assumed a total order, and generate
the aggregated Markov chains using the LIMSUB algorithm
[8], based on lumpability constraints. In the present paper,
we use an algorithm generating bounding aggregated Markov
chains presented in [3], [4]. It is based only on a partial
order which induces less constraints then a total order, and so
more accurate bounds for multidimensional Markov processes.
Also, we propose a parametric aggregation scheme in order to
improve the accuracy of bounds and also the precision of the
checking.
In [1,17], model checking algorithms for CTMC are pro-

posed using lumping equivalence in order to reduce Markov
chains state spaces. The notion of state equivalence relation
also called stochastic bisimulation is introduced in order to
build a reduced state space called quotient. The relation is
based on the required conditions that must have equivalent
states as equality of state labelling, rewards, exit rates. The
advantage is the verification of CSL logic formulas on a
reduced state space.
Compared with this study, the algorithm which we propose

does not suppose lumping equivalence, and so it is easier to
aggregate the state space, but in return the verification is made
on bounding values instead of exact ones which does not let
to decide for all cases.
This paper is organized as follows. Next, we present the

CSL logic, focusing on formulas with rewards for perfor-
mance study. In the section after, we present the stochastic
comparison method on multidimensional state spaces in order



to generate aggregated bounding Markov chains. In section
IV, we apply the algorithm to the model checking of large
state Markov chains. We use the increasing set theory in order
to generate bounds on performance measures with rewards.
The section V is devoted to checking if loss probabilities
in a tandem queueing network is included or not in an
interval. Different parametric aggregation schemes have been
proposed in order to show the trade off between improving
the precision of the checking, and increasing the state space.
As a conclusion, we resume advantages and limits of our
approach. Finally, we resume in an appendix the stochastic
ordering theory used in this paper.

II. MODEL CHECKING MARKOV CHAINS

Continuous Stochastic Logic (CSL) is an extension of
Computation Tree Logic (CTL) with two probabilistic oper-
ators that refer to steady-state and transient behaviors of the
underlying system.
CSL is a branching-time temporal logic with state and path
formulas. The states formulas are interpreted over states of a
CTMC, whereas the path formulas are interpreted over paths
in CTMC [1]. In order to express the time span of a certain
path, the path operators until (U) and next (X ) are extended
with a parameter that specifies a time interval [1].
The CSL logic has been extended to continuous stochastic
reward logic (CSRL) to specify performability measures over
Markov reward models (MRMs). It contains operators that
refer to the stationary and transient behaviour of the considered
systems. To specify performability measures as logical formu-
las over MRMs, it is assumed that each state is labelled with
so-called atomic propositions. Atomic propositions identify
specific situations the system may be in, such as “buffer full“,
“buffer empty“ or “variable X is positive“ [9].
The MRM is a tuple M = (E, R, ρ) where E is a finite

set of states, R : E × E −→ R≥0 is the rate matrix, and
ρ : E −→ R≥0 is a reward structure that assigns to each state
s a reward ρ(s), also called cost. The MRM has a fixed initial
distribution α satisfying

∑
s∈E αs = 1, so the MRM starts in

state s with probability αs.
CSRL allows one to specify properties over states and over
paths. A path is an alternating sequence s0 t0 s1 t1 . . . where
si is a state of the MRM and ti > 0 is the sojourn time in
state si. The accumulated reward for a finite path of length
n is given by

∑n−1
i=0 tiρ(i). Let I and J be intervals on the

real line, p a probability and #, a comparison operator, such
as > or <. The syntax of CSRL is defined by the following
grammar [9]:
State-formulas:

φ ::= true | a | φ ∨ φ | φ ∧ φ | ¬φ | P!p(φ)

Path-formulas:

φ ::= (φ UI
Jφ) | X I

J (φ)

For the state formulas ¬, ∨ and ∧ the meanings are as usual.
For the formula P!p(φ), it is valid in state s if the probability
measure of the set of paths starting in s and satisfying path

formula φ meets the bound #p. The path-operators next X and
until U are used with two intervals. Interval I can be considered
as a timing constraint whereas J represents a bound for the
cumulative reward. In the following, we give examples for the
both path-operators.

• P≤0.2(X≤5
(0,∞)s) which means that with a probability at

most 0.2, a transition can be made to s-states at time
t ∈ [0, 5] such that the accumulated reward until t lies in
(0,∞).

• P≤0.2(aU≤5
(0,∞)b)) which means that b-state can be

reached with probability at least 0.2 at time t ∈ [0, 5]
along a-states such that the accumulated reward until t
lies in (0,∞).

In this paper, we consider steady-state reward formulas as
given in [1] for discrete time Markov chains:
Steady-state Reward-formulas:

εI(φ) | L!p(φ)

These formulas are inspired from performance measures of
CTMC with rewards.

• The formula εI(φ) is the long-run expected reward for
φ-states. If the steady-state exists, εI(φ) is satisfied if:

εI(φ) is satisfied iff
∑

s′|=φ

π(s′)ρ(s′) ∈ I

• The formula L!p(φ) asserts that the steady state proba-
bility to be in φ-states meets the bound #p.

L!p(φ) is satisfied iff
∑

s′|=φ

π(s′) # p

III. STOCHASTIC COMPARISON OF MULTIDIMENSIONAL
MARKOV PROCESSES

The stochastic comparison is a mathematical tool which
allows to compute bounds on transient distributions and the
stationary distribution of a Markov process. In fact, if the un-
derlying Markov process does not have a specific solution form
like a product-form or matrix-geometric solutions, etc. the
computation of stationary probability distributions becomes
difficult or intractable for multidimensional large state spaces.
By means of the stochastic comparison method, it is pos-

sible to overcome this problem by reducing the size of the
state space of the underlying Markov process. Stochastic
comparison is based on the definition of stochastic orderings
between random variables, probability measures, or stochastic
processes. In this paper, we use the stochastic comparison by
mapping functions in order to reduce the state space size.
We have summarized in the appendix the main concepts of
stochastic comparisons of multidimensional Markov processes
used in this paper.
Let X(t) be a large state space Markov process defined on

a multidimensional and preordered (not necessarily a totally
ordered) state space E, with an infinitesimal generator matrix
Q. We suppose that the process is irreducible so the stationary



distribution Π exists, but it is very difficult to compute (not a
specific solution form, and a large state space size).
The study of this system consists in the checking of the

formula εI(φ), which is true if :

R(φ) ∈ I

where :
R(φ) =

∑

s|=φ

Π(s)ρ(s)

so εI(φ) is satisfied if the long-run expected reward rate per
time-unit for φ-states meets the bound of I = [Imin, Imax]. If
there is a closed-form for Π then it will be easy to compute
and the verification can be easiliy done . Otherwise, as the
state space size increases exponentially with the number of
components, then it will be very difficult to verify ε I(φ).
We propose to define aggregated bounding Markov processes
[3,4], in order to derive an aggregated upper (resp. lower)
bounding Markov process, from which we can compute the
stationary distribution Πu (resp. Πl) defined on a smaller state
space. We verify the formula εI(φ) by computing an upper
bound (resp. a lower bound) Ru(φ) ( resp. Rl(φ)) to R(φ),
and testing if they are included in I .
We use the algorithm generating aggregated bounding

Markov processes [3]. The goal of the algorithm is to derive :
• The Markov process {Xu(t), t ≥ 0} representing the
upper bound computed from {X(t), t ≥ 0}, and the many
to one mapping function gu : E → Su, Su ⊂ E.

• The Markov process {X l(t), t ≥ 0} representing the
lower bound, computed from {X(t), t ≥ 0}, and the
mapping function g l : E → Sl, Sl ⊂ E.

In [3], we have proved using the stochastic ordering theory
described in the appendix that the algorithm generates aggre-
gated Markov processes bounds for the exact process. For the
upper bound, we have the comparison by the mapping function
gu :

{gu(X(t)), t ≥ 0} *st {Xu(t), t ≥ 0}

and for the lower bound, by the mapping function g l :

{X l(t), t ≥ 0} *st {gl(X(t)), t ≥ 0}

As results of the comparison of the processes, we have
the comparison of transient and stationary probability distribu-
tions. Only the second one is used in this paper, it is explained
in the next section.

A. Probability distributions comparison
We consider here only the stationary case. From the propo-

sition 1 in the appendix, we have the following relations :

∑

x|gu(x)∈Γ

Π[x]f(x) ≤
∑

x∈Γ

Πu[x]f(x), ∀Γ ∈ Φst(Su) (1)

and :

∑

x∈Γ

Πl[x]f(x) ≤
∑

x|gl(x)∈Γ

Π[x]f(x)∀Γ ∈ Φst(Sl) (2)

where f : E → R>0, is an increasing function.

IV. MODEL CHECKING ON AGGREGATED BOUNDING
CTMC

In this section we use the stochastic comparisons and pre-
cisely the algorithm generating aggregated Markov processes
in order to check steady-state reawrd formulas.

A. States formulas bounds
We focus on the state formula with rewards εI(φ), and we

want to verify if it is true or not. We need to compute R(φ)
given by :

R(φ) =
∑

s∈Eyes

Π[s]ρ(s)

where Eyes = {s ∈ E|s |= φ}, and ρ : E → R>0 is
not necessary an increasing function. For multidimensional
processes, it is difficult to compute Π if there is no product
form, because the state space size increases exponentially. So
we propose to compute bounds to R(φ) in order to verify
εI(φ). These bounds are computed from aggregated bounding
Markov processes generated from the exact Markov pro-
cess. We apply the algorithm generating aggregated bounding
Markov processes [3] in order to derive bounding aggregated
Markov processes.
As some states of Eyes will be aggregated, then the compu-

tation of the bounds will be made on the states of gu(Eyes) for
the upper bound, and g l(Eyes) for the lower bound. Although
Eyes is not an increasing set, we could have the aggregated
sets gu(Eyes) and gl(Eyes) defined as increasing sets. In
the example 1 of the appendix, Eyes = {(0, 1)} is not an
increasing set, but g(Eyes) = {(1, 1)} is an increasing set.
We suppose that gu(Eyes) and gl(Eyes) are increasing sets
which could be very useful for the stochastic comparison of
the stationary distributions.

E

Eyes

. .
. ....
.
.
.. .
.. .

. .
.

.
. .

..

.

.
.

. .
. .
..

S=g(E)

g(Eyes)

.. .. . .
.

..
.

Fig. 1. Aggregation of Eyes : the general case

From proposition 2 of the appendix, and Fig.1 where g is
replaced by gu, we have :

∑

x∈Eyes

Π[x] ≤
∑

x|gu(x)∈gu(Eyes)

Π[x]



If we use the reward function ρ, and if we define an
increasing function ρ1, representing an upper bound to ρ, then
we have the following inequality :

R(φ) =
∑

x∈Eyes

ρ(x)Π[x] ≤
∑

x|gu(x)∈gu(Eyes)

ρ1(x)Π[x]

From equation 1 in section III-A , as gu(Eyes) is an
increasing set of Φst(Su), then we obtain :

∑

x|gu(x)∈gu(Eyes)

ρ1(x)Π[x] ≤ Ru(φ) =
∑

x∈gu(Eyes)

ρ1(x)Πu[x]

So we deduce that

R(φ) ≤ Ru(φ)

We study now the lower value case. From proposition 2 in
the appendix, and figure Fig.1, where we replace g by g l, we
have :

∑

x∈Eyes

Π[x] ≤
∑

gl(x)∈gl(Eyes)

Π[x]

It is clear that the inequality sense is inadequate with the
definition of a lower bound. We suppose the particular case
where the states of gl(Eyes) are the mappings of states which
are only in Eyes, and not outside Eyes, as it is represented
in Fig.2. This assumption will be possible if we can define
a mapping function g l from the set Eyes , verifying this
condition.
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Fig. 2. Aggregation of Eyes : a particular case

It is equivalent to say that :

- ∃x | x -∈ Eyes, and gl(x) ∈ gl(Eyes)

In this case, we have :
∑

x∈Eyes

Π[x] =
∑

x|gl(x)∈gl(Eyes)

Π[x]

If we introduce the reward functions, and if we denote by
ρ2 an increasing reward function representing a lower bound
for ρ, then we have :

R(φ) =
∑

x∈Eyes

Π[x]ρ(x) ≥
∑

x|gl(x)∈gl(Eyes)

Π[x]ρ2(x)

From equation 2 in section III-A as g l(Eyes) is an increas-
ing set, we have :

∑

x|gl(x)∈gl(Eyes)

Π[x]ρ2(x) ≥ Rl(φ) =
∑

x∈gl(Eyes)

Πl[x]ρ2(x)

So we obtain :

R(φ) ≥ Rl(φ)

B. Checking state formulas
From the computation of Ru(φ) and Rl(φ), we can verify

if εI(φ) is true or not. We have several cases :
1) Ru(φ) ≤ Imax and Rl(φ) ≥ Imin so as Rl(φ) ≤

R(φ) ≤ Ru(φ), then we can say that εI(φ) is true.
2) Ru(φ) ≥ Imax or Rl(φ) ≤ Imin, then we can’t
conclude if εI(φ) is true or not, we can try another
aggregation scheme, more precise, defined on a larger
state space size in order to improve the quality of the
bounds and to be perhaps in the case (1).

3) Ru(φ) ≤ Imin or Rl(φ) ≥ Imax then εI(φ) is false.
From these inequalities, we define three boolean variables :

• cond1=Ru(φ) ≤ Imax and Rl(φ) ≥ Imin,
• cond2=Ru(φ) ≥ Imax or Rl(φ) ≤ Imin, and
• cond3=Ru(φ) ≤ Imin or Rl(φ) ≥ Imax.
Here we give the procedure BoundCheck which check if

εI(φ) is true or not. As input parameters, the function takes
the infinitesimal generator Q, the interval I , and the set Eyes.
The result of the checking is contained in the boolean variable
Check, which equals ”yes” if cond2 is verified, ”no” if it
is cond3. In the checking we use the aggregated bounding
process in order to derive the bounds used for the verification.
As we have explained previously, if gu(Eyes) and gl(Eyes)
are increasing sets, then we can compare the stationary
distributions, otherwise, we modify Eyes so as we obtain
increasing sets. The parametric aggregation is interesting for
the verification : we begin with small sizes of aggregated
Markov processes, and step by step we enlarge the process
in order to improve the verification. In the procedure, we use
a variable stop in order to stop this process. So if stop=’n’,
we continue to improve the bounds, otherwise we stop and if
it is cond2 that it is verified, then the variable Check is such
that Check=unknown.

PROCEDURE BoundCheck(IN Q,I,Eyes,OUT Check)

BEGIN

-Build aggregated bounding
Markov processes

WHILE (cond2) AND (stop=’n’)
THEN BEGIN

- Build a larger Markov process in order
to improve the quality of the bounds.



END
IF (cond1) THEN

Check=yes
ELSE IF (cond2) THEN

Check=unknown
ELSE IF (cond3)

THEN Check=false

END

V. APPLICATION AND NUMERICAL RESULTS

The system understudy represents a path in a network
defined as a series of network nodes (switches, routers) where
transits only one flow of packets. We suppose that the leftmost
node has the index 1, and indexes increase in the path until
node n. This system can be represented by n finite capacity
queues in tandem (see Figure 3).

1 2 n

Fig. 3. Tandem queueing network

External arrivals occur only in queue 1, after the flow
transits in queues 2, . . . , n if there is enough place in each
queue. We suppose that arrivals are Poisson in queue 1 with
rate λ. Each queue i has an Exponential service time with
rate µi, and a finite capacity Bi. After a service in queue
i, the customer transits to the next queue i + 1 if there is
enough place, otherwise the customer is lost. This system is
represented by a Markov process {X(t), t ≥ 0} on E =
{0, . . . , B1}×. . .×{0, . . . , Bi}×. . .×{0, . . . , Bn}. Each state
x ∈ E is represented by a vector: x = (x1, . . . , xi, . . . , xn).
where xi is the number of customers waiting in queue i. We
suppose that the stationary distribution denoted Π exists. We
introduce the atomic proposition related to the state of the ith
buffer : ith-full is valid if the ith buffer is full : xi = Bi. So in
this case, Eyes = {x ∈ E|xi = Bi}. The goal of this study is
to verify if the state formula εI(ith-full) is true or not, which
means if the long-run loss probabilities in buffer i is in the
interval I . So εI(ith-full) is true if

R(ith-full) =
∑

x∈Eyes

Π(x)ρ(x) (3)

is included in I .Where ρ(x) = 1 if xi = Bi and otherwise 0
is an increasing function.
The numerical resolution of {X(t), t ≥ 0} in order to

compute Π is very difficult or intractable : there is no product-
form, and the number of states increases exponentially with
the number of components. We propose to apply the algorithm
generating aggregated bounding Markov processes in order to
verify if

Ru(ith-full) =
∑

x∈gu(Eyes)

Πu(x)ρ(x)

∆ λi ε[10−10,10−1](fourth-full)
Aggregation 1 Aggregation 2

10 50 unknown unknown
10 60 yes unknown
10 70 yes unknown
10 80 yes yes
10 90 yes yes
15 50 yes unknown
15 60 yes unknown
15 70 yes yes
15 80 yes yes
15 90 yes yes

TABLE I
ε[10−10,10−1](fourth-full) WITH AGGREGATION 1 AND 2 AND Bi = 20

and
Rl(ith-full) =

∑

x∈gl(Eyes)

Πl(x)ρ(x)

are included in I.
We give numerical results for the model with the following

assumptions. Four buffers in tandem, service rates µ i in each
queue is 100Mb, the packet size is 512 bytes. λ varies from
50 Mb/s to 90 Mb/s, and we take Bi = B = 20, and Bi =
B = 40.
We propose to evaluate the state formula εI(fourth-full) in

order to verify if the packet loss probability of the fourth buffer
is included in the interval I or not. This formula is verified
from the computation of Ru(fourth-full) and Rl(fourth-full).
Two aggregation schemes are proposed in order to define the
aggregated bounding Markov processes [3,4] : Aggregation1
which is a ”fine aggregation” and Aggregation2 a ”coarse
aggregation”. In tables III and IV sizes of aggregated processes
are given.

A. State formula verification
We verify the formula εI(fourth-full) in two different inter-

vals I , by computing Ru(fourth-full) and Rl(fourth-full). In
table I, we suppose that I = [10−10, 10−1], and we give the
results of the verification for the two aggregation schemes. We
have verified that for the two aggregation schemes, we are in
the case that gu(Eyes) and gl(Eyes) are increasing sets, and
for the lower bound 2 is verified. As we have explained before,
Aggregation1 is defined so as to provide more precise bounds
values then Aggregation2. In tables III and IV, we can see
that Markov chains sizes are larger with Aggregation1 then
Aggregation2, and when ∆ increases, the sizes increases also.
From table I, we can see that ε[10−10,10−1](fourth-full) is

in some cases unknown with Aggregation2, but true with
Aggregation1, because the bounds are more precise. Another
remark is that for an aggregation scheme, when ∆ increases,
the precision improvement makes the state formula transits
from an unknown response (Aggregation1, ∆ = 10, λ i = 50)
to a positive response (Aggregation1, ∆ = 15, λ i = 50).
For table II, given the same assumptions, we reduce the

interval I which is now equal to I = [10−6, 10−2]. Clearly,
we can see globally that the verification is more often unknown
then in the precedent case. Clearly, we couldn’t conclude



∆ λi ε[10−6,10−2](fourth-full)
Aggregation 1 Aggregation 2

10 50 unknown unknown
10 60 unknown unknown
10 70 yes unknown
10 80 yes unknown
10 90 yes unknown
15 50 unknown unknown
15 60 yes unknown
15 70 yes unknown
15 80 yes unknown
15 90 yes unknown

TABLE II
ε[10−6,10−2 ](fourth-full) : WITH AGGREGATIONS 1, 2 AND Bi = 20

Exact Aggregation1 Aggregation2
∆=10 ∆=15 ∆ = 10 ∆=15

194481 158071 191751 61051 140091

TABLE III
STATE SPACE SIZE OF AGGREGATED MARKOV PROCESSES FOR B=20

with Aggregation2, but the response can be obtained from
Aggregation1, and with the increasing of∆. The same remarks
can be deduced from V and VI when we increase buffer sizes.

VI. CONCLUSION

In this paper, we have proposed a checker algorithm based
on stochastic comparisons of multidimensional Markov chains.
This algorithm has been applied to check state formulas with
rewards defined on steady-state distribution, with CSRL logic.
Quantitative analysis of large systems can be intractable if
there is no specific solution as product forms. To overcome
the state space explosion problem, we have proposed to use
stochastic comparisons by mapping functions in order to define
aggregated bounding Markov processes. We have defined an

Exact Aggregation1 Aggregation2
∆=15 ∆=20 ∆=15 ∆=20

2825761 1587311 2296141 438311 884101

TABLE IV
STATE SPACE SIZE OF AGGREGATED MARKOV PROCESSES FOR B=40

∆ λi ε[10−13,10−1](fourth-full)
Aggregation 1 Aggregation 2

15 50 unknown unknown
15 60 yes unknown
15 70 yes unknown
15 80 yes yes
15 90 yes yes
20 50 unknown unknown
20 60 unknown unknown
20 70 yes yes
20 80 yes yes
20 90 yes yes

TABLE V
ε[10−13,10−1 ](fourth-full) FOR AGGREGATIONS 1,2, AND Bi = 40

∆ λi ε[10−12,10−2](fourth-full)
Aggregation 1 Aggregation 2

15 50 unknown unknown
15 60 unknown unknown
15 70 unknown unknown
15 80 yes unknown
15 90 unknown unknown
20 50 unknown unknown
20 60 unknown unknown
20 70 yes unknown
20 80 yes unknown
20 90 unknown unknown

TABLE VI
ε[10−12,10−2](fourth-full) WITH AGGREGATIONS 1, 2 AND Bi = 40

algorithm which verify the state formulas using the upper and
lower bounds generated by aggregated Markov processes. We
have proposed a parametric aggregation in order to have a
tradeoff between the size of the aggregated Markov chains
and the accuracy of the bounds. This aggregation allows the
checker algorithm to refine its verification by becoming closer
to the exact model.
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APPENDIX

A. Stochastic orderings theory

We present some theorems and definitions about stochastic
orderings used for the generation of the aggregated bounding
Markov chains.
Two formalisms can be used for the definition of a stochastic

ordering : increasing functions [6,16] or increasing sets [12].
The *st ordering is the most known stochastic ordering,

it is equivalent to the sample path ordering (see Strassen’s
theorem [16]. Stochastic orderings are defined only on discrete
and countable state space E, where a binary relation * is
defined at least as a preorder [16]:
We consider two random variables X and Y defined on

E, and their probability measures given respectively by the
probability vectors p and q where p[i] = Prob(X = i), ∀i ∈
E (resp. q[i] = Prob(Y = i), ∀i ∈ E). The *st ordering can
be defined using increasing functions as follows [16]:
Definition 1: X *st Y ⇔ E[(f(X))] * E[(f(Y ))] ∀f :

E → R, *-increasing whenever the expectations exist.
Different methods are associated to the *st ordering: the
coupling [16], [10], and the increasing set theory [12].
We focus in this paper only on the *st ordering. The

key idea is to define a stochastic ordering from a family of
increasing sets [12]. Let Γ ⊆ E, we denote by

Γ ↑= {y ∈ E | y 2 x, x ∈ Γ}

Definition 2: Γ is called an increasing set if and only if
Γ = Γ ↑

Let φst(E) the family of increasing sets which induces the
*st ordering:

φst(E) = {all increasing sets on E}

The *st ordering theorem using the increasing set theory
[12] states as follows:
Theorem 1:

X *st Y ⇔ p *st q ⇔ p(Γ) ≤ q(Γ), ∀Γεφst(E)

where
p(Γ) =

∑

x∈Γ

p(x)

We present now the comparison of stochastic processes. Let
{X(t), t ≥ 0} and {Y (t), t ≥ 0} stochastic processes defined
on E.
Definition 3: We say that {X(t), t ≥ 0} *st {Y (t), t ≥ 0}

if X(t) *st Y (t), ∀t ≥ 0

As the stochastic comparison of processes is defined as the
stochastic comparison at any time of the processes, then it is
also equivalent to :

E(f(X(t)) ≤ E(f(Y (t)), ∀t ≥ 0

∀f : E → R, *-increasing whenever the expectations exist.
Different methods can be used to define a stochastic order-

ing : increasing sets and coupling [12,16,10].
Next, we suppose that the Markov processes are not defined

on the same state spaces. In this case, we can compare them on
a common state space using mapping functions. The relevance
of this technique is to reduce the state space of the Markov
chains in order to define bounding aggregated Markov chains.
Let :

• X(t) a Markov process defined on E, we suppose that
the stationary distribution Π1 exists.

• Y (t) a Markov process defined on S ⊂ E), we suppose
that the stationary distribution Π2 exists.

• g be a many to one mapping from E to S.
The stochastic comparison of these processes by mapping

functions is defined as follows [6]:
Definition 4: We say that

{g(X(t)), t ≥ 0} *st {Y (t), t ≥ 0}

if g(X(t)) *st Y (t), ∀t ≥ 0

If the state space S ⊂ E, then this theorem allows to
compare the process X(t) with the process Y (t) defined on a
smaller state space.
Proposition 1: If

{g(X(t)), t ≥ 0} *st {Y (t), t ≥ 0}

then :



∑

g(x)∈Γ

Π1(x)ρ(x) ≤
∑

x∈Γ

Π2[x]ρ(x), ∀Γ ∈ Φst(S)

where ρ : E → R>0, an increasing function.

B. Propositions, theorems proofs
Proposition 2:

∑

x∈Eyes

Π[x] ≤
∑

x|g(x)∈g(Eyes)

Π[x]

Proof
∑

x|g(x)∈g(Eyes)

Π[x] =
∑

x∈Eyes|g(x)∈g(Eyes)

Π[x]

+
∑

x '∈Eyes|g(x)∈g(Eyes)

Π[x]

as ∀x ∈ Eyes, g(x) ∈ g(Eyes), then clearly we have :
∑

x∈Eyes|g(x)∈g(Eyes)

Π[x] =
∑

x∈Eyes

Π[x]

and so we deduce that :
∑

x∈Eyes

Π[x] ≤
∑

x|g(x)∈g(Eyes)

Π[x]

Here we give a simple example about this proposition.
Example 1: Let E = {(0, 0), (1, 0), (0, 1), (1, 1)}, with the

preorder component by component. The mapping g : E →
S where s ⊂ E is such that : g(0, 0) = (0, 0), g(0, 1) =
g(1, 0) = g(1, 1) = (1, 1). So S = {(0, 0), (1, 1)}.
For Eyes = {(0, 1)}, then g(Eyes) = {(1, 1)}, which

is an increasing set, and
∑

x∈Eyes
Π[x] = Π[(0, 1)] ≤∑

x∈E|g(x)∈g(Eyes)
Π[x] = Π[(0, 1)] + Π[(1, 0)] + Π[(1, 1)]


