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1 Introduction

Markovian networks of finite capacity queues are widely
used models for performance evaluation of systems and net-
works. Unfortunately, excepted in some specific situations,
these models are not tractable analytically [2]. Approxima-
tion techniques, aggregation, fluidification have been pro-
posed to capture the behavior such systems. But, in most
complex cases, simulation remains the only tool to estimate
the steady state of the system.

Classical simulation iterates from an initial state and es-
timates the steady-state on a long run trajectory via the er-
godic theorem. The first problem of this direct simulation
is the simulation control of the burn-in time period that en-
sures that the process have reached the steady state. The
second difficulty is related to the auto-correlation of a one
trajectory sample. Approximations or regenerative argu-
ments should be used to compute confidence intervals. For
large state-space systems regeneration arguments fail and
should be adapted with a high knowledge on the system.

Perfect simulation provides a new technique to sample
steady-state and avoids the burn-in time period. When
the simulation algorithm stops, the returned state value is
in steady-state. Initiated by Propp and Wilson [5] in the
context of statistical physics, this technique is based on a
coupling from the past scheme that, provided some condi-
tions on the system, ensures convergence in a finite time to
steady-state. This approach have been successfully applied
in various domains, stochastic geometry, interacting particle
systems, statistical physics, networking [1, 4], etc.

We applied this technique first to Markov chain with
sparse transition matrix [8, 7], and to queueing networks
with finite capacities and complex routing strategies [9].
The sofware Ψ2 have been developed to validate this sim-
ulation approach and applied to in the context of low prob-
ability events estimation [10, 6]. The aim of this note is
to present the features of this free software which is dis-
tributed at http://psi.gforge.inria.fr. The de-
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sign of the software architecture is shown in the next figure.
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2 Model description

The model is based on a multiple servers queueing net-
work description. The number of servers and the capacities
of queues are fixed. All capacities are finite so that a state
of the network will be modelled by a vector in a product of
integer intervals.

An event e is considered as a parameter of a global transi-
tion function Φ(x, e) on the state space. Each event is driven
by a stochastic Poisson process. The underlying discrete
time Markov chain is obtained by uniformization (GSMP
model). A triggered event e that cannot be activated on a
state x induces a skip operation ie Φ(x, e) = x.

A library contains a list of pre-defined events. The
arguments of each event is an “origin” queue and a list of
destination queues (DQ) with the implicit priority in the list.

type action
1 Server departure
2 External arrival to the first empty room in the list DQ
3 Multi-server departure to DQ
4 Join the shortest queue in DQ
...

...
Moreover, there is the possibility to implement a user-defined
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routing strategy based on index policy : for a given index routing
event e the destination queue is computed as the argmini Ii(xi),
the specific index functions Ii are stored in separate files.

Such networks do not have a product form because of over-
flow, blocking or state dependent routing. But all of these events
preserve monotonicity on the state space with the component-wise
ordering. Consequently the backward coupling is highly improved
by drawing only two trajectories from the minimal state m (all
queues are empty) and the maximal one M (all queues are full).

Simulation kernel
n←1; E[1]← Generate-event()
repeat

n←2n; y(M)←M ; y(m)← m;
for i=n downto 1 do

if n >n/2 then
E[i]←Generate-event() {generate event −i according
to uniformized distribution of events}

end if
y(M)← Φ(y(M), E[i]); y(m)← Φ(y(m), E[i]);
{apply the transition given by event E[i] }

end for
until All y(x) are equal
return y(x)

3 Simulation parameters, control and output
analysis

The backward coupling scheme needs to store the sequence of
events E. The simulation could take an arbitrary long time to cou-
ple, but it has been shown that the mean memory size needed for a
trajectory a feed-forward network is quadratic in the capacities of
queues and linear in the ratio of the global rate of the system and
the rate of each queue [3].

In some cases, when we need only a monotonic reward
on steady-state, the stopping condition is strengthened by
rewards(y(M)) = reward(y(m)). This reward function is
given to the simulator as an external C encoded function. This
could heavily reduce the computation time of expected reward.
By brute force and reward function, one could estimate low prob-
abilities sets of states [6], up to 10−6.

To improve the efficiency of the simulation, we also implement
variance reduction techniques by driving parallel antithetic trajec-
tories. The simulation time could then be reduced by a factor 2 or
3 [10].

After running the simulation kernel, we get a sample of in-
dependent rewards in steady-state. The independence property is
guaranteed by the fact that we use independent trajectories. Con-
sequently, we could use all classical theorems from statistics to
estimate steady-state parameters.

We could use for example the R software, our own scripts or
other statistical tools.

4 Applications

Consider a simple multistage switching network, with a capac-
ity of queues 99 and a uniform routing scheme. The input rate is
0.9 and the rate of each queue 1.

8

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

10

9

The size of the state-space is 1064. The performance index un-
der study is the probability that the first queue on the last level
is over 50. Such heavy loaded models are usually untractable
with classical methods. On a Pentium PIV, 3GHz, 2Gb memory
the performances are 106ms per generated state and only 75ms
to generate an independent sample of the performance index. In
this case we estimate a very low probability event P(N > 50) '
4.5 10−3 ± 2 10−4, with a 95% confidence level, in few hours.

This software have been successfully applied in many situa-
tions such as grid scheduling, call center dimensionning, optimal
routing etc.
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