
Model Checking by Stochastic Comparison

Nihal Pekergin
LACL, University of Paris-Est (P12)

French Research Project ANR-06-SETIN-002 CheckBound
www.lamsade.dauphine.fr/checkbound

Univ.Paris1, Univ. Paris-Dauphine, Univ. Versailles, INT-Evry, INRIA
Rhône Alpes (Mescal)

[1/29]

Outline

• Brief introduction for PCTL Model Checking

• Bounding Approach for Model Checking

• Stochastic Comparison

• Model Checking by Class C Markov chains

• Perspectives

[2/29]

Temporal logic for specification

Markovian models have been widely used as performance, reliability, and
dependability models

• High-level specification methods to construct large and complex models

Stochastic Petri Nets, Stochastic Process Algebra, etc.

• Computation of transient and the steady-state distributions

• Evaluation of underlying performability measures

Temporal logic to specify complex measures of interest in a compact and
unambiguous way

[3/29]

Model checking

• Model Checking : an automated manner to check if the underlying
formulas are satisfied or not

• Deterministic Model Checking has been successfully applied to validate
qualitative properties

• Extension to stochastic models for the verification of probabilistic
quantitative properties

Checking performance and reliability guarantees

[4/29]

Different Formalisms

Different stochastic models

• DTMC, Probabilistic Computation Tree Logic (PCTL)

• CTMC, Continuous Stochastic Logic (CSL)

• Markov Decision Processes

• Markov Reward Models

Specification of

• standard transient and steady-state state measures

• probabilistic measures over paths

[5/29]

Probabilistic Model Checking Formulas

M : labelled Markov chain is a 3-tuple (S,P, L)

• S : a finite set of states

• P : the transition probability matrix

• L : S → 2AP the labelling function

L(s) : the set of atomic propositions a ∈ AP that are valid in s

AP : the finite set of atomic propositions

[6/29]

Syntax PCTL

Let α,β be integers, p ∈ [0, 1] be a probability, a be an atomic proposition,
and # be a comparison operator ∈ {≤,≥}. φ : state formula

φ ::= true | a | φ ∧ φ | ¬φ | P!p(Xφ) | P!p(φ1 U [α,β]φ2) | S!p(φ)

• Xφ : Path formula Next

• φ1 U [α,β]φ2) : Path formula Until

• S!p(φ) : Steady-state formula

[7/29]

Semantic

• a path σ ≡ s0s1 . . . is an infinite sequence of states of the Markov chain

• ϕ: path formula; σ |= ϕ : path σ satisfies ϕ

• σ |= Xφ iff s1 |= φ

(next state satisfies φ)

• σ |= φ1U [α,β]φ2 iff ∃i α ≤ i ≤ β ∧ si |= φ2 ∧ ∀j < i sj |= φ1

(passing through φ1 states to reach a φ2 state in [α,β])

P!p(Xφ) and P!p(φ1 U [α,β]φ2) : state formulas

The true or false value will be assigned to the initial state

[8/29]

Semantic

• s |= P!p(Xφ) iff ProbM(s,Xφ) # p

the probability to reach a φ state from state s in one step
∑

s′|=φ P[s, s′] # p

• s |= P!p(φ1 U [α,β]φ2) iff ProbM(s,φ1U [α,β]φ2) # p

sum of probability measures of paths beginning from s passing through
only φ1 states to reach a φ2 states in [α,β] steps

transformation of M and transient analysis

• s |= (M |=)S!p(φ) iff
∑

s′|=φ Π
M
s (s′)

steady-state analysis

[9/29]

Performability Guarantees

Consider a reliability model :

• DOWN states : not operational

• UP states : operational

• SECURE : secure for security issues

Standard Measures

• steady-state availability : S!p(UP)

• instantaneous availability at step n : P!p(UP U [n,n]UP)

• interval failure : P!p(UP U [0,n]DOWN)

• secure execution : P!p(SECURE U [0,∞]SECURE)

[10/29]

Bounding Approach for Model Checking

Model checking : specification of a constraint (bound)

the exact values are not necessary, we must check if the constraints are
satisfied or not

Bounding methods are useful for Model Checking

SΣ : the set of states for which the probabilities must be summed to check
the underlying formula Fr. Let denote this sum by PFr(SΣ)

• Check to see if PFr(SΣ) ≤ p

• Compute lower and upper bounds Binf and Bsup on PFr(SΣ)

– Bsup ≤ p, then Fr is true

– Binf > p, then Fr is false

– otherwise, it is not possible to conclude

[11/29]

Until Operator

Fr = P≤p(φ1U [0,k]φ2)

• success states : labelled with φ2

• failure states : not labelled with φ1 nor φ2

• inconclusive states : labelled with φ1 but not with φ2

Transformation of M → MT

• Make success and failure states absorbing

• Compute transient distribution at time t starting from state s

• If the transient distribution to be in success state at step k is less or
equal to p, state s satisfies the formula s |= P≤p(φ1U [0,k]φ2)

SΣ = Sφ2

PFr(SΣ) =
∑

SΣ
ΠMT

s (SΣ, t)

[12/29]

Bounding of Markov chains

Bounding techniques have been largely applied to overcome the state space
explosion of Markov chains

Different methods according to the concepts that they are based on and to
the type of obtained bounds

Stochastic Comparison for Model Checking

• Bounds on transient and the steady-state distributions

• Inequalities on the sum of probabilities

[13/29]

Stochastic Comparison

Computing bounding distributions by considering bounding chains having
simpler numerical computations

• by reducing the state space size

• by imposing specific structures letting to apply specific numerical
methods

[14/29]

Stochastic Order

Let X and Y be random variables taking values in a totally ordered state
space E :

X)st Y ⇐⇒ Ef(X) ≤ Ef(Y), ∀ f increasing function

State space E = {1, . . . , n}

Let ΠX = (p1, p2, · · · , pn) and ΠY = (q1, q2, · · · , qn) be probability
distributions of X and Y

ΠX)st ΠY ⇐⇒
∑n

k=i pk ≤
∑n

k=i qk, ∀i ∈ {1, . . . , n}

[15/29]

Comparison of Markov chains

Let {X(n), n ≥ 0} and {Y (n), n ≥ 0} two homogeneous discrete time
Markov chains with probability transition matrices P and Q. If

• X(0))st Y (0)

• Comparison P)st Q (⇐⇒ P [i, ∗])F Q[i, ∗] ∀ i)

• Monotonicity P or Q is)st-monotone.

then
{X(n)})st {Y (n)} (ΠX(n))F ΠY (n)) ∀n

If steady state ΠX and ΠY exist, then

ΠX)st ΠY

[16/29]

Proposed Method

• Let M be the CTMC to check the underlying formula

• Construct by means of Stochastic Comparison a bounding chain Msup

• Check the formula through the bounding distributions

Motivations

1- Complexity reduction

2- Solution for intractable cases

• Infinite cases

• Partially defined models (Interval-valued Markov chains)

[17/29]

Model Checking by Special Structures

Model Checking by bounding Class C Chains (Ben Mamoun, Pekergin N.,
Younès QEST06)

• closed-form solutions for transient and the steady-state distributions,
time to absorption

• simple characterizations for the stochastic monotonicity

Construction Algorithm based on stochastic monotonicity and comparison
(Ben Mamoun and Pekergin N. PEIS 2000)

Worst-case complexity θ(N2)

[18/29]

Class C stochastic matrices

A stochastic matrix P = (pi,j)1≤i,j≤N belongs to class C matrix,

if for each column j, there is a real constant cj such that

pi+1,j = pi,j + cj , 1 ≤ i ≤ N − 1

which is equivalent to

pi,j = p1,j + (i − 1) cj , 1 ≤ i, j ≤ N

Example :

P =





0.5 0.1 0.4

0.4 0.15 0.45

0.3 0.2 0.5





c1 = −0.1, c2 = 0.05 , c3 = 0.05
n∑

j=1

cj = 0

[19/29]

Class C stochastic matrices

A stochastic matrix P in class C can be represented by means of vectors:

P = e p + d c

• p is the row vector representing the first row of P

• c is the row vector for constants cj

• e, d are the column vectors such that

ei = 1, di = (i − 1), 1 ≤ i ≤ N

P =





1

1

1




(

0.5 0.1 0.4
)

+





0

1

2




(

−0.1 0.05 0.05
)

Two vectors to represent a class C chain

[20/29]

Properties of class C matrices

• Power matrices : P ∈ C → Pn ∈ C :

Pn = e p + [an−1 d + (b
n−2∑

k=0

ak) e] c

a = c d =
N∑

k=1

(k − 1)ck, b = p d =
N∑

k=1

(k − 1)p1,k

• Closed-form solutions to compute transient and the steady-state
distributions for a DTMC with probability transition matrix P ∈ C

• Steady-state distribution :

Π = p +
b

1 − a
c

a .= 1 if P is irreducible

[21/29]

Class C CTMC

By uniformization of the infinitesimal generator Q :

Pλ = I +
1
λ
Q where λ ≥ supi|qi,i|

If the uniformized matrix Pλ ∈ C , transient distribution :

Π(t) = e−λtΠ(0) + (1 − e−λt)p + α(t) c

α(t)= e−λt
∞∑

n=1

(λt)n

n!
αn

=






b 1−e−λt

1−a + (g
a − b

a(1−a))e
−λt(eλta − 1), if a .= 1, a .= 0

e−λt(λtg − λtb − b) + b, if a = 0

bλt + (g − b)(1 − e−λt), if a = 1

[22/29]

Reduction of Complexities

• Storage of only vectors for class C instead of the matrix

• Steady-state analysis:

Class C : θ(N)

• Transient analysis :

Class C : θ(N)

[23/29]

Stochastic Monotonicity of Class C chains

Probability transition matrix P is)F -monotone, if for all probability
vectors p and q,

p)F q =⇒ pP)F qP

Simple characterization for class C :

• ≤st monotone:

P)st -monotone ⇐⇒
∑n

k=j ck ≥ 0, ∀ column j

• ≤icx monotone:

P)icx -monotone ⇐⇒
∑n

k=j(k − j + 1) ck ≥ 0, ∀ j

[24/29]

Proposed Algorithm

Input: DTMC M, initial state s,

formula Fr ∈ {P!p(φ1 UIφ2), T @t
!p (φ), S!p(φ)}

Output: Three cases: 1.s |= Fr, 2.s .|= Fr 3. It is not possible to decide.

1. Transformation of the model if Fr is path-based (for transient
analysis)

2. Determination of SΣ states

3. State space organization

Aggregation of SΣ states if they are absorbing (necessary for ≤icx)

Aggregation of other absorbing states (optional)

Reorder state space to put SΣ states at the end (stochastic ordering)

[25/29]

MTa DTMC that must be analyzed

4. Construction of bounding chains : PMT a
sup is a class C , monotone,

bounding matrix in the sense of ≤F

6. Computing bounding distributions through closed-form solutions

F = st : Π(SΣ) ≤ Πsup(SΣ)

7. Computing bounding probabilities Binf and Bsup to PFr(SΣ) to check
the formula:

– Bsup ≤ p, then Fr is true

– Binf > p, then Fr is false

– otherwise, it can not be decided

[26/29]

Conclusions

• First step rapid model checking

• Including the proposed method in model checkers does not increase
significantly the complexity but may decrease largely the overall
complexities for some cases

[27/29]

Model Checking by simulation

Verification by statistical tests

Software for Perfect Simulation developed by project MESCAL, INRIA
Rhône-Alpes

Model Checking by Perfect Simulation?

[28/29]

Perspectives

• Infinite model checking (AMSTA08)

• Interval-valued Markov chains

• Other Formalisms

• Software

[29/29]

