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Abstract. The solution of continuous and discrete-time Markovian models is
still challenging mainly when we model large complex systems, for example, to
obtain performance indexes of parallel and distributed systems. However iterative
numerical algorithms, even well-fitted to a multidimensional structured represen-
tation of Markov chains, still face the state space explosion problem. Discrete-
event simulations can estimate the stationary distribution based on long run tra-
jectories and are also alternative methods to estimate performance indexes of
models. Perfect simulation algorithms directly build steady-state samples avoid-
ing the warm-up period and the initial state bias of forward simulations. This
paper introduces the concepts of backward coupling and the advantages of mono-
tonicity properties and component-wise characteristics to simulate Stochastic Au-
tomata Networks (SAN). The main contribution is a novel technique to solve
SAN descriptions originally unsolvable by iterative methods due to large state
spaces. This method is extremely efficient when the state space is large and the
model has dynamic monotonicity because it is possible to contract the reachable
state space in a smaller set of maximal states. Component-wise characteristics
also contribute to the state space reduction extracting extremal states of the model
underlying chain. The efficiency of this technique applied to sample generation
using perfect simulation is compared to the overall efficiency of using an iterative
numerical method to predict performance indexes of SAN models.

1 Introduction

The solution of Discrete and Continuous-Time Markov Chains(MC) [1] is still
challenging mainly when we model large complex systems, such as parallel and dis-
tributed systems. The size of the infinitesimal generator tobe stored has limits and also
the available numerical algorithms must deal with more hugeand complex represen-
tations. The steady-state is given by the long-run probability distribution obtained by
the solution of the linear systemπQ = 0, whereπ is the probability vector of sizen
which is initially distributed asπ0 whereπ0 ≥ 0 and

∑n
i=0 πi = 1. However, even

with algorithms well-fitted to a multidimensional structured representation of MC, the
state space explosion is still a problem when solving models.

Stochastic Automata Networks (SAN) is considered a high-level formalism [2] to
represent structured MC. The available numerical solutions take advantage of all struc-
tural information in the original model description to obtain a compact format to store
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and manipulate the descriptor numerically [3–5]. One of themajor problems with struc-
tured representations is the insertion of unreachable states in the product state space, but
to cope with that there are very efficient approaches to generate the reachable set [6, 7].
It remains an open problem the efficient solution of large andcomplex models where
all, or almost all, states are reachable.

Simulation approaches are alternative methods to estimateindexes of performance
models when the numerical solution is no longer sufficient. Based on discrete-event
simulation or on Markov properties, simulations estimate the stationary distributionπ
based on long run trajectories. The first approaches to simulate a SAN, or any other
structured formalism, focus on the concept of events [8]. Such event-driven dynamics
implements an hierarchy of events inside the automata structure starting from a pre-
defined initial global state. Despite of this event-driven choice, the problem of how
long one have to run the simulation,i.e., theburn-in timeperiod, still remains open in
forward simulations [9]. The system is simulated until it isconsidered that reached the
stationary regime. After this time, the simulation is no more dependent of the initial
state chosen due to the stationary assumption.

Propp and Wilson [10] proposed a backward coupling simulation method where the
problem of bias samples is completely solved. Perfect simulation algorithms directly
build steady-state samples avoiding the warm-up period andthe initial state bias. The
method proposes the running of trajectories in parallel, starting from all possible states,
and their coupling guarantees the samples confidence. This method is extremely effi-
cient when the state space is large and the model has dynamic monotonicity because
this will determine the number of trajectories in parallel needed to run.

This paper introduces the concepts of backward coupling andthe advantages of
monotonicity properties to simulate SAN models. The structural information in the
original SAN description can be used to contract even more the state space, analysing
component-wise characteristics for example. The main contribution is the adaptation
of a new simulation technique to SAN models originally unsolvable by iterative meth-
ods due state space explosion. Monotone backward coupling methods can run with a
reduced state space since models have a monotonic behavior.The efficiency of sample
generation using perfect simulation is compared to the overall efficiency of using an
iterative numerical method to predict performance indexesof SAN models.

2 Stochastic Automata Networks

The Stochastic Automata Networks formalism (SAN) is an analytical method to
obtain performance indexes of systems. It is proposed by Plateau [2] and its basic idea
is to represent a whole system by a collection ofK subsystems or chains described as
K stochastic automataA(k), with k ∈ [1..K]. In each of these automata the transitions
among states are labeled by events. Each event includes probabilistic and timing infor-
mation, and the network of automata has a setξ of all possible events in the model. This
framework defines a modular way to describe continuous and discrete-time Markovian
models [11]. The SAN formalism has exactly the same application scope as the Markov
Chain (MC) formalism [12, 1].
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Fig. 1. Example of a SAN model and equivalent MC

Definition. Each automatonA(k) has a setδ(k) of local statess(i) where i ∈
{1 . . . nk}, interconnected by transitions and their respective events. The constantnk

is the cardinality ofδ(k), i.e., the total number of states in automatonA(k).

Definition. A global states̃ of a SAN model withK automata is a vector̃s =
{s(1); . . . ; s(K)} where each automatonA(k) is in the local states(k) ∈ δ(k).

Definition. The set of all global states is calledproduct state space. The product
state spaceX of a SAN model is the Cartesian product of all setsδ(k).

Considering the product state spaceX , the system is composed by a set of global
states as̃s and also a finite collectionξ = {e1, . . . , eP } of P events. Since models with
discrete state space can also be described as discrete-event systems [13], the setξ can
be defined with an associated transition functionΦ between global states.

Definition. The transition function defined byΦ(s̃, ep) = r̃ (p ∈ [1..P ]) is the set
of rules that associate to each global states̃ ∈ X a new global state denoted byr̃ ∈ X ,
through the firing of the transition labeled by eventep ∈ ξ.

In each global statẽs some events are enabled,i.e., they change the global states̃
into another statẽr. However, not all events may occur from a given global state.In
those cases the transition function assigns the permanencein the same global state.

Definition. An eventep is said to be enabled in the global states̃ ∈ X , iff Φ(s̃, ep) =
r̃, ands̃ 6= r̃, andr̃ ∈ X . Analogously, an event is said to be disabled in states̃, iff
Φ(s̃, ep) = r̃, ands̃ = r̃.

The SAN model construction as a Markov process has the rates of each eventep

seen as intensitiesλp of Poisson processes, and they are supposed to be independent.
The SAN description has a table of events extracted fromξ and uniformization tech-
niques are used to introduce the independence between theseevents. The uniformized
process is driven by the Poisson process with rateΛ =

∑P
p=1 λp and generates at each

time an eventep ∈ ξ according to the distribution
(

λ1

Λ
, . . . ,

λp

Λ

)

.

Definition. The dynamic of the system is defined by one initial global state s̃0 ∈ X
and a sequence of eventse = {ep}p∈N . The sequence of states{s̃n}n∈N is a stochastic
recursive sequence typically given by:s̃n+1 = Φ(s̃n, ep+1) for p ≥ 0 and is called a
trajectory.



s̃ ∈ XR r̃ = Φ(s̃, ep), ep ∈ ξ

Φ(s̃, e1) Φ(s̃, e2) Φ(s̃, e3) Φ(s̃, e4) Φ(s̃, e5)

{0;0} {1;0} {0;0} {0;0} {0;0} {0;0}
{0;1} {1;1} {0;1} {0;2} {0;1} {0;1}
{0;2} {1;2} {0;2} {0;2} {0;0} {0;2}
{1;0} {1;0} {0,2} {1;0} {1;0} {0;1}
{1;1} {1;1} {1;1} {1;2} {1;1} {1;1}
{1;2} {1;2} {1;2} {1;2} {1;0} {1;2}
Table 1. Application ofΦ(s̃, ep) for the model of Fig. 1

The global process execution [14, 15] described is related to the underlying uni-
formized Markov chain. Its transitions are given byΦ applications overX . However, it
is common to have global states that are not reachable by any other global state through
a transition. Due to this SAN models have established a reachable state space,i.e., the
set of global states̃s ∈ X that composes the related MC. The others are considered
unreachable global states in the model.

Definition. The reachable state spaceXR
s̃0

(or XR) is an irreducible component ob-
tained from a given initial global statẽs0 ∈ X and successive firing of events inξ. Each
global statẽs reached by any possible combination of events is included inthis set.

Note that SAN descriptions must have only one Markovian generator [11], the as-
sociated Markov chain contains a set of all global statess̃ ∈ XR that certainly can be
reached through the firing of any event. Figure 1 is a SAN modelwith two automata
A(i), and five events (|ξ| = 5), and their constant rates represented here by greek let-
ters. The equivalent MC represents the reachable state spaceXR of the model which is
a subset ofX (XR ⊆ X ).

A simple procedure to find reachable states is to apply the notion of stochastic re-
cursive transition function mainly when the reachability function is not explicit in the
SAN formal descriptions4. Table 1 shows the transition function application for the
SAN example in Figure 1, considering all global statess̃ ∈ XR and all eventsep ∈ ξ.
The resulting global states̃r = Φ(s̃, ep) are represented, being those corresponding to
possible transitions marked in bold face,i.e., those corresponding to enabled events5.

Definition. A SAN model is calledwell-formediff the XR component is unique
and irreducible.

4 SAN descriptions can define theXR set through the insertion of a reachability function. The
boolean evaluation of this function, when applied to every global state insideX , returns the
reachable states inXR. More details can be found in [16, 17].

5 It is important to observe that the transition functionΦ is a theoretical definition that is not
necessarily used in current SAN solvers implementation. However algorithms can be imple-
mented to take advantage of transition functions identifying also the reachability setXR.



3 SAN Backward coupling simulation

The first approaches to simulate SAN models focused on the concept of transitions
and events, instead of having a focus on state transition matrices, i.e., the descriptor
[8]. Such event-driven dynamics implements an hierarchy ofevents inside the automata
structure starting from a pre-defined initial global state.Despite of this event-driven
choice, the problem of how long one should run the simulationstill remains open us-
ing forward simulation approaches [9]. Moreover, simulation techniques useRandom
functions to establish the activation of an event insideξ, considering the current global
state analysed, then leading to the next global state insideXR going forward in time.
The system is often simulated until it reaches its stationary regime. The duration of
this step is called theburn-in timeof the simulation. After this time, the simulation
is no more dependent of the initial state chosen, due the stationary assumption. How-
ever the challenge in these techniques is to fixburn-in timeto allow collecting samples.
In this context, the Perfect simulation technique enables to compute samples exactly
distributed according to the stationary distribution of the Markov process. Propp and
Wilson [10] proposed a scheme based on backward coupling,i.e., theCoupling from
the Past(CFTP) method. The problem of fixing initial state present inforward tech-
niques is completely solved since the proposed idea is to start trajectories in parallel
from all possible states.

Algorithm 1 SAN Backward coupling simulation

1: for all s̃ ∈ XR do
2: ω(s̃)← s̃ { choice of the initial value of vectorω}
3: end for
4: repeat
5: e← Generate-event( ){ generation ofe according the distribution(λ1

Λ
. . .

λE
Λ

)}
6: ω̃ ← ω { copying vectorω to ω̃}
7: for all s̃ ∈ XR do
8: ω(s̃) ← ω̃(Φ(s̃, e)) { computingω(s̃) at time0 of trajectory issued from̃s at time

−τ∗}
9: end for

10: until All ω(s̃) are equal
11: Returnω(s̃)

The coupling of trajectories guarantees the generation of no bias samples and it
ended theburn-in timeproblem. The number of steps (or events applyed) to couple
all trajectories we denotecoupling timeτ . Figure 2 illustrates de backward coupling,
all trajectories issued from all global states of the SAN example (Figure 1) at time
−8 coupled in a state at time0. Since the coupling timeτ∗ of the backward scheme
is almost surely finite, the scheme provides a sample distributed according the steady-
state distribution. Given the set of reachable statesXR, a setE of randomly generated
events and the transition functionΦ : XR × E → XR: issuing from all global states of
XR, going backward in time, the set of trajectories will couplefor a given sequence of
events{en}n∈N at time0, i.e., |Φ(XR, {en}n∈N )| = 1.



SAN models have an underlying Markov chain so perfect simulation principles can
be applied to obtain the global states probabilities in the stationary distribution. For
perfect simulation execution, it is mandatory awell-formedSAN description,i.e., the
model must produce valid global states as input for the simulation algorithm. For back-
ward simulations the set of trajectories running in parallel can be at least theXR set,
when of course theXR set is an unordered set of global states. Algorithm 1 initializes
the vectorω with all global states̃s ∈ XR at simulation time−τ∗, supposing a well-
formed SAN model. At each simulation iteration one event is generated through the
call of aRandomfunction and the related transition functions are applied to each posi-
tion of ω. Each new state generated indexes the vectorω̃ which has the last version ofω

stored. This process is called backward coupling because wecomputeω(s̃) at time0 of
trajectory issued from̃s at time−τ∗. This procedure will be repeated until all positions
of vectorω have the same resulting states̃, i.e., all trajectories running in parallel have
coupled. The sample of each iteration is then collected for statistical analysis.

3.1 Monotonicity Properties

The size ofXR can be exponential in the size of the model and it can be difficult
to generate and really huge to deal, so it becomes a limitation for backward coupling
methods. As pointed out in Propp and Wilson [10], CFTP methods are much easier to
implement when the state spaceX is ordered and the underlying Markov chain has the
monotonicity property. A known partial order ofX is favorable to the use of monotonic
functions since it allows the identification of maximal states and a considerable coupling
time reduction. Models with an underlying Markov chain having this property can be
optimized to run a monotone backward coupling procedure with less initial states.

Time0-1-2-4

States (̃s)

-8

s̃sup

s̃inf

s̃ generated

τ ∗

Time0-1-2-3-4-5-6-7-8
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τ∗ States (̃s)

Fig. 2. Illustration of Backward and Monotone Backward coupling

Definition. An eventep ∈ ξ is said to be monotone if it preserves the partial ordering
(< order) onX . That is∀(s̃, s̃′) ∈ X s̃ < s̃′ =⇒ Φ(s̃, ep) < Φ(s̃′, ep).
If all events are monotone, the global system is said to be monotone.



The monotonicity property of events guarantees the existence of a set of maximal
statesXmax and a set of minimal statesXmin. These sets are composed of states which
there is no greater (or lower) state than itself in the chain.So the transitions fired from
maximal states do not create states greater than these ones (or transitions fired from
minimal states do not create states lower than minimal ones).

Definition. Suppose the global statess̃1, s̃2 ∈ X , a statẽs1 is minimal if there exists
a statẽs2 such that̃s2 < s̃1 thens̃2 = s̃1. Thens̃1 ∈ Xmin. Analogously, given states
s̃3, s̃4 ∈ X , a states̃3 is maximal if there exists a statẽs4 such that̃s4 > s̃3 then
s̃4 = s̃5. Thens̃4 ∈ Xmax.

Algorithm 2 SAN Monotone backward coupling simulation
1: n = 1
2: E[1]← Generate-event( ){ arrayE stores the backward sequence of events}
3: repeat
4: n← 2n {doubling scheme}
5: for each s̃ ∈ XM do
6: ω(s̃)← s̃ { initial states at time−n}
7: end for
8: for i = n downto (n

2
+ 1) do

9: E[i] ← Generate-event( ){ generate events from (−n
2

+ 1) to−n, events from−1 to
(−n

2
+ 1) have been generated in a previous loop}

10: end for
11: for i = n downto1 do
12: for each s̃ ∈ XM do
13: ω(s̃) ← Φ(ω(s̃), E[i]) { ω(s̃) is the state at time (−i− 1) of the trajectories issued

from s̃ at time−n}
14: end for
15: end for
16: until All ω(s̃) are equal
17: Returnω(s̃)

Definition. Suppose a given partial order ofX and consequently a maximal setXM ,
if all trajectories issued fromXM coupled at time 0, then they will also coalesce for all
states inXR.

SinceX is finite and the events are monotone, the number of trajectories in paral-
lel can be reduced running simulation only over theXM = Xmax ∪ Xmin set. Starting
trajectories and going from the past fromXM maximal global states, when all trajec-
tories collapsed, we also obtain a sample of the stationary regime. Figure 2 illustrates
the monotone backward coupling, where there are only oneinfimumstates̃inf and
onesupremumstates̃sup in the state spaceXR. All trajectories issued from̃sinf and
s̃sup are computed from time−2k to 0 until trajectories collapsed at time0. If we as-
sumeXR as alattice, then every statẽsi is between the statẽsinf and the statẽssup,
s̃inf ≤ s̃i ≤ s̃sup. Considering the SAN context, if we know the global statess̃inf

ands̃sup (or aX subset of maximal states,i.e.,XM ) we can run a monotone version. It
uses a coupling vectorω of |XM | positions running these trajectories in parallel. Also,



it needs to store the events generated of the whole trajectory, because it uses adoubling
schemestructure [10] to generate and apply events in each trajectory. At each step in
the past, thecoupling timeτ∗ needed (i.e., the length of the step) is multiplied by2
(Algorithm 2, line4).

Canonical component-wise ordering in SAN Many models are naturally ordered as
markovian queueing networks [18–20] due the natural order on integer. The partial
order of the product state space can be established using forexample component-wise
ordering concepts. SAN descriptions derived from monotonequeueing networks can be
simulated taking advantage of having only the canonical minimum (all queues empty)
and maximum (all queues full) states. Then only two paths need to simulate in parallel
with the monotone algorithm version.

The canonical component-wise ordering means that the underlying Markov chain
structure of the model can be viewed as alattice, i.e., all global states have the same
supremumandinfimumstates. Given two arbitrary global statess̃1, s̃2 ∈ X , and veri-
fying s̃1 ≤ s̃2, it will often possible to say which is the largest state [21]. The extremal
states are given by the first and the last state ofX considering it is ordered lexicograph-
ically. The complexity to solve these family of models is then constant (two trajectories
in parallel) and the simulation is no more limited by the sizeof X but only byτ .
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Fig. 3. QN conversion to a SAN model and the orderedXR.

Supposing the queueing system of two queues in Figure 3 with capacitiesK1 and
K2 respectively. TheX size of this network is given by the Cartesian product(K1+1)×
(K2 + 1) and all global states̃s ∈ XR (equivalent MC) are reachable (XR ∼= X ). The



SAN model has two automataA(1) andA(2) respectively, and three eventsep ∈ ξ (since
two are local events and one is a synchronizing event in the model) with their rates. The
eventse1, e12 ande2 are monotone according canonical component-wise orderingof
X , i.e., there is no event in the model changing the partial order of states inX . The
application of the transition functionΦ(s̃, ep), for each eventep ∈ ξ, considering each
states̃ ∈ XR, is dependant of themin andmax functions6 evaluations for each global
state (in this example the global state to be evaluated has only two local states to observe
s̃ = {s1; s2}).

The minimum and maximum global states are extracted from theunderlying Markov
chain, but they consider the minimal and maximal local states of each automatonA(k)

defined by natural order on integer. SupposingK1 = 2 andK2 = 3, the maximal set
can be consideredXM ={{0; 0},{2; 3}}. The minimal local state of both automata is
the state0, and the maximal local state is2 for automatonA(1), and3 for automaton
A(2) respectively. The simulation could run only two trajectories in parallel: all queues
empty (minimal local states{0; 0}) and all queues full (maximal local states{K1; K2}).
The assumption of existing one minimum and one maximum localstate per automaton
which guarantees the exact sampling, can be applied also forhuge models following
component-wise principle.

Non-lattice component-wise ordering in SAN Glasserman and Yao [13] investigated
the search for partial (and total) ordering in discrete-event models looking at their own
structure, naturally retaining the order in which states inthe chain are accessed firing the
respective events. This procedure incrementally generates afeasible set, until all states
are accessed (total ordering), or a given partial ordering is identified. So we can consider
the feasible set as an ordered representation of theXR set. However in the absence of
a canonical component-wise model formation, for each eventin the model, the state
space ordering must be constructed firing events in the underlying chain structure. If
we have the same subchains ordering for the events, this means that exists a partial
order forXR ⊆ X (<), when it is possible to compare two states for a given event
ep ∈ E , independent of event rates.

The ordering construction for the queueing system example when already exists a
canonical formation leads us to alattice where there are two maximal global states as
seen in Figure 3. But without this characteristic the searchfor a order could be really
unfeasible for huge models and with a high enhanced computational cost. However the
global states ordering inX becomes not relevant if we can extract through the transition
function applications a smaller set of extremal global states of the Markov chain,i.e.,
not retaining the order of access of states but verifying if the next state in a transition
is greater than the current state. This means that if we walk in the chain applying the
transition function sucessively we can reach and collect the extremal elements (Algo-
rithm 3).

The component-wise ordering supposes that local states have a predefined order,
then the Cartesian product of states generates automatically ordered global states. The
states will always have transitions to greater or lower global states indexes. So when

6 x ∧ y = min(x, y) andx ∨ y = max(x, y).



Algorithm 3 SAN extremal states identification in component-wise models

1: for each s̃ ∈ XR do
2: max← true;
3: for each ep ∈ ξ do
4: st← Φ(s̃, ep) { firing transition}
5: if st≥ s̃

6: max← false; Break;
7: end for
8: if max== true
9: Add statẽs in XM ; { arrayXM stores the extremal states identified}

10: end for
11: Return arrayXM ;

there is no possible transition to be fired to a greater state,this means we find an ex-
tremal state in the chain. In this case, models can have more than two maximal states
(according to theXR set analysis),i.e.,XM is now the set of extremal elements formed
by global states where the successive transition function application stops when it does
not return greater states. Doing this it is not mandatory to know the state space par-
tial ordering but only identify the subsetXM of extremal states to run the monotone
backward coupling algorithm. The complexity to find extremal global states is given by
|XR| × |ξ|. The computational cost to run perfect simulation is now dependent of the
number of initial global states inside the setXM .

4 Resource Sharing with Mutual Exclusion

Our case study is the classical model of resource sharing with mutual exclusion and
some variations. In this section we show the product state space contraction regarding
natural structured formation of these models, and also issues related to the exploita-
tion of monotonicity properties for perfect simulation. All simulation examples were
executed on a PC architecture with a 3.2 GHz Intel Xeon processor under Linux oper-
ating system, with 1 GByte of memory. The execution times presented consider only
usertime estimation runningPEPSsoftware tool and the perfect simulation module de-
veloped (PerfectPEPS), i.e., they do not take account of other users in the machine or
operating system execution.

4.1 Dining Philosophers without Reservation

The dining philosophers problem is summarized asK philosophers sitting at a table
doing one of two things - eating or thinking. The philosophers sit at a circular table
with a large bowl of food in the center. A forkFk is placed between each philosopher
Pk, and as such, each philosopher has one fork to his left and onefork to his right.
The philosopher must have two forks (at the same time) to eat.Figure 4 shows the
correspondent SAN model that hasK automataP (k) representing the philosophers,
each one with two states:T (k) (thinking) andE(k) (eating). The product state spaceX
is formed by2K global states.
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X
M extraction Supposing six philosophers in a table (Figure 5) the application of the

transition function returns the extremal states for the SANmodel. Regarding structural
properties of this model all eventsetk, tek ∈ ξ are monotone since they retain the
component-wise ordering of global states in the chain formed by this class of models.
Algorithm 3 finds the last states̃s ∈ X that can be accessed,i.e., the extremal states
s̃ ∈ XM . Then component-wise property allows the feasible set formation based on
indexes, because the successive application of events (tracing a trajectory) leads to a
state where it is not possible to go on to a greater state,i.e., they are the extremal
states of the chain. For these states there are events just togo back in the paths already
generated.
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Fig. 5. OrderedXR supposing6 philosophers

Considering the model global states formed bybits in the Figure 5, since the state
T (k) is represented byO andE(k) represented by1, we have for example, a setXR =
18 andXM = 6 (the marked states are maximal elements) for a model with sixphiloso-
phers. Table 2 shows the SANmodel withK = 6 . . . 26 and their respectiveX ,XR and
the extracted set of extremal statesXM . Since the size of the model grows exponentially



the size of maximal set grows slowly comparatively. The sizeof XM is the number of
trajectories to run in parallel,i.e., the number of vector positions to store, so it is also
the computational cost in memory positions to run perfect simulation. Each position is
an integer representing the current global state index in the trajectory. When we have
more philosophers in the model the impact of this optimization is more clear mainly
verifying the time spent to solve this models usingPEPSsoftware tool and the perfect
simulation module (Perfect PEPS).

K X XR XM PEPS(iteration)Perfect PEPS(sample)
6 64 18 6 0.000004 sec. 0.002711 sec.
8 256 47 11 0.000123 sec. 0.003464 sec.
10 1,024 123 18 0.000542 sec. 0.005682 sec.
12 4,096 322 30 0.002487 sec. 0.012290 sec.
14 16,384 843 52 0.011832 sec. 0.029745 sec.
16 65,536 2,207 91 0.055973 sec. 0.074337 sec.
18 262,144 5,778 159 0.296355 sec. 0.184355 sec.
20 1,048,576 15,127 278 1.394022 sec. 0.457599 sec.
25 33,554,432167,7611,131 5.115790 sec. 4.736356 sec.
26 67,108,864392,8362,779 —- 13.500322 sec.

Table 2. Resource sharing without reservation

The actual number of samples to generate depends immensely on the numeric char-
acteristics of the model itself. Different parameters as the actual numeric rates of the
events, may change the required number of samples to achievestatistical convergence of
the stationary prediction. Analogously, the numbers of iterations to perform the iterative
solution methods in thePEPStool also depends on the model numeric characteristics.
Therefore in the Table 2 we indicate the amount of time neededto perform one single
sample generation with the contracted state space in thePerfect PEPSmodule, and one
single iteration in the numerical solution implemented byPEPS. However, the values in
seconds presented here are to be considered with caution, since nothing relates the num-
ber of needed iterations inPEPSwith the number of samples needed in our simulation
tool. For example, the first model (K = 6) needed 528 iterations to achieve a precision
of 10−10 in thePEPSsolver, while for the same precision100, 000 samples were gen-
erated by simulation. However, a smaller number of samples would probably already
be enough to achieve (statistically) the required precision for such small example. The
example was extended just beyond the capacity limit ofPEPS, since the last example
(K = 26) is just a little too big to run on our target machine that holds problems of as
many as 64 million states.

4.2 Dining Philosophers with Reservation

We can extend the mutual exclusion in resource sharing models to analyse more
deeply the locking of shared resources in systems. But here the goal is to obtain an
extensible model where a numerical solution is no longer possible due state space ex-
plosion, in order to show the possible product state space contraction also in these cases.



Figure 6 hasK automataP (k) representing the philosophers, each one with three or-
dered states:T (k) (thinking ), L(k) (taking left fork), R(k) (taking right fork). The
philosopher can reserve the fork on his immediate left or right waiting for eating with
two available forks. To avoid deadlock is established an ordering to get the forks in the
table, for each philosopher in the model. The product state spaceX is formed by3K

global states.
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Fig. 6. Philosophers SAN Model with Reservation

X
M extraction Regarding structural properties of this extended model themonotonic-

ity properties are also maintained for all new events generatedlti, tri, rli, rtk, tlk and
lrk. The inclusion of a new state in each automaton and new eventsconstraints does
not interfer inX partial ordering. Since the minimal global state0 (all philosophers
thinking) is the initial state to generate the feasible set of the model, the extremal states
are naturally the ones with greater indexes than their consequent transitions.

Table 3 shows in its last lines, huge models to solve withPEPSsoftware tool mainly
because the size ofX , and the possible contraction of state space inXM to run perfect
simulation. The costs in memory are drastically reduced since for monotone versions
we used to store just the coupling vector with extremal elements instead of the product
state space. The same remarks still apply to the times presented here, specially the fact
that this table present times for one iteration in thePEPSnumerical solution, and one
sample generation forPerfect PEPS. For the last model (K = 18) thePEPSsolution
could not be achieved since it represents a state space of more that 327 million states,
which is considerably above the current overall numerical solution limitation that is a
little below 100 million states in a 4GBytes memory machine.

5 Conclusions

We show that is possible to design a perfect sampling algorithm for SAN by back-
ward coupling. For the underlying Markovian graphs, the simulation coupling time can
be greatly reduced by using extremal initial states to run trajectories in parallel. In fact,
this paper not even present the times for sample generation without using the state space
contraction because even the average models,e.g., Resource Sharing without reserva-
tion K = 14, would represent an model much slower than the larger model we were



K X XR XM PEPS(iteration)Perfect PEPS (sample)
5 243 70 11 0.000130 sec. 0.004547 sec.
6 729 169 17 0.000474 sec. 0.007829 sec.
7 2187 408 27 0.001693 sec. 0.014273 sec.
8 6,561 985 43 0.003185 sec. 0.032354 sec.
10 59,049 5,741 111 0.038100 sec. 0.111365 sec.
12 531,441 33,461 289 0.551290 sec. 0.689674 sec.
14 4,782,969 195,025 755 5.712210 sec. 2.686925 sec.
16 43,046,7211,136,6891,975 68.704325 sec. 15.793501 sec.
18 387,420,4896,625,1095,169 —- 83.287321 sec.

Table 3. Resource sharing with reservation

able to solve (Resource Sharing with reservationK = 18). However the study of cou-
pling times considering the maximal setXM is a work in progress. Preliminary results
shows that for the models which the numerical solution is no longer possible withPEPS,
perfect simulation seems to be a reasonable alternative. The natural future work in that
direction is a study of the effects of our technique in the statistical convergence. Such
study could also compare the time of a full stationary solution using perfect simulation
and the traditional numerical solution.

The current limitation ofPEPSsoftware tool is in order ofX ≤ 6×107 states using
1 Gbyte RAM machine because it needs to store probability vectors for the state space
X . SAN simulation approaches, on the contrary, will work onlywith vectors of size
related to maximal sets of the models. Even further, in the case we have a particular
interest in a given aggregation function of result,e.g., compute the probability of a local
state, our solution may avoid to store the probability vectors for the maximal sets, but
only compute the aggregation function over the generated samples. This last improve-
ment combined with the monotonicity property identified in models with a component-
wise order can help us to solve really huge models. In fact, this approach may, virtually,
have no size bound, since not the transition matrix, nor the probability vector can be
stored. Such possible applications will only have a time bound to be considered, and
since the generation of samples can be performed in parallel, even this time bound can
be overcome for models with thousands of millions states. Only the statistical analysis
of the generated samples will have to be dealt. Nevertheless, all these reasons let us be-
lieve that the perfect simulation of SAN with component-wise ordering allowing state
space contraction is a more than worthy solution when the useof numerical methods is
just not possible with the current technology.
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