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Abstract. The solution of continuous and discrete-time Markovian eteds
still challenging mainly when we model large complex systefar example, to
obtain performance indexes of parallel and distributetesys. However iterative
numerical algorithms, even well-fitted to a multidimensibstructured represen-
tation of Markov chains, still face the state space explogimblem. Discrete-
event simulations can estimate the stationary distributi@sed on long run tra-
jectories and are also alternative methods to estimatemeahce indexes of
models. Perfect simulation algorithms directly build steatate samples avoid-
ing the warm-up period and the initial state bias of forwarduations. This
paper introduces the concepts of backward coupling andivengages of mono-
tonicity properties and component-wise characteristicsrhulate Stochastic Au-
tomata Networks (SAN). The main contribution is a novel téghe to solve
SAN descriptions originally unsolvable by iterative madbalue to large state
spaces. This method is extremely efficient when the stateesigdarge and the
model has dynamic monotonicity because it is possible téracnthe reachable
state space in a smaller set of maximal states. Componest-ehiaracteristics
also contribute to the state space reduction extractingee states of the model
underlying chain. The efficiency of this technique appliedample generation
using perfect simulation is compared to the overall efficjesf using an iterative
numerical method to predict performance indexes of SAN rsode

1 Introduction

The solution of Discrete and Continuous-Time Markov ChgMi<C) [1] is still
challenging mainly when we model large complex systemdh siscparallel and dis-
tributed systems. The size of the infinitesimal generatbetstored has limits and also
the available numerical algorithms must deal with more haigg complex represen-
tations. The steady-state is given by the long-run protiplalistribution obtained by
the solution of the linear systemQ = 0, wherer is the probability vector of size
which is initially distributed ast, wherew, > 0 and)_!" ,m; = 1. However, even
with algorithms well-fitted to a multidimensional structdrrepresentation of MC, the
state space explosion is still a problem when solving models

Stochastic Automata Networks (SAN) is considered a higitleormalism [2] to
represent structured MC. The available numerical solsttake advantage of all struc-
tural information in the original model description to ointa compact format to store
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and manipulate the descriptor numerically [3—5]. One oftiagor problems with struc-
tured representations is the insertion of unreachablessiathe product state space, but
to cope with that there are very efficient approaches to géadne reachable set [6, 7].
It remains an open problem the efficient solution of large emhplex models where
all, or almost all, states are reachable.

Simulation approaches are alternative methods to estimdéxes of performance
models when the numerical solution is no longer sufficierssdl on discrete-event
simulation or on Markov properties, simulations estimate stationary distributiomr
based on long run trajectories. The first approaches to atmal SAN, or any other
structured formalism, focus on the concept of events [8¢thSevent-driven dynamics
implements an hierarchy of events inside the automatatsteistarting from a pre-
defined initial global state. Despite of this event-drivémice, the problem of how
long one have to run the simulatiore., theburn-in timeperiod, still remains open in
forward simulations [9]. The system is simulated until itensidered that reached the
stationary regime. After this time, the simulation is no madependent of the initial
state chosen due to the stationary assumption.

Propp and Wilson [10] proposed a backward coupling simutatiethod where the
problem of bias samples is completely solved. Perfect sitior algorithms directly
build steady-state samples avoiding the warm-up periodiaadhitial state bias. The
method proposes the running of trajectories in parallattisig from all possible states,
and their coupling guarantees the samples confidence. Tétisoah is extremely effi-
cient when the state space is large and the model has dynammictamicity because
this will determine the number of trajectories in paralleeded to run.

This paper introduces the concepts of backward couplingth@ddvantages of
monotonicity properties to simulate SAN models. The strtadtinformation in the
original SAN description can be used to contract even maestate space, analysing
component-wise characteristics for example. The mainritution is the adaptation
of a new simulation technique to SAN models originally unable by iterative meth-
ods due state space explosion. Monotone backward couplgtigads can run with a
reduced state space since models have a monotonic behaweoefficiency of sample
generation using perfect simulation is compared to thead\vefficiency of using an
iterative numerical method to predict performance indete3AN models.

2 Stochastic Automata Networks

The Stochastic Automata Networks formalism (SAN) is an wied! method to
obtain performance indexes of systems. It is proposed bg&ig2] and its basic idea
is to represent a whole system by a collectiorsosubsystems or chains described as
K stochastic automatd(®), with k € [1..K]. In each of these automata the transitions
among states are labeled by events. Each event includealplietic and timing infor-
mation, and the network of automata has aa#tall possible events in the model. This
framework defines a modular way to describe continuous sswtate-time Markovian
models [11]. The SAN formalism has exactly the same apptinacope as the Markov
Chain (MC) formalism [12, 1].
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Fig. 1. Example of a SAN model and equivalent MC

Definition. Each automatomd*) has a set*) of local statess(”) wherei ¢
{1...n4}, interconnected by transitions and their respective evérite constanty,
is the cardinality oB(*), i.e,, the total number of states in automatdff’.

Definition. A global states of a SAN model withK automata is a vecto¥ =
{sM: .. .; s} where each automatoa®) is in the local state(®) € §(*),

Definition. The set of all global states is call@oduct state spacelhe product
state spac&’ of a SAN model is the Cartesian product of all s&fs.

Considering the product state spatethe system is composed by a set of global
states as and also a finite collectioi = {ey, ..., ep} of P events. Since models with
discrete state space can also be described as discretesgstams [13], the sétcan
be defined with an associated transition functiobetween global states.

Definition. The transition function defined b§(s,e,) = 7 (p € [1..P]) is the set
of rules that associate to each global state X' a new global state denoted by X,
through the firing of the transition labeled by evepte &.

In each global staté some events are enableg,., they change the global staie
into another staté. However, not all events may occur from a given global state.
those cases the transition function assigns the permairetiee=same global state.

Definition. An evente,, is said to be enabled in the global state X', iff $(3,¢e,) =
7, ands # 7, and7 € X. Analogously, an event is said to be disabled in statéf
b(5,ep) =7, ands = 7.

The SAN model construction as a Markov process has the ratesch event,
seen as intensities, of Poisson processes, and they are supposed to be independen
The SAN description has a table of events extracted ffaand uniformization tech-
niques are used to introduce the independence betweenebests. The uniformized
process is driven by the Poisson process with rate Zle Ap and generates at each

time an event,, € ¢ according to the distributio %, e %”)

Definition. The dynamic of the system is defined by one initial globaksigtc X
and a sequence of events= {¢, } ,cn. The sequence of statés, },,c »- is a stochastic
recursive sequence typically given ;1 = &(5,,¢e,41) for p > 0 and is called a
trajectory.



e’ F=®(5,ep),ep €&

@(5, 61) @(5, 62) @(5, 63) @(5, 64) @(5, 65)
{o;0p || {10} | {0;0 | {00} | {0;0} | {0;0}
{0:1} || {11} | {&1} | {&:2} | {0:1} | {051}
{0:2} || {12} | {02} | {0;2} | {0;0} | {0;2}
{1.0; || {1:.0p | {02} | {10} | {1:0} | {O;1}
{u1y ) {1y ) {1} | {v2y | {11 ) {31
{12 ) {12p | {12 | {12} | {10} | {12}

Table 1. Application of @(s, e;,) for the model of Fig. 1

The global process execution [14,15] described is reladetthé underlying uni-
formized Markov chain. Its transitions are given®ypplications ove®r’. However, it
is common to have global states that are not reachable bythay@lobal state through
a transition. Due to this SAN models have established a eddelstate spacee., the
set of global state§ € X that composes the related MC. The others are considered
unreachable global states in the model.

Definition. The reachable state spa&’g’j (or X®) is an irreducible component ob-
tained from a given initial global staggy € X and successive firing of eventsgnEach
global states reached by any possible combination of events is includéisrset.

Note that SAN descriptions must have only one Markovian ggne[11], the as-
sociated Markov chain contains a set of all global statesX'** that certainly can be
reached through the firing of any event. Figure 1 is a SAN muodidl two automata
A® and five events|§| = 5), and their constant rates represented here by greek let-
ters. The equivalent MC represents the reachable state &faof the model which is
asubset oft’ (X' C X).

A simple procedure to find reachable states is to apply themof stochastic re-
cursive transition function mainly when the reachability€tion is not explicit in the
SAN formal descriptiorfs Table 1 shows the transition function application for the
SAN example in Figure 1, considering all global states X* and all events,, € £.

The resulting global states= &(s, e,,) are represented, being those corresponding to
possible transitions marked in bold face,, those corresponding to enabled events

Definition. A SAN model is calledvell-formediff the X% component is unique
and irreducible.

4 SAN descriptions can define tie” set through the insertion of a reachability function. The
boolean evaluation of this function, when applied to evdopgl state insideY, returns the
reachable states it . More details can be found in [16, 17].

51t is important to observe that the transition functiéris a theoretical definition that is not
necessarily used in current SAN solvers implementationwé¥er algorithms can be imple-
mented to take advantage of transition functions idemtifyalso the reachability sét .



3 SAN Backward coupling ssimulation

The first approaches to simulate SAN models focused on theepbof transitions
and events, instead of having a focus on state transitionigesti.e., the descriptor
[8]. Such event-driven dynamics implements an hierarchgvehts inside the automata
structure starting from a pre-defined initial global stddespite of this event-driven
choice, the problem of how long one should run the simulasidhremains open us-
ing forward simulation approaches [9]. Moreover, simaattechniques usRandom
functions to establish the activation of an event ingideonsidering the current global
state analysed, then leading to the next global state infgf8igoing forward in time.
The system is often simulated until it reaches its statipmagime. The duration of
this step is called théurn-in timeof the simulation. After this time, the simulation
is no more dependent of the initial state chosen, due thieséaly assumption. How-
ever the challenge in these techniques is tdix-in timeto allow collecting samples.
In this context, the Perfect simulation technique enalidesompute samples exactly
distributed according to the stationary distribution of tiarkov process. Propp and
Wilson [10] proposed a scheme based on backward coupleagthe Coupling from
the Past(CFTP) method. The problem of fixing initial state presentdrward tech-
niques is completely solved since the proposed idea is tbtségectories in parallel
from all possible states.

Algorithm 1 SAN Backward coupling simulation

cforalse xXfdo
w(8) « 5 { choice of the initial value of vectar}
end for
repeat
e «— Generate-event({) generation ot according the distributio(l% ..
@ «— w { copying vectow to &}
for all 5 ¢ X% do
w(8) — @(P(3,e)) { computingw(8) at time 0 of trajectory issued frons at time
_7—*}
9:  endfor
10: until All w(3) are equal
11: Returnw(3)

>

)}

N ARWNE

The coupling of trajectories guarantees the generatiorodfias samples and it
ended theburn-in time problem. The number of steps (or events applyed) to couple
all trajectories we denoteoupling timer. Figure 2 illustrates de backward coupling,
all trajectories issued from all global states of the SANregke (Figure 1) at time
—8& coupled in a state at tim@ Since the coupling time* of the backward scheme
is almost surely finite, the scheme provides a sample dig&ibaccording the steady-
state distribution. Given the set of reachable statés a setS of randomly generated
events and the transition functidn: X% x £ — X: issuing from all global states of
X going backward in time, the set of trajectories will coufalea given sequence of
events{e, }nen attime0, ie, |P(X 1 {en}nen)| = 1.



SAN models have an underlying Markov chain so perfect sitiarigrinciples can
be applied to obtain the global states probabilities in tla¢éiaary distribution. For
perfect simulation execution, it is mandatoryvall-formedSAN descriptionj.e., the
model must produce valid global states as input for the sitiar algorithm. For back-
ward simulations the set of trajectories running in patake be at least th&'”* set,
when of course th&’”* set is an unordered set of global states. Algorithm 1 irtées
the vectorw with all global states € X% at simulation time—7*, supposing a well-
formed SAN model. At each simulation iteration one eventasayated through the
call of aRandonfunction and the related transition functions are appliedéch posi-
tion of w. Each new state generated indexes the vegighich has the last version of
stored. This process is called backward coupling becausmmeuteo(s) at time0 of
trajectory issued froma at time—7*. This procedure will be repeated until all positions
of vectorw have the same resulting statd.e., all trajectories running in parallel have
coupled. The sample of each iteration is then collectedtédissical analysis.

3.1 Monotonicity Properties

The size ofX'® can be exponential in the size of the model and it can be difficu
to generate and really huge to deal, so it becomes a limitdtiobackward coupling
methods. As pointed out in Propp and Wilson [10], CFTP metreré much easier to
implement when the state spateis ordered and the underlying Markov chain has the
monotonicity property. A known partial order éf is favorable to the use of monotonic
functions since it allows the identification of maximal satind a considerable coupling
time reduction. Models with an underlying Markov chain haythis property can be
optimized to run a monotone backward coupling procedure lggs initial states.
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Fig. 2. lllustration of Backward and Monotone Backward coupling

Definition. An evente,, € ¢ is said to be monotone if it preserves the partial ordering
(< order)onX. ThatisV(s,§') € X 5<§ = &(5,¢p) < D(5,¢p).
If all events are monotone, the global system is said to beotonie.



The monotonicity property of events guarantees the existen a set of maximal
statesY™ and a set of minimal state¥™". These sets are composed of states which
there is no greater (or lower) state than itself in the ch@mthe transitions fired from
maximal states do not create states greater than these anear(sitions fired from
minimal states do not create states lower than minimal ones)

Definition. Suppose the global stateg s, € X, a states; is minimal if there exists
a states, such thats, < 3, thensy, = 5,. Thens; € X™". Analogously, given states
33,54 € X, a statess is maximal if there exists a statg such thats, > 53 then
S4 = Ss. Thens, € xmax

Algorithm 2 SAN Monotone backward coupling simulation
l:n=1
2: E[1] < Generate-event({) array E stores the backward sequence of events
3: repeat

4:  n < 2n {doubling schemp
5. foreach 5 ¢ XM do
6: w(8) < § { initial states at time-n}
7.  endfor
8: for i =ndownto ¢ + 1) do
9: E[i] < Generate-event({) generate events from-G + 1) to —n, events from-1 to
(=% + 1) have been generated in a previous lpop
10:  endfor
11: for ¢ = n downtol do
12: for each 5 € X do
13: w(8) «— P(w(3), Efi]) { w(8) is the state at time«{: — 1) of the trajectories issued
from § attime—n}
14: end for
15:  endfor

16: until All w(3) are equal
17: Returnw(3)

Definition. Suppose a given partial order&fand consequently a maximal sgt/,
if all trajectories issued fromt'™ coupled at time 0, then they will also coalesce for all
states inY .

SinceX is finite and the events are monotone, the number of trajestar paral-
lel can be reduced running simulation only over fi& = XMy x™Mn set. Starting
trajectories and going from the past froki! maximal global states, when all trajec-
tories collapsed, we also obtain a sample of the statioreiyrre. Figure 2 illustrates
the monotone backward coupling, where there are only inofiemumstates,, s and
onesupremunstates,,, in the state spac& . All trajectories issued frond;,,; and
5sup are computed from time-2* to 0 until trajectories collapsed at tinte If we as-
sumeX” as alattice, then every stat§; is between the statg,,; and the staté,,,
Sing < 8; < 34up. Considering the SAN context, if we know the global staigs
and3s,, (or aX subset of maximal stateise., X'*) we can run a monotone version. It
uses a coupling vectar of | x| positions running these trajectories in parallel. Also,



it needs to store the events generated of the whole trajetiecause it usesdoubling
schemestructure [10] to generate and apply events in each trajecd each step in
the past, theoupling timer* neededi(e., the length of the step) is multiplied
(Algorithm 2, line4).

Canonical component-wise ordering in SAN Many models are naturally ordered as
markovian queueing networks [18-20] due the natural oraeinteger. The partial
order of the product state space can be established usiegdonple component-wise
ordering concepts. SAN descriptions derived from monotprezieing networks can be
simulated taking advantage of having only the canonicaimuim (all queues empty)
and maximum (all queues full) states. Then only two pathslnesimulate in parallel
with the monotone algorithm version.

The canonical component-wise ordering means that the lymigMarkov chain
structure of the model can be viewed ak#iice, i.e., all global states have the same
supremurandinfimumstates. Given two arbitrary global stataés s, € X', and veri-
fying 51 < 3, it will often possible to say which is the largest state [Zlje extremal
states are given by the first and the last stat& @bnsidering it is ordered lexicograph-
ically. The complexity to solve these family of models isriftmnstant (two trajectories
in parallel) and the simulation is no more limited by the sifét but only byr.

Queueing Network Model
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Fig. 3. QN conversion to a SAN model and the ordered.

Supposing the queueing system of two queues in Figure 3 wjihaitiesK; and
K respectively. The size of this network is given by the Cartesian product+1) x
(K5 + 1) and all global states € X'# (equivalent MC) are reachabl& (* = X). The



SAN model has two automati!) andA?) respectively, and three everise ¢ (since
two are local events and one is a synchronizing event in treefhwith their rates. The
eventse, e1o andes, are monotone according canonical component-wise ordeifing
X, i.e, there is no event in the model changing the partial ordetaiés inX’. The
application of the transition functiofi(s, e, ), for each event, € &, considering each
states € X, is dependant of thexin andmaa functiong evaluations for each global
state (in this example the global state to be evaluated Hg$vamlocal states to observe
5= {s1;52}).

The minimum and maximum global states are extracted fromrderlying Markov
chain, but they consider the minimal and maximal local stafeeach automatod (%)
defined by natural order on integer. Suppositig= 2 and K, = 3, the maximal set
can be considered ={{0;0},{2;3}}. The minimal local state of both automata is
the state, and the maximal local state #sfor automatonA(™), and3 for automaton
A®) respectively. The simulation could run only two trajectsrin parallel: all queues
empty (minimal local statef); 0}) and all queues full (maximal local state&’;; K2 }).
The assumption of existing one minimum and one maximum Istedé per automaton
which guarantees the exact sampling, can be applied aldoufye models following
component-wise principle.

Non-lattice component-wiseordering in SAN Glasserman and Yao [13] investigated
the search for partial (and total) ordering in discreteré¢wveodels looking at their own
structure, naturally retaining the order in which stateh@chain are accessed firing the
respective events. This procedure incrementally gereedéasible setuntil all states
are accessed (total ordering), or a given partial ordesiidgntified. So we can consider
the feasible set as an ordered representation oktReset. However in the absence of
a canonical component-wise model formation, for each ewettie model, the state
space ordering must be constructed firing events in the lyidgrchain structure. If
we have the same subchains ordering for the events, thissteahexists a partial
order forX* C X (<), when it is possible to compare two states for a given event
ep € &, independent of event rates.

The ordering construction for the queueing system exampkvalready exists a
canonical formation leads us tdattice where there are two maximal global states as
seen in Figure 3. But without this characteristic the se&ocla order could be really
unfeasible for huge models and with a high enhanced compngtost. However the
global states ordering i becomes not relevant if we can extract through the tramsitio
function applications a smaller set of extremal globalestaif the Markov chain,e.,
not retaining the order of access of states but verifyingéf mext state in a transition
is greater than the current state. This means that if we watke chain applying the
transition function sucessively we can reach and colleztetitremal elements (Algo-
rithm 3).

The component-wise ordering supposes that local states agvedefined order,
then the Cartesian product of states generates autoniabicdéred global states. The
states will always have transitions to greater or lower glatates indexes. So when

b2 Ay = min(z,y) andz V y = maz(z,y).



Algorithm 3 SAN extremal states identification in component-wise medel

1: for each 5 € X" do

2 max -« true;

3: foreache, € {do

4 st &(3, ep) { firing transition}
5: ifst>3
6
7
8
9

max«— false; Break;
end for
if max== true
Add states in X { arrayx™ stores the extremal states identified
0: end for
1

1
11: Return arrayy?;

there is no possible transition to be fired to a greater stiaite means we find an ex-
tremal state in the chain. In this case, models can have rharetivo maximal states
(according to thet * set analysis),e., XY is now the set of extremal elements formed
by global states where the successive transition funcfipfiGtion stops when it does
not return greater states. Doing this it is not mandatoryrtovkthe state space par-
tial ordering but only identify the subsét™ of extremal states to run the monotone
backward coupling algorithm. The complexity to find extréglabal states is given by
|XE| x |£]. The computational cost to run perfect simulation is nowesheient of the
number of initial global states inside the get’.

4 Resource Sharing with Mutual Exclusion

Our case study is the classical model of resource sharifgnaitual exclusion and
some variations. In this section we show the product steeespontraction regarding
natural structured formation of these models, and alsegsselated to the exploita-
tion of monotonicity properties for perfect simulation.| Almulation examples were
executed on a PC architecture with a 3.2 GHz Intel Xeon psmrasder Linux oper-
ating system, with 1 GByte of memory. The execution times@néed consider only
usertime estimation runnifgEP Ssoftware tool and the perfect simulation module de-
veloped (PerfedPEPS, i.e., they do not take account of other users in the machine or
operating system execution.

4.1 Dining Philosopherswithout Reservation

The dining philosophers problem is summarizedsaghilosophers sitting at a table
doing one of two things - eating or thinking. The philosoghsit at a circular table
with a large bowl of food in the center. A fork; is placed between each philosopher
Py, and as such, each philosopher has one fork to his left andaskeo his right.
The philosopher must have two forks (at the same time) toFgégtire 4 shows the
correspondent SAN model that has automataP(*) representing the philosophers,
each one with two state®:(*) (thinking) andE(®) (eating). The product state spate
is formed by2”X global states.
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Fig. 4. Philosophers model without reservation

XM extraction Supposing six philosophers in a table (Figure 5) the apiidinaf the
transition function returns the extremal states for the SAdtel. Regarding structural
properties of this model all events,te, € £ are monotone since they retain the
component-wise ordering of global states in the chain farimethis class of models.
Algorithm 3 finds the last states € X" that can be accesseds., the extremal states
5 € XM Then component-wise property allows the feasible set &tion based on
indexes, because the successive application of eventin@ira trajectory) leads to a
state where it is not possible to go on to a greater stae,they are the extremal
states of the chain. For these states there are events gstiack in the paths already
generated.

000000
9: 001001
18 : 010010
21: 010101
36 : 100100
42 : 101010

Fig.5. OrderedX % supposing philosophers

Considering the model global states formedhitg in the Figure 5, since the state
T®*) is represented bg and E(*) represented by, we have for example, a sat’ =
18 andX™ = 6 (the marked states are maximal elements) for a model witprslrso-
phers. Table 2 shows the SANmodel with= 6. . . 26 and their respectiv&’, X' * and
the extracted set of extremal stafgéd’. Since the size of the model grows exponentially



the size of maximal set grows slowly comparatively. The siz&’? is the number of
trajectories to run in parallel,e., the number of vector positions to store, so it is also
the computational cost in memory positions to run perfeougition. Each position is
an integer representing the current global state indexdrtrégectory. When we have
more philosophers in the model the impact of this optimaais more clear mainly
verifying the time spent to solve this models usPlgP Ssoftware tool and the perfect
simulation moduleRerfect PEP%

K X XE T XM [PEPS(iteration) Perfect PEPsample
6 64| 18 6| 0.000004 sec, 0.002711 sec.
8 256 47| 11] 0.000123 sec|| 0.003464 sec.
10 1,024 123 18| 0.000542 sec, 0.005682 sec.
12 4,096 3221 30 0.002487 sec,| 0.012290 sec.
14 16,384 843 52/ 0.011832 sec|| 0.029745 sec.
16 65,536 2,201 91| 0.055973 sec| 0.074337 sec.
18| 262,144 5,774 159 0.296355 sec| 0.184355 sec.
20| 1,048,576 15,1271 278 1.394022 sec, 0.457599 sec.
25|33,554,432167,7611,131 5.115790 sec, 4.736356 sec.
26|67,108,864392,8362,779 — 13.500322 sec.

Table 2. Resource sharing without reservation

The actual number of samples to generate depends immemstilg aumeric char-
acteristics of the model itself. Different parameters asahtual numeric rates of the
events, may change the required number of samples to act#istical convergence of
the stationary prediction. Analogously, the numbers géiiens to perform the iterative
solution methods in thBEPStool also depends on the model numeric characteristics.
Therefore in the Table 2 we indicate the amount of time ne¢a@erform one single
sample generation with the contracted state space iRdatfect PEP$nodule, and one
single iteration in the numerical solution implementedBPS However, the values in
seconds presented here are to be considered with cautioa rsithing relates the num-
ber of needed iterations IREPSwith the number of samples needed in our simulation
tool. For example, the first modek( = 6) needed 528 iterations to achieve a precision
of 10~1Y in the PEPSsolver, while for the same precisidn0, 000 samples were gen-
erated by simulation. However, a smaller number of samptaddvprobably already
be enough to achieve (statistically) the required pregifio such small example. The
example was extended just beyond the capacity limRBPS since the last example
(K = 26) is just a little too big to run on our target machine that Isgbdoblems of as
many as 64 million states.

4.2 Dining Philosopher swith Reservation

We can extend the mutual exclusion in resource sharing rmddednalyse more
deeply the locking of shared resources in systems. But Inergdal is to obtain an
extensible model where a numerical solution is no longesiptess due state space ex-
plosion, in order to show the possible product state spataxiion also in these cases.



Figure 6 hasik’ automataP®) representing the philosophers, each one with three or-
dered states?'®) (thinking ), L*) (taking left fork), R(*) (taking right fork). The
philosopher can reserve the fork on his immediate left dtnigaiting for eating with
two available forks. To avoid deadlock is established amiong to get the forks in the
table, for each philosopher in the model. The product staaeeY is formed by3 %
global states.

TypgEveniRat
loc | It;

syn| tr;
syn| ri;
loc | rtx
syn| tlx
syn| Irg

>>= > =

Fig. 6. Philosophers SAN Model with Reservation

XM extraction Regarding structural properties of this extended modeattbeotonic-
ity properties are also maintained for all new events geedrg;, tr;, rl;, rtg, ti; and
lr,. The inclusion of a new state in each automaton and new eeentsraints does
not interfer in X’ partial ordering. Since the minimal global statdall philosophers
thinking) is the initial state to generate the feasible $¢th@ model, the extremal states
are naturally the ones with greater indexes than their @presa transitions.

Table 3 shows inits last lines, huge models to solve WP Ssoftware tool mainly
because the size df, and the possible contraction of state spac&'i to run perfect
simulation. The costs in memory are drastically reducedesfor monotone versions
we used to store just the coupling vector with extremal elgsmmstead of the product
state space. The same remarks still apply to the times pgezsbare, specially the fact
that this table present times for one iteration in BtEeP Snumerical solution, and one
sample generation fdPerfect PEPSFor the last model = 18) the PEPSsolution
could not be achieved since it represents a state space eftirair327 million states,
which is considerably above the current overall numerioltfon limitation that is a
little below 100 million states in a 4GBytes memory machine.

5 Conclusions

We show that is possible to design a perfect sampling atyarfor SAN by back-
ward coupling. For the underlying Markovian graphs, thewdation coupling time can
be greatly reduced by using extremal initial states to rajettories in parallel. In fact,
this paper not even present the times for sample generatibawt using the state space
contraction because even the average moedls,Resource Sharing without reserva-
tion K = 14, would represent an model much slower than the larger modekeare



K X X T XM [PEPS(iteration)Perfect PEPS (sample)
5 243 70 11 0.000130 sec, 0.004547 sec.

6 729 169 17| 0.000474 sec| 0.007829 sec.

7 2187 408 27| 0.001693 sec. 0.014273 sec.

8 6,561 985 43| 0.003185 sec, 0.032354 sec.

10 59,049 5,741 111 0.038100 sec, 0.111365 sec.

12 531,441 33,461 289 0.551290 sec, 0.689674 sec.

14 4,782,969 195,02% 755 5.712210 sec| 2.686925 sec.

16| 43,046,7211,136,6891,974 68.704325 seq.  15.793501 sec.
18|387,420,48%,625,1095,169 — 83.287321 sec.

Table 3. Resource sharing with reservation

able to solve (Resource Sharing with reservafior= 18). However the study of cou-
pling times considering the maximal s&t” is a work in progress. Preliminary results
shows that for the models which the numerical solution iomgér possible witPEPS
perfect simulation seems to be a reasonable alternatienatural future work in that
direction is a study of the effects of our technique in théistiaal convergence. Such
study could also compare the time of a full stationary sohutising perfect simulation
and the traditional numerical solution.

The current limitation oPEPSsoftware tool is in order at’ < 6 x 107 states using
1 Gbyte RAM machine because it needs to store probabilittovedor the state space
X. SAN simulation approaches, on the contrary, will work owligh vectors of size
related to maximal sets of the models. Even further, in tts= age have a particular
interest in a given aggregation function of resely, compute the probability of a local
state, our solution may avoid to store the probability vecfor the maximal sets, but
only compute the aggregation function over the generategbles. This last improve-
ment combined with the monotonicity property identified indels with a component-
wise order can help us to solve really huge models. In faist giproach may, virtually,
have no size bound, since not the transition matrix, nor todability vector can be
stored. Such possible applications will only have a timerfabto be considered, and
since the generation of samples can be performed in parieh this time bound can
be overcome for models with thousands of millions statedy @w statistical analysis
of the generated samples will have to be dealt. Neverthedé#édshese reasons let us be-
lieve that the perfect simulation of SAN with componentewsdering allowing state
space contraction is a more than worthy solution when th@fisemerical methods is
just not possible with the current technology.
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