
Aggregated bounding Markov processes applied to the
analysis of tandem queues ∗

Hind Castel-Taleb
GET/INT/SAMOVAR

INT 9,rue Charles Fourier
91011 Evry Cedex, France
hind.castel@int-evry.fr

Lynda Mokdad
Lamsade, Univ. Paris Dauphine

Pl. du Maréchal de Lattre de Tassigny
75775 Cedex 16, France

mokdad@lamsade.dauphine.fr

Nihal Pekergin
LACL, Université Paris 12

61, av. du Général de Gaulle
94010 Créteil Cedex, France

nih@prism.uvsq.fr

ABSTRACT
Performance evaluation of telecommunication and computer
systems is essential but a complex issue in general. Quanti-
tative analysis of systems represented by multidimensional
Markov processes models is very difficult and may be in-
tractable if there is no specific solution form. In this study,
we propose an algorithm in order to derive aggregated Markov
processes providing upper and lower bounds on performance
measures. We prove using stochastic comparisons that these
aggregated Markov processes give bounds on performance
measures defined as increasing reward functions on the tran-
sient and stationary distributions. The stochastic compari-
son has been largely applied in performance evaluation how-
ever the state space is generally assumed to be totally or-
dered which induces less accurate bounds for multidimen-
sional Markov processes.

Our proposed algorithm assumes only a preorder on the
state space, and is applied to the analysis of an open tan-
dem queueing network with rejection in order to derive loss
probability bounds. Numerical results are computed from
two parametric aggregation schemes : a fine and a coarse
in order to show the improvement of the accuracy of the
bound with respect to the state space size. We propose an
attractive solution to the performance study : given a perfor-
mance measure threshold, we study if it is guaranteed or not
by studying less complex aggregated bounding processes.

Keywords: Markov processes, Stochastic comparisons,
Tandem queueing networks, loss probability bounds.

1. INTRODUCTION
Network architectures become very complex due to the va-

∗This work is supported by ANR-06-SETI-002 CheckBound

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

riety of technologies (such as ADSL, WIFI, WIMAX, satel-
lite, ...) and the different traffic flows. It is crucial to evalu-
ate the performance of the whole network from the source to
the destination node in order to guarantee to every user an
end to end QoS. These systems are usually represented by
multidimensional processes with very large state spaces. As
a result, quantitative analysis is difficult if there is no spe-
cific solution form (product form solutions, ...). Since exact
performance measures can only be obtained using numerical
methods [11] with small sizes, it is important to develop new
powerful mathematical tools.

In this paper, we propose to use a mathematical method
based on stochastic comparisons of Markov processes. The
key idea of this method is that given a large size Markov
process, we propose to bound it by a smaller new Markov
process which provides bounds on performance measures.

A stochastic ordering is defined as a relation order be-
tween random variables, or stochastic processes [12]. The
most known stochastic order is the strong stochastic or-
dering (¹st). When the state space is multidimensional,
weak stochastic orderings can also be defined using increas-
ing sets families [12], [8]. The stochastic ordering theory
can be also applied between processes represented on differ-
ent state spaces by mapping functions on a common state
space [4]. This formalism is interesting as it can be used in
order to reduce the size of large state space Markov processes
by defining bounding Markov processes on a smaller state
space. These processes provide bounds on performance mea-
sures. We can indeed construct the aggregated process with-
out generating the original one, thus there is no supplemen-
tary complexity and the bounding procedure can be included
in the construction phase.

The advantage of this method is that it can be applied
for different kinds of network architectures. We have al-
ready obtained some interesting results. In [1], we apply
this method on mobile networks in order to obtain dropping
handover bounds. In [3], we use it to compute loss rates
packets in an optical switch, and in [2] for the loss rates
packets in an IP switch. [10] presents in details this method
with different applications.

These different studies lead to think the main steps of
the generation of an aggregated bounding Markov process
on multidimensional state spaces. In the case of totally or-

dered state spaces, the lumpability and the stochastic order-
ing have been combined to derive bounding Markov chains
[5, 13].

The originality and the significance of the present paper
is the definition of an algorithm which generates bound-
ing Markov processes as the aggregated version of a large
size multidimensional Markov process. Bounding Markov
processes provide upper or lower bounds on performance
measures. This algorithm can be applied for general mul-
tidimensional processes, endowed with only a preorder (so
not necessarily a total order, see Definition 1 in the Appen-
dix for more details) on the state space. We have proved
using the stochastic comparison methods that the proposed
aggregated Markov processes provide really bounds. These
proofs are based on the comparisons of the infinitesimal gen-
erators, and the use of the monotonicity property which are
complex notions when the state spaces are multidimensional
and not totally ordered.

As an application of our algorithm, we evaluate the per-
formances of a system represented by a series of network
nodes (switches or routers), where only one flow of pack-
ets transits. This system represents a path in a network,
from a source to a destination node. The performance study
of this system is performed in order to verify that end to
end Quality of Service (QoS) constraints are maintained.
This system can be represented as an open tandem queue-
ing network with rejection. We represent the tandem queues
system by a Markov process which has not a product-form
solution. One way of analyzing such queueing system is to
solve numerically for the stationary probability vector of the
Markov process. Meanwhile, memory complexity limits this
approach to small queueing networks. Note that tandem
queues with blocking have been analyzed in [9] using ap-
proximation algorithms for any number of queues. Because
of the complexity of systems, most of the studies about tan-
dem queues are approximations based on system decompo-
sition.

This paper is organized as follows. In the next section, we
briefly explain how to reduce the state space using stochastic
comparisons. In section 3 we present the algorithm which
generates aggregated bounding Markov processes. We prove
in section 4 that this algorithm provides really upper and
lower bounds for performance measures. In section 5, we
apply the algorithm to a tandem queues system in order to
evaluate the loss probabilities. Analytical results prove that
the methodology is really interesting. Achieved results are
discussed in section 6, and comments about further research
items are given. Finally, we summarize in an appendix the
stochastic ordering theory used in this paper.

2. STATE SPACE REDUCTION
The stochastic comparison is a mathematical tool which

allows to compute bounds on transient distributions and the
stationary distribution of a Markov process. In fact, if the
underlying Markov process does not have a specific solu-
tion form like a product-form or matrix-geometric solutions,
etc. the computation of stationary probability distributions
becomes difficult or intractable for large state spaces. By
means of the stochastic comparison method, it is possible
to overcome this problem by reducing the size of the state
space of the underlying Markov process.

We focus on performance measures computed as an in-
creasing reward function on the stationary distribution. In

state
space E

state
space S

states where
f (x)>0

Figure 1: State space aggregation

fact we can consider transient reward functions with sto-
chastic comparison approach in the same way, but we give
here only the stationary rewards for the sake of brevity. In
some cases (for example loss probabilities) this reward func-
tion depends only on few states. It equals 0 for a lot of
states, and has a positive value for few states. So it is not
necessary to represent all the states, and some of them can
be put together (which are not used in the computation of
the performance measure), in order to reduce the size of the
state space. We apply the stochastic comparison approach
to define a new Markov process which is an aggregation of
the initial one and which provides bounds on the measure
of interest.

Let Xe(t) be a large state space Markov process defined
on a multidimensional and preordered (not necessarily a to-
tally ordered) state space E. We suppose that the process
is irreducible so the stationary distribution Πe exists. We
denote by Re a performance measure computed on Πe as
follows

Re =
X
x∈E

Πe(x)f(x) (1)

where f is an increasing reward function on Πe according to
the preorder defined on E. If there is no specific solution for
Πe, then it is very difficult to obtain it as the state space E
is very large. So we reduce E by gathering some states and
by mapping them into one state.

As we want to compute an upper bound (resp. a lower
bound) for Re, then we define a mapping function Ags (resp.
Agl) which provides the state space Ss, where Ss = Ags(E)
(resp. Sl, where Sl = Agl(E)). We build an upper (resp.
lower) ”aggregated” Markov processes Xs(t) (resp. Xl(t))
on Ss (resp. Sl), with the stationary distribution Πs (resp.
Πl) in order to compute Rs (resp. Rl) :

Rs =
X

x∈Ss

Πs(x)f(x) and Rl =
X

x∈Sl

Πl(x)f(x) (2)

with the following relation :

Rl ≤ Re ≤ Rs

In order to have Rs and Rl close to Re, the aggregation
is performed only on some states x ∈ E such that f(x) = 0.
So states used for the computation of Re are the same as
in Rs and Rl , and we have supposed that f(x) has the
same values in Re than in Rs and Rl. In Figure 1, we have
represented the state space E as a set of grey dots (states

where f(x) = 0) and black dots (states where f(x) > 0).
Some states where f(x) = 0 are aggregated and are mapped
into one state in the state space S (where S represents Ss

or Sl), and states where f(x) > 0 are not aggregated.
Next we will present the algorithm which generates the ag-

gregated bounding Markov processes. We have the following
assumptions. {Xe(t), t ≥ 0} is a Markov process defined on
a large state space E with an infinitesimal generator matrix
Qe. It is irreducible, so the stationary distribution Πe exists,
and Re is the performance measure to compute as given in
equation (1).

We have defined an algorithm which generates aggregated
Markov processes providing upper and lower bound on per-
formance measures. This algorithm can be applied only if
two conditions are verified:

1. First, we need to define on the state space E a preorder
¹ compatible with Re (Re is written as an increasing
reward function f on Πe according to ¹).

2. Secondly, {Xe(t), t ≥ 0} must be ¹st monotone (see
Definition 7).

We present now the algorithm which generates the aggre-
gated Markov processes.

3. THE PROPOSED ALGORITHM
The main steps of the algorithm are the definition of the

aggregated state spaces with the mapping functions, and
the construction of the infinitesimal generator matrices of
aggregated processes. Next, we explain how to aggregate
the state space with a general mapping function Ag, and
after give the particular cases for the upper bound and the
lower bound.

3.1 State space definition
We explain how to derive the mapping function Ag : E →

S. Some states are not aggregated which means that they
are exactly represented, and others are put together in order
to be mapped into one state.

1. If a state xi of E is not aggregated with other states,
then it is mapped into the same state xi. So Ag(xi) =
xi and xi is called a ”simple” state of S.

2. If the states of the set of states {x1, . . . , xi, . . . , xn}
of E where x1 ¹ x2 . . . ¹ xn are put together, then
they are mapped into only one state xi of the set. The
choice of the state xi depends if we define an upper or
a lower bound. The mapping function Ag is such that
Ag(x1) = . . . = Ag(xi) = . . . = Ag(xn) = xi and xi is
called a ”macro” state of S.

Note that the mapping function must be defined as an in-
creasing function (see Definition 2) in order to have the com-
parison of the performance measures written as increasing
reward functions on stationary distributions. The definition
of an aggregated state space S can generate the problem of
the irreducibility of the aggregated Markov chain although
the original Markov chain is irreducible.

3.2 Transitions and irreducibility conditions
First, we explain how the transitions are defined on the

aggregated state space without giving the transition rates
(which are defined in the next section for the bounding

aggregated Markov processes) in order to derive the irre-
ducibility conditions.

When states of E are put together in order to be mapped
into one state, some links between states are removed, so the
aggregated Markov chains may be not irreducible. When the
set of states {x1, . . . , xi, . . . , xn} are mapped into the state
xi, then states of the set of states {x1, . . . , xn} − {xi} do
not exist in the state space S, and they are replaced by
xi. All the transitions of the initial Markov chain to states
{x1, . . . , xn}−{xi} are removed and replaced by transitions
to xi in the aggregated Markov chain. And all the transitions
from states {x1, . . . , xn}−{xi} are removed and replaced by
transitions from xi.

Let see first the impact of the suppression of only one
state, for example x1. Let xp ∈ E a state which is a prede-
cessor in a transition of x1, and xs a successor of x1. As x1

belongs to the set of states which are removed, then xs could
be not reachable from xp, and so the aggregated Markov
chain may be not irreducible. The condition to have an ir-
reducible aggregated Markov chain is that there is an other
path connecting xp to xs, and so xs will be reachable from
xp. This condition must be verified for any predecessor xp

and successor xs of x1. It must be generalized to all pre-
decessors xp and successors xs of {x1 . . . xn} − {xi}. If this
condition is not verified for at least one state, then we come
back to step 2. of the state space definition in order to define
another set of states to aggregate. For the moment, in the
numerical examples presented in this paper (see Section 5.)
the irreducibility conditions have not been verified at this
step, but only after the generation of the aggregated state
space, by the Markov chain resolution algorithm.

3.3 Upper and lower bounds
State space reduction can generate a lower or an upper

bound according to the choice of the state on which the set
of states are mapped. For the set {x1, . . . , xn} of E where
x1 ¹ x2 . . . ¹ xn, we have two cases :

1. if we define an upper bound, then it is mapped into
the ”upper” state xn. We denote by Ags the mapping
function which defines the upper bound. We have :
Ags(x1) = . . . = Ags(xi) = . . . = Ags(xn) = xn and
xn is called a ”macro” state of Ss.

2. if we define a lower bound, then it is mapped into the
”lower” state x1. We denote by Agl the mapping :
Agl(x1) = . . . = Agl(xi) = . . . = Agl(xn) = x1 and x1

is called a ”macro” state of Sl.

As we have defined the increasing mapping function Ags

(resp. Agl), then we obtained the state space Ss, where
Ss = Ags(E) (resp. Sl where Sl = Agl(E)). We suppose
that the irreducibility conditions described above are satis-
fied on the state space Ss (resp. Sl). Let us now explain
how the transition rates of aggregated Markov processes are
computed.

We introduce MAgs , the matrix representation of the map-
ping function Ags, described in Theorem 4 of the Appendix.
The infinitesimal generator Qs is defined from Qe and MAgs

as follows:

∀x ∈ Ss, Qs[x, ∗] = Qe[x, ∗]MAgs

where Qe[x, ∗] represents the row in matrix Qe correspond-
ing to state x. Similarly, the infinitesimal generator Ql is

computed from Qe and MAgl as follows:

∀x ∈ Sl, Ql[x, ∗] = Qe[x, ∗]MAgl

The main advantage of this algorithm is to generate au-
tomatically an aggregated Markov process providing perfor-
mance measure bounds. Obviously, the bounds are more
accurate if Qs and Ql are defined as close as possible to Qe,
in order to obtain tight bounds values. However, the defi-
nition of the mapping functions Ags and Agl, which means
the choice of the states to aggregate is not simple. It is
performed according to different criteria:

1. States where f is not null in Re expression (see equa-
tion 1) are not aggregated, and correspond to simple
states. Oppositely to states where f is null, some
states are aggregated, corresponding to macro-states.

2. Aggregation is performed so as to obtain an irreducible
aggregated Markov process.

3. The choice of states to aggregate is fixed after try-
ing different aggregation schemes in order to see their
impact on the quality of the bounds, as it will be pre-
sented in section 5.

Next, we prove using the stochastic comparisons of Markov
processes that the proposed algorithm really provides aggre-
gated bounds (upper or lower).

4. PROOFS
Using the stochastic ordering theory presented in the Ap-

pendix, we prove that aggregated Markov processes gener-
ated by the algorithm represent bounds for the exact Markov
process {Xe(t), t ≥ 0}. So we have to verify that :

{Ags(Xe(t)), t ≥ 0} ¹st {Xs(t), t ≥ 0} (3)

and

{Xl(t), t ≥ 0} ¹st {Agl(Xe(t)), t ≥ 0} (4)

We give only the proof for Equation (3), since the sec-
ond one can be similarly proved. We use Theorem 4 of the
Appendix, where g represents Ags, h is the identity func-
tion, {X(t), t ≥ 0} and {Y (t), t ≥ 0} represent respectively
Xe(t) and Xs(t). Let us remark that the theorems and
definitions that are applied in this section are given in the
Appendix.

In order to apply Theorem 4, we have to prove the condi-
tion 2) which means the monotonicity of one of the processes
by mapping functions.

4.1 The monotonicity condition
We need to define the following proposition for a Markov

process {X(t), t ≥ 0} defined on E.

Proposition 1. If the following conditions 1 and 2 are
satisfied:

1. {X(t), t ≥ 0} is ¹st-monotone

2. f : E → S is an increasing function

then {f(X(t)), t ≥} is also ¹st-monotone

Proof. We use Theorem 6, so we have to prove that

there exist two processes { bX(t), t ≥ 0}, and {cX ′(t), t ≥ 0}
governed by the same infinitesimal generator matrix than
{X(t), t ≥ 0}, representing different realizations of {X(t), t ≥
0} such that :

f(bX(0)) ¹ f(cX ′(0)) ⇒ f(bX(t)) ¹ f(cX ′(t)), ∀t > 0 (5)

As {X(t), t ≥ 0} is ¹st-monotone (from condition 1 of
proposition 1), then according to Theorem 5, we can define

two processes { bX(t), t ≥ 0}, and {cX ′(t), t ≥ 0} governed by
the same infinitesimal generator matrix than {X(t), t ≥ 0},
representing different realizations of {X(t), t ≥ 0} such that
if:

bX(0) ¹ cX ′(0)

then we have:

bX(t) ¹ cX ′(t), ∀t > 0

Since f is an increasing function as given in Definition 2,
we can deduce from the precedent inequalities that equation
5 is verified.

Thus it follows from Theorem 6, that {f(X(t)), t ≥ 0} is
also ¹st-monotone, and Proposition 1 is proved.

We can apply Proposition 1 to our study. We have sup-
posed as conditions of the algorithm that : {Xe(t), t ≥
0} is ¹st-monotone, and the mapping function Ags is ¹-
increasing function. Thus with Proposition 1, we deduce
that {Ags(Xe(t)), t ≥ 0} is also ¹st-monotone, and condi-
tion 2) of Theorem 4 is verified.

4.2 Infinitesimal generator comparisons
We will prove now that condition 3) of Theorem 4 is also

satisfied :

∀x ∈ E, y ∈ Ss | Ags(x) = y, QeMAgs [x, ∗] ¹st Qs[y, ∗]
As presented in the algorithm, we have two cases for a

state y ∈ Ss:

• if y is a simple state, then y is the mapping of only the
same state y of E such that y = Ags(y), and in this
case, we have according to the definition of Qs, that:

Qs[y, ∗] = Qe[y, ∗]MAgs

so for a simple state y we have that:

Qe[y, ∗]MAgs ¹st Qs[y, ∗]

• if y is a macro state, then ∃x1, . . . xn ∈ E such that
Ags(x1) = . . . = Ags(xn) = y. As y represents the
upper state, then if xn º . . . ,º x1, we have that y =
xn. In this case, Qs is defined as:

Qs[y, ∗] = Qe[xn, ∗]MAgs

Since {Ags(Xe(t), t ≥ 0} is ¹st-monotone, then using
Theorem 7 (where f represents Ags), we have:

Qe[x1, ∗]MAgs ¹st Qe[x2, ∗]MAgs

Qe[x2, ∗]MAgs ¹st Qe[x3, ∗]MAgs

. . .

Qe[xn−1, ∗]MAgs ¹st Qe[xn, ∗]MAgs

and as

Qs[y, ∗] = Qe[xn, ∗]MAgs

then:

∀1 ≤ i ≤ n, Qe[xi, ∗]MAgs ¹st Qs[y, ∗]
so for a macro state y ∈ S, we have:

Qe[x, ∗]MAgs ¹st Qs[y, ∗], ∀x ∈ E | Ags(x) = y

So the inequality is established for all states y ∈ S, then
from Theorem 4, if the condition 1) is satisfied, we deduce
that:

{Ags(Xe(t)), t ≥ 0} ¹st {Xs(t), t ≥ 0}
The stochastic comparison of stochastic processes gener-

ates the stochastic comparison of transient and stationary
(if it exists) probability distributions. We consider here only
the stationary case. Thus we can deduce the stochastic com-
parison of the stationary probability distributions:

ΠeMAgs ¹st Πs

For all performance measures written as increasing reward
functions f on the stationary distributions Πe or Πs (if we
suppose that the aggregation is done on states x ∈ E such
that f(x) = 0), we have see(Def. 3 of Appendix)

Re ≤ Rs

The proof is similar for the lower bound, so we can also
verify that :

∀x ∈ Sl y ∈ E | x = Agl(y) Ql[x, ∗] ¹st Qe[y, ∗]MAgl

We obtain the stochastic comparison of the stationary dis-
tributions :

Πl ¹st ΠeMAgl

and also :

Rl ≤ Re

5. EXAMPLE AND NUMERICAL RESULTS
We propose to apply the proposed algorithm to an open

tandem queueing network.

5.1 Open tandem queueing network
The system understudy represents a path in a network de-

fined as a series of network nodes (switches, routers) where
transits only one flow of packets. We suppose that the left-
most node has the index 1, and indexes increase in the path
until node n. This system can be represented by n finite
capacity queues in tandem (see Figure 2).

1 2 n

Figure 2: Tandem queueing network

External arrivals occur only in queue 1 , after the flow
transits in queues 2, . . . , n if there is enough place in each

queue. We suppose that arrivals are Poisson in queue 1 with
rate λ1. Each queue i has an Exponential service time with
rate µi, and a finite capacity Bi. After a service in queue
i, the customer transits to the next queue i + 1 if there is
enough place, otherwise the customer is lost.

This system is represented by a Markov process {Xe(t), t ≥
0} on E = {0, . . . , B1}× . . .×{0, . . . , Bi}× . . .×{0, . . . , Bn}.
Each state x ∈ E is represented by a vector:

x = (x1, . . . , xi, . . . , xn)

where xi is the number of customers waiting in queue
i. We suppose that the stationary distribution denoted Πe

exists. The goal of this performance study is to compute the
loss probabilities Re

i of any queue i written as follows:

Re
i =

X

x∈E|xi=Bi

Πe(x) (6)

The numerical resolution of {Xe(t), t ≥ 0} in order to
compute Πe is very difficult or intractable : there is no
product-form, and the number of states increases exponen-
tially with the number of components. We propose to ap-
ply the algorithm generating aggregated bounding Markov
processes in order to derive loss probability bounds. Two
conditions must be satisfied to apply the algorithm. These
conditions are given just before the section 3 about the pre-
sentation of the algorithm.

5.2 Algorithm conditions
The first one is the definition on the state space E of an

order compatible with Re
i . We propose the component-wise

partial order:

∀x, y ∈ E x ¹ y ⇔ x1 ≤ y1, . . . , xn ≤ yn

We choose this preorder because it allows to establish com-
parisons on each queue, and it is compatible with the loss
probabilities Re

i which can be written as an increasing re-
ward function f according to the order ¹ defined on E.
From expression of Re

i (equation (6)), for a state x ∈ E,
the reward function f is: f(x) = 1 if xi = Bi, and = 0
otherwise, thus f is an increasing reward function according
to the order ¹ defined on E. Note that others performance
measures as mean queues lengths, or delays are also written
as increasing reward function.

The second condition is the monotonicity so we have to
prove that {Xe(t), t ≥ 0} is ¹st-monotone.

Proposition 2. The considered tandem queue with re-
jection is ¹st-monotone.

Proof. We use Theorem 5 to prove that there exist two

processes { bX(t), t ≥ 0} and {cX ′(t), t ≥ 0} with the same
infinitesimal generator matrix than {Xe(t), t ≥ 0} repre-
senting two different realizations with different initial con-
ditions, and we prove that:

bX(0) ¹ cX ′(0) ⇒ bX(t) ¹ cX ′(t), t > 0

Remember that {Xe(t), t ≥ 0} is a multidimensional process
on E, it is represented by the vector:

Xe(t) = (Xe
1(t), . . . , Xe

i (t), . . . , Xe
n(t))

also for { bX(t), t ≥ 0} and {cX ′(t), t ≥ 0} which are repre-
sented by n components.

Let suppose that bX(t) ¹ cX ′(t), and show that bX(t+∆t) ¹
cX ′(t + ∆t), by considering the evolution in all states even
boundary states. We consider all events occurring during
the time interval ∆t:
• an arrival in queue 1: from bX1(t), we obtain cX1(t+∆t) =

min{B1, cX1(t)+1}, and from cX ′
1(t), we obtain cX ′

1(t+∆t) =

min{B1, cX ′
1(t)+1}, Since others components do not change,

and bX(t) ¹ cX ′(t) then bX(t + ∆t) ¹ cX ′(t + ∆t).
• a termination of a service in queue i: obviously this occurs

if cXi(t) > 0 and the customer is accepted in queue i +

1 if X̂i+1(t) < Bi+1, otherwise it is lost. From bX(t), we

obtain cXi(t+∆t) = max{0,cXi(t)− 1}, and X̂i+1(t+∆t) =

min{Bi+1, X̂i+1(t)+1}. From cX ′(t), similarly, cX ′
i(t+∆t) =

max{0,cX ′
i(t)−1}, and X̂ ′

i+1(t+∆t) = min{Bi+1, X̂ ′
i+1(t)+

1}. Since others components do not change, and bX(t) ¹
cX ′(t) then bX(t + ∆t) ¹ cX ′(t + ∆t).

As we have verified the two conditions of the algorithm,
then we can apply it to compute performance measures as
mean queue lengths, higher moments on queue lengths, de-
lays, or loss probability bounds. We focus in this paper on
the loss probabilities.

5.3 Bounding the loss probabilities
We use the proposed algorithm in order to derive two ag-

gregated Markov processes:

1. The upper bound {Xs(t), t ≥ 0} on the state space
Ss ⊂ E, with infinitesimal generator Qs. We denote
by Ags the mapping function from E to Ss.

2. The lower bound {Xl(t), t ≥ 0} on the state space
Sl ⊂ E, with infinitesimal generator Ql. We denote
by Agl the mapping function from E to Sl.

As aggregated Markov processes are defined to be irre-
ducible, then we can compute the stationary probability dis-
tributions Πs and Πl, and we obtain the following relation
between the loss probabilities :

∀1 ≤ i ≤ n, Rl
i ≤ Re

i ≤ Rs
i

where

Rl
i =

X

x∈Sl|xi=Bi

Πl(x) and Rs
i =

X

x∈Ss|xi=Bi

Πs(x)

We explain now how we define the mapping functions Ags

and Agl of the upper bound and the lower bound. As it
has been already stated, states where we have loss of cus-
tomers are explicitly represented, but the other states can be
aggregated according to different schemes. We choose two
different aggregation schemes of the state space. Each one
provides mapping functions Ags and Agl, in order to com-
pute upper and lower bounds on the considered performance
measure. In this analysis, we are interested in the loss prob-
abilities of the last queue, since in terms of state space size
it is the most costly one. It is possible to derive loss proba-
bilities for other queues as we consider the component-wise
ordering on the state space.
The first aggregation scheme called Aggregation1 aggregates
by considering more precisely values of the states. We can
say that Aggregation1 is a ”fine aggregation” and Aggrega-
tion2 a ”coarse aggregation”.

The first one is based on a parameter ∆ (delta) which indi-
cates the absolute difference between the number of packets
in queues i and j. The states for which the difference be-
tween the number of packets in queues i and j is greater
than ∆ are aggregated to upper states for the upper bounds
and to lower states for the lower bounds. The aggregation
scheme for upper states is given in the procedure called Ag-
gregation1 and it is presented below in this section. It is
defined for three tandem queues and where we denote by
F [i] the number of packets in queue i, 1 ≤ i ≤ 3. As we
can see, several calls to the procedure Agg1 are made in
order to test the difference between the components. For
lower states, it is the same principle except that, if the dif-
ference between the number of packets in queues i and j
is greater than ∆, then the number of packets in queue i
becomes equal to the number of packets in queue j + ∆.
Obviously, the accuracy will be better for larger values of ∆
and we have the exact process if ∆ = B. This aggregation
scheme is interesting since it lets to find a tradeoff between
the accuracy of bounds and the numerical complexity.
In this considered aggregation scheme, we suppose that all
the buffers have the same size B. However, our aggregated
scheme can be more general, in fact, we can have a model
with different capacities at each buffer. We take parameters
∆i as the difference of packets in queue i and i + 1 and we
have the exact process for ∆i = max(Bi, Bi+1).

Procedure Aggregation1 (F[1], F[2],F[3])

/* F[i]: number of packets in queue i */

Begin

if ((F[1] <=F[2]) AND (F[2] <=F[3]))

/*F1<=F2<=F3*/

then Agg1(F[1], F[2], F[3])

if ((F[1] <=F[3]) AND (F[3] <=F[2]))

/*F1<=F3<=F2*/

then Agg1(F[1], F[3], F[2])

if ((F[2] <=F[1]) AND (F[1] <=F[3]))

/*F2<=F1<=F3*/

then Agg1(F[2], F[1], F[3])

if ((F[2] <=F[3]) AND (F[3] <=F[1]))

/*F2<=F3<=F1*/

then Agg1(F[2], F[3], F[1])

if ((F[3] <=F[2]) AND (F[2] <=F[1]))

/*F3<=F2<=F1*/

then Agg1(F[3], F[2], F[1])

if ((F[3] <=F[1]) AND (F[1] <=F[2]))

/*F3<=F1<=F2*/

then Agg1(F[3], F[1], F[2])

End

End Aggregation1

Procedure Agg1 (X1, X2, X3)

/* X1<=X2<=X3*/

Begin

if ((X3-X2) >delta)

then X2=X3-delta;

if ((X2-X1)>delta)

then X1=X2-delta;

End Agg1

Aggregation1 procedures

The second scheme is based on two parameters max and ∆
(delta), where for any state, the max is the maximum of
the number of packets in all queues. The states for which
the difference between the number of packets in queue i and
max is greater than ∆ are aggregated to upper states for the
upper bounds. The aggregation scheme for the upper bound
is given in the following procedure called Aggregation2.

Procedure Aggregation2 (In Out F[O], F[1],F[2])

Begin

max=Max(F[0], F[1], F[2]);

if (F[0]< max-delta)

F[0]=max-delta;

if (F[1]< max-delta)

F[1]=max-delta;

if (F[2]< max-delta)

F[2]=max-delta;

End Aggregation2

Aggregation2 procedure

For lower states, it is the same principle except that, we do
not consider the maximum but the minimum of the packet
number of all queues. To illustrate these aggregation schemes,
we give an example: if we have the state (5, 10, 13) which
means that in queue 1, we have 5 packets, in queue 2, we
have 10 packets and 13 packets in queue 3 and ∆ = 2. With
the Aggregation1, the upper state is (9, 11, 13) and with
Aggregation2, the upper state is upper than the precedent:
it is (11, 11, 13), which shows that the first aggregation is
finer than the second one.

We give numerical results for the model with four buffers
in tandem. We suppose that the service rate µi in each queue
is 100Mb, and the packet size is 512 bytes. We plot the
Packet Loss Probabilities (PLP) of the last queue for input
bit rate λ varying from 50 Mb/s to 90 Mb/s. We construct
directly by means of evolution equations the discrete time
bounding Markov chains which are the uniformized versions
for the proposed aggregation schemes.
First we consider a system with capacities Bi = B = 20 for
1 ≤ i ≤ 4 in order to compare the exact values with the
bounds. The size of the exact Markov process is 194481 and
we take different values of ∆ = {10, 15}. Let us give the
sizes of the bounding chains for the considered aggregation
schemes. For Aggregation 1, with ∆ = 10, the size of the
aggregated Markov process is 158071 while with ∆ = 15, the
size is 191751. For Aggregation2 , with ∆ = 15, the size of
the aggregated Markov process is 140091 while with ∆ = 10,
the size is 61051.
In Figures 3, 4, we present upper bounds on loss prob-
abilities obtained by Aggregation 1 and Aggregation 2 with
∆ = 10 and ∆ = 15 under different arrival throughputs.
Clearly, the loss probabilities obtained with ∆ = 10 pro-
vide upper bounds on the loss probabilities obtained with
∆ = 15 for both aggregation schemes. Thus the bounds ob-
tained with ∆ = 15 are more accurate. Moreover we can see
that for Aggregation 2, the difference between the bounds
obtained with ∆ = 10 and ∆ = 15 decreases when the ar-
rival throughput increases. Aggregation 1 provides tighter
bounds than Aggregation 2 as expected, in the expense of
larger bounding chains.
In Figure 5, we give the lower and upper bounds of loss
probabilities by the aggregated model with ∆ = 15, and

the exact values to show the quality of the bounds. Clearly,
Aggregation1 scheme provides interesting results.

0

0.01

0.02

0.03

0.04

0.05

50 55 60 65 70 75 80 85 90

L
o
s
s

P
r
o
b
a
b
i
l
i
t
i
e
s

Arrival Throughput

Upper Bounds Delta=10
Upper Bounds Delta=15

Figure 3: Upper bounds for Aggregation1

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 50 55 60 65 70 75 80 85 90

L
o
s
s

P
r
o
b
a
b
i
l
i
t
i
e
s

Arrival throughput

Upper Bounds Delta=10
Upper Bounds Delta=15

Figure 4: Upper bounds for Aggregation2

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

50 55 60 65 70 75 80 85 90

L
o
s
s

P
r
o
b
a
b
i
l
i
t
i
e
s

Arrival Throughput

Upper Bounds Delta=15
Exact

Lower Bounds Delta=15

Figure 5: Upper and Lower bounds and Exact values
for Aggregation1

In Table 1, we present the Relative Errors (ER) de-
fined as the ratio of the absolute error to the exact value (

|exact−UpperBound|/exact) computed both with Aggre-
gation1 and Aggregation2 for the packet loss probabilities.
We can see that for both schemes the accuracy increases
with the arrival throughput and this is more important for
Aggregation 2. Aggregation 1 provides generally very tight
bounds.

B ∆ λ RE Aggregation1 RE Aggregation2
20 15 50 13.48 274.36
20 15 60 5.31 151.38
20 15 70 2.30 79.18
20 15 80 1.03 24.81
20 15 90 0.49 7.06

Table 1: Relative Errors (RE)

In the following, we present only the upper bounds for the
model with four buffers in tandem. We consider both ag-
gregations with buffer sizes equal to 40 and two values of ∆,
∆ = 15 and ∆ = 20.
In Table 2 , we give upper packet loss probabilities for
buffer sizes equal to 40 and ∆ = 20 where the size of the
exact Markov chain is 2825761. The size of aggregated chain
with Aggregation1 is equal to 2296141 and with Aggrega-
tion2 it is equal to 884101.

B ∆ λ PLP Aggregation1 PLP Aggregation2

40 20 50 33.92 10−8 11.54 10−3

40 20 60 12.87 10−6 24.56 10−3

40 20 70 28.24 10−5 42.91 10−3

40 20 80 38.62 10−4 44.24 10−3

40 20 90 20.09 10−3 44.58 10−3

Table 2: Packet Loss Probabilities (PLP)

In Table 3, we give upper packet loss probabilities for buffer
sizes equal to 40 and ∆ = 15 where the size of the exact
Markov chain is 2825761. The size of aggregated chain with
Aggregation1 is equal to 1587311 and with Aggregation2 it
is equal to 438311.

B ∆ λ PLP Aggregation1 PLP Aggregation2

40 15 50 55.92 10−5 52.81 10−3

40 15 60 63.44 10−4 58.19 10−3

40 15 70 32.04 10−3 58.25 10−3

40 15 80 43.59 10−3 58.43 10−3

40 15 90 62.70 10−3 58.86 10−3

Table 3: Packet Loss Probabilities (PLP)

The choice of the aggregation scheme and the value of ∆ lets
to find a tradeoff between the accuracy of the bounds and
the complexity of numerical resolution. We can start with
the less expensive scheme and try to see if the constraint on
the loss probability is satisfied or not : if the upper bounding
value is less than the imposed constraint, then the system
would satisfy this constraint. Otherwise we can increase the
value of ∆ or apply Aggregation 1 to derive tighter bounds.
Thus, this approach seems promising to study if the con-
straints on QoS are guaranteed or not for large Markov-
ian models. We have only considered loss probabilities, but

other performance measures defined as increasing rewards
on queue length distributions can be considered. As men-
tioned before we obtain transient distribution comparisons,
thus transient performance measures may be studied by this
approach. Note that we have proposed in this paper partic-
ular aggregation schemes, others must be tried in order to
see the impact on the quality of the bounds.

6. CONCLUSION
We apply stochastic comparisons methods in order to re-

duce the size of large state Markov processes. We define
an algorithm which generates aggregated Markov processes
in order to compute upper and lower performance measures
bounds. Our algorithm has been applied to the analysis of
an open tandem queueing network with rejection. Loss prob-
ability bounds have been computed to illustrate the feasibil-
ity and the efficiency of the proposed methodology. Differ-
ent aggregation schemes can be performed by this approach
since the constraints on the aggregated states are not very
restrictive. Thus we can have a tradeoff between the ac-
curacy of bounds and the computation complexity. As a
next work, we are applying the proposed algorithm to the
computation of others performance measures as end to end
mean delays. We are also applying it to other communica-
tion systems in order to see if it is sufficiently general for the
quantitative analysis of multidimensional Markov processes.

APPENDIX
We present in this appendix some theorems and definitions
about stochastic orderings used in proofs presented in this
paper.

Two formalisms can be used for the definitions: increasing
functions [12], [4] or increasing sets [8] .

The ¹st ordering is the most known stochastic ordering,
it is equivalent to the sample path ordering (see Strassen’s
theorem [12]). Stochastic orderings are defined only on dis-
crete and countable state space E, where a binary relation
¹ is defined at least as a preorder [12]:

Definition 1. ¹ is called a preorder if and only if it is
a reflexive, and transitive relation.

If ¹ has also the anti-symmetric property, then it is called
a partial order, and it is a total order if it verifies also

∀x, y ∈ E, x ¹ y or y ¹ x

As an example, on the state space E = Rn, component-
wise order is a partial order, and on E = R, ≤ is a total
order.

In the sequel, ¹ denotes at least a preorder on E. We
consider two random variables X and Y defined respectively
on E, and their probability measures given respectively by
the probability vectors p and q where p[i] = Prob(X =
i), ∀i ∈ E (resp. q[i] = Prob(Y = i), ∀i ∈ E). The ¹st

ordering can be defined using real increasing functions. Let
us give first the definition of an increasing function taking
values in any state space S.

Definition 2. We say that f : E 7→ S is ¹-increasing if
and only if: ∀x, y ∈ E, x ¹ y ⇒ f(x) ¹ f(y)

The definition of the ¹st is [12]:

Definition 3. X ¹st Y ⇔ E[(f(X))] ¹ E[(f(Y))] ∀f :
E → R, ¹-increasing whenever the expectations exist.

Different methods are associated to the ¹st ordering: the
coupling [12], [6], or the increasing set theory [8].

First, we present the coupling theorem (from Strassen’s
theorem) [12], [6]:

Theorem 1. We say that X ¹st Y , if and only if there

exists a random variable bX (resp. bY) with the same proba-
bility distribution as X (resp. Y), such that

bX ¹ bY
almost surely.

Increasing set method is a more general formalism and
and lets to define different stochastic orderings in the case of
multidimensional and partially ordered state spaces. Indeed
the ¹st ordering can be defined, but also other orderings
called weak orderings: ¹wk, ¹wk∗ [8]. We focus in this
paper only on the ¹st ordering. The key idea is to define a
stochastic ordering from a family of increasing sets [8]. Let
Γ ⊆ E, we denote by Γ ↑= {y ∈ E | y º x, x ∈ Γ}.

Definition 4. Γ is called an increasing set if and only if
Γ = Γ ↑

Let Φst(E) the family of increasing sets which induces the
¹st ordering:

Φst(E) = {all increasing sets on E}
The ¹st ordering theorem using the increasing set theory

[8] states as follows:

Theorem 2.

X ¹st Y ⇔ p ¹st q ⇔ p(Γ) ≤ q(Γ), ∀ΓεΦst(E)

where

p(Γ) =
X
x∈Γ

p(x)

We present now the comparison of stochastic processes. Let
{X(t), t ≥ 0} and {Y (t), t ≥ 0} be stochastic processes de-
fined on E.

Definition 5. We say that

{X(t), t ≥ 0} ¹st {Y (t), t ≥ 0}

if X(t) ¹st Y (t), ∀t ≥ 0

Methods as increasing sets and coupling can also be used
for Markov processes. Here we give the theorem of the cou-
pling of the processes [6], [12]. Two processes are defined in
this theorem:

• Let
n
bX(t), t ≥ 0

o
have the same infinitesimal genera-

tor as {X(t), t ≥ 0}

• and
n
bY (t), t ≥ 0

o
) have the same infinitesimal gener-

ator as {Y (t), t ≥ 0}

Theorem 3. We say that

{X(t), t ≥ 0} ¹st {Y (t), t ≥ 0}
if and only if there exists the coupling {(bX(t), bY (t)), t ≥ 0}
such that:

bX(t) ¹ bY (t), ∀t ≥ 0

When the processes are defined on different states spaces
we can compare them on a common state space using map-
ping functions. Let :

• X(t) (resp. Y (t)) defined on E (resp. F),

• g (resp. h) be a many to one mapping from E (resp.
F) to S

The stochastic comparisons of these processes by mapping
functions is [4]:

Definition 6. We say that

{g(X(t)), t ≥ 0} ¹st {h(Y (t)), t ≥ 0}

if g(X(t)) ¹st h(Y (t)),∀t ≥ 0

For processes defined on different states spaces, Theorem
3 can be reformulated [4]. We present in the sequel only the
increasing set theory using infinitesimal generators matri-
ces because it is the formalism developed in the algorithms
presented in this paper. Some times, the comparison of the
processes uses the monotonicity property in order to estab-
lish the comparison of the infinitesimal generators.

The monotonicity of a stochastic process is defined as an
increasing in t [6] :

Definition 7. We say that {X(t), t ≥ 0} is ¹st -monotone
if X(s) ¹st X(t),∀s, t ∈ R+, s ≤ t

If we suppose that {X(t), t ≥ 0} (resp. {Y (t), t ≥ 0})
is a Markov process with infinitesimal generator matrix Q1

(resp. Q2), then we present the theorem of the stochastic
comparison of Markov processes defined on different state
spaces using increasing set formalism [8], [12].

The mapping functions are represented by a matrix for-
malism as follows. Let Mg (resp. Mh) denote the matrix
representing the mapping g (resp. h).

Mg[i, j]
i∈E and j∈S

=

�
1 if g(i) = j
0 else

and Mh is similar, using h instead of g, and F instead of E.

Theorem 4. If the following conditions 1, 2 and 3 are
satisfied:

1. g(X(0)) ¹st h(Y (0))

2. {g(X(t)), t ≥ 0} or {h(Y (t)), t ≥ 0} is ¹st-monotone

3. Q1[x, ∗]Mg ¹st Q2[y, ∗]Mh, ∀x ∈ E, y ∈ F, g(x) =
h(y)

then we have:

{g(X(t)), t ≥ 0} ¹st {h(Y (t)), t ≥ 0}

where Q1[x, ∗] is the row in the matrix Q1 corresponding to
the state x. And,

Q1[x, ∗]Mg ¹st Q2[y, ∗]Mh

is equivalent to: ∀x ∈ E, y ∈ F | g(x) = h(y)
X

g(z)∈Γ

Q1(x, z) ≤
X

h(z)∈Γ

Q2(y, z), ∀Γ ∈ Φst(S)

Note that the stochastic comparison of Markov processes by
mapping functions can be interesting for reducing the state
space size of Markov processes, in order to define bound-
ing aggregated Markov processes as we will see in this pa-
per. The monotonicity of the Markov process is used in
condition (2) of this theorem. If we suppose that X(t) is
a Markov process, then to establish the monotonicity of
a process {X(t), t ≥ 0}, we can use the coupling of the
processes [6], [7]. As presented in [6], [7], it remains to de-
fine two processes:

{ bX(t), t ≥ 0} and {cX ′(t), t ≥ 0}
governed by the same infinitesimal generator matrix as {X(t), t ≥
0}, and representing different realizations and initial condi-
tions. The theorem of the monotonicity using the coupling
states as follows:

Theorem 5. We say that {X(t), t ≥ 0} is ¹st -monotone

if and only if there exists the coupling {(bX(t),cX ′(t)), t ≥ 0}
such that:

bX(0) ¹ cX ′(0) ⇒ bX(t) ¹ cX ′(t), ∀t > 0

This theorem may also hold when infinitesimal generators
are different, for the comparison of Markov processes by
coupling [7], [6], [12] as presented in Theorem 3. When
we study the mapping of a process, we can also define the
monotonicity, and it is formulated as follows [12], [6]:

Definition 8. We say that {f(X(t)), t ≥ 0} is ¹st -
monotone if f(X(s)) ¹st f(X(t)),∀s, t ∈ R+, s ≤ t

The coupling also holds for the monotonicity of the mapping
of a Markov process [12], [6]. As presented in [6], [7], it
remains to define two processes:

{ bX(t), t ≥ 0} and {cX ′(t), t ≥ 0}
governed by the same infinitesimal generator matrix than
{X(t), t ≥ 0}, representing different realizations of {X(t), t ≥
0} with different initial conditions. And the coupling states
as follows for the monotonicity of the mapping of a Markov
process:

Theorem 6. We say that {f(X(t)), t ≥ 0} is ¹st -monotone

if and only if there exists the coupling {(bX(t),cX ′(t)), t ≥ 0}
such that:

f(bX(0)) ¹ f(cX ′(0)) ⇒ f(bX(t)) ¹ f(cX ′(t)), ∀t > 0

The increasing set formalism can be used to formulate the
monotonicity of the mapping of a Markov process [12], [6].

Theorem 7. We say that {f(X(t)), t ≥ 0} is ¹st -monotone
if and only if:

Q1[x, ∗]Mf ¹st Q1[y, ∗]Mf , ∀x, y ∈ E | f(x) ¹ f(y)

A. REFERENCES
[1] H.Castel, L. Mokdad, ”Performance measure bounds in

wireless networks by state space reduction”, 13th
Annual Meeting of the IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2005),
27-29 september, Atlanta Georgia.

[2] H.Castel, L. Mokdad, N .Pekergin, ”Loss rates bounds
for IP switches in MPLS networks”, ACS/IEEE
International Conference on Computer Systems and
Applications AICCSA-06, 8-11 March 2006,
Dubai/Sharjah, UAE.

[3] H. Castel, J.M. Fourneau, N. Pekergin, ”Stochastic
bounds on partial ordering: application to memory
overflows due to bursty arrivals”, 20th International
Symposium on Computer and Information Sciences
(ISCIS 2005), October 26-28 2005, Istanbul, Turkey,
published in LNCS by Springer-Verlag.

[4] M.Doisy, ”Comparaison de processus Markoviens”,
PHD thesis, Univ. de Pau et des pays de l’Adour 92.

[5] J. M. Fourneau, N. Pekergin, “An algorithmic approach
to stochastic bounds”, in Performance Evaluation of
Complex Systems: Techniques and Tools, LNCS 2459,
2002.

[6] T.Lindvall, ”Lectures on the coupling method”, Wiley
series in Probability and Mathematical Statistics, 1992.

[7] T. Lindvall, ”Stochastic monotonicities in Jackson
queueing networks”, Prob. in the Engineering and
Informational Sciences 11, 1997, 1-9.

[8] W. Massey, ”Stochastic orderings for Markov processes
on partially ordered spaces” Mathematics of Operations
Research, Vol.12, No. 2, May 1987.

[9] H.G. Perros, ”Queueing networks with blocking, exact
and approximate solutions”, Oxford University Press,
1994.

[10] N. Pekergin, ”Stochastic performance bounds by state
space reduction”, Performance evaluation, 36-37, (1-17),
1999.

[11] W.J. Stewart,”An Introduction to the Numerical
Solution of Markov Chains”, Princeton, 1993.

[12] D. Stoyan, ”Comparison methods for queues and other
stochastic models”, J. Wiley and Sons, 1976.

[13] L. Truffet, ”Reduction technique for discrete time
Markov chains on totally ordered space using stochastic
comparisons”, J. App. Prob. 37 (3), 2000.

[14] L. Zheng, L. Zhang, ”Modeling and performance
analysis for IP traffic with multi-class QoS in VPN”,
Milcom2000, 21st Century Military Communications
Conference Proceedings, Vol 1, 22-25 Oct. Page
330-334,???

