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ABSTRACT

We combine monotone bounds of Markov chains and the coupling
from the past to obtain an exact sampling of a strong stoichast
bound of the steady-state distribution for a Markov chaitecBas-

tic bounds are sufficient to bound any positive increasingards

on the steady-state such as the loss rates and the average dez

lay. We show the equivalence between st-monotonicity aettev
monotonicity when the state space is endowed with a totarerd
ing and we provide several algorithms to transform a systam i

a set of monotone events. As we deal with monotone systems, th
coupling technique requires less computational effonteéeh iter-
ation. Numerical examples show that we can obtain very itabr
speedups.
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1. INTRODUCTION

Simulation is the most versatile tool to model large and demp
systems such as high speed networks or highly dependable com
puter systems. Unfortunately even if we can represent layge
tems with simulators, usual techniques require a long tionein
when we consider a system with a large number of resources and
when we need very accurate results. Drawbacks of simulatien
the control of the warm-up period before sampling, the inflee
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of the initial state on the stochastic behavior of the sysaewhthe
accuracy for the estimation of small events probabiliti€bus it

is typically difficult to perform a rare event simulation Wit high
dependence on the initial state. Usually the initial stétde sim-
ulator is an empty network when we model a network of queues
or a fully operational states when we deal with reliabilitpiplem

and these states clearly add a bias to the likelihood. Bigldin
arbitrary state of the model raises new questions:

e is the state really reachable ?
e what is the bias induced by this state ?

And the warm-up period problems remains to be solved for any
initial state. Even if we consider Poisson arrival of everggener-
ation does not really help as the regenerative points thaaneas-
ily identify appear very unlikely (consider for instancestempty
state in a network of queue when the load is not light).

In this paper we advocate to uperfect simulatiorand to com-
bine this technique with stochastic monotonicity to spepdhe
computation. Perfect simulation [16] directly builds stgastate
samples avoiding the warm-up period and the initial steds.bT his
method is based on the more general theory of coupling fokMar
chains. Let us first review some ideas about coupling. Asdhate

we compute with the same random sequence of random numbers a

sample path beginning at any initial state. If at tintevo sample-
paths are in the same state (we say that they couple), thegyoni
tinue forever during all the simulation. When all the sampéehs

have coupled, we obtain a sample state. We may use the state to

initialize the simulation or consider it as a sample of disttion. it

is not necessary anymore to continue the simulation. Foarce

in Fig. 1 all the sample-paths have coupled in stas time4. In
this drawing, each column is associated to a time instanttiaed
rows contain the state#/; is the i-th value of the random sequence
used to generate the transitions of the chain at tim€his draw-
ing is an example of forward coupling also called couplingha
future.

It is known for a long time that coupling in the future does not
provide a sample distributed according to the steady-st&et
Propp and Wilson have proved that coupling from the past @FT
also called backward-coupling, gives an exact sample ofterely-



Figure 1. Forward Coupling

state distribution [16]. Coupling from the past is similtarcou-
pling in the future but the initial time of the simulation Wie
chosen randomly whereas the final time is deterministic. theio
words the Markov chain is not started at time 0 but sufficiefdt
away in the past such that at time 0 all the paths are coupled.

This method is extremely efficient when the state space g lar
and has monotone dynamic. It has also be shown recently #hat w
can use antithetic variable technique to speed up the ceripot
of the confidence interval [21]. But many practical and tie¢ical
problems remain to be solved for discrete Markovian systemns
obtain a fully versatile technique.

One of the problem we must consider is the number of operstion
we need to obtain a sample. The general backward algorities tr
to couple sample-paths beginning in every state in the stetee.
Thus modelling very large state space systems requires swdel
transformation. Furthermore the number of operations ieadt
linear in the size of the state space. The monotonicity ptgpe
of the event structure of the model (which is formally defined
the next section) allows to use a more efficient algorithmaolwhi
sandwiches all sample-paths to couple into extreme ones.

Many routing techniques for networks of queues are monotone
[11], but a large number of models of synchronized systemsar
monotone. So we prove a model transformation techniquetwhic
derives monotone models. The fundamental theory we need her
is the stochastic comparison of Discrete-Time Markov Chésee
[14] for a recent presentation of this theory). These modedsuilt
to provide bounds on several stochastic estimates we ysuafit
to obtain. Strong stochastic bounds are associated toasicig
rewards we compute on transient distributions and on tredgte
state when it exists. Thus if we can compare two distribstiove
can also compare increasing rewards on these distributidns is
usually sufficient for Quality of Service modeling as we justnt
to prove that some quantities (average delay, loss ratesyraaller
than some performance thresholds (see for instance [13faip-
plication on Fair Queueing disciplines and [12] for alglonis to
bound sub-stochastic matrices for point availability mejle

The following of the paper is as follows. The next sectionds d
voted to a brief presentation of Perfect Simulation andataglex-
ity. In section Il we present the theory of construction obihb-
tone Markov chains and we prove the relationships between th
monotonicity associated to the strong stochastic ordeonecpm-
pare Markov Chains and the monotonicity of events consitiare
the sandwiching of sample paths when the state space is edsum
to be totally ordered. We also give an algorithm to obtain fa se
of monotone events from a monotone matrix. In section IV we
consider the general problem of model transformation t@ioba
monotone representation using matrices and events. ¥imather-
ical results are shown in section V to illustrate that the patation

of the monotone bounds may be much faster than in the backward
perfect simulation.

2. PERFECT SIMULATION

In this paper we assume finite state space, ergodic Contsauou
Time Markov Chains (CTMC). The first step of the event model
is a uniformization of the CTMC. Thus the monotone algorithm
is based on Discrete-Time Markov Chain (DTMC), and the gjron
ordering of these chains.

2.1 Global stateiteration

Formally, when all the knowledge of the process dynamics is
included in the state description, the system may be destiily
transition functiond :

Xn+1 = (I)(Xn, Un+l); (1)

where X,, is n'" observed state of the system, afid, }, ., the
sequence of inputs of the system, typically a sequence Isf tcah
Randomfunction. This type of stochastic recursive sequence has
been widely studied in a general framework [2] or [7] and some
results related with perfect simulation may be found in [19.

It is clear that, if the{U, } are independent and identically dis-
tributed, the proces$X., }, ., defined by an initial valuelo and
the recursive equations (1) is a Markov chain. Converséhgrga
transition matrixP, it is possible to find many transition functions
® such that a Markov chain defined by (1) has transition ma®rix
[20]. Clearly, all these functions do not require the samerage
number of operations. This is illustrated in the examplewel

2.2 FiniteMarkov Chains

Based on a stochastic recurrent sequence formulation,othe f
lowing algorithm provides directly a sample of the steadyestlis-
tribution. Notice thatS denotes the finite state space set.

Algorithm 1 Backward-coupling simulation (general version)

for all x € S do
y(z) <« =z {choice of the initial value of the vectay, n = 0}
end for
repeat
u «— Random; {generation af_,}
for all x € X do
y(z) «— y(P(z,u)); {computation of the state at time
of the trajectory issued from at time—n}
end for
until All y(z) are equal
returny(z)

¢

I
0
U-4=0.52 U-3=0.87 U-2=0.63 U-1=0.11 U0=0.24

Figure 2: Convergence of Coupling from the Past Algorithm
for a non monotone Markov Chain



Provided that the coupling time is almost surely finite (Gu&es
some technical conditions), it is shown that Algorithm (&hgrates
a state from the steady-state distribution [16, 20]. Eet be the
expectation of the coupling time, be the size of the state space
and op(®) be the average number of operations to compute the
transition function®. Clearly the average number of operations
before coupling isy(Et1)op(P).

Function® has a lot of influence on the number of operations.
First the way it is implemented has a linear influence becafise
termop(®). But the problem is much more complex. The coupling
time depends on functio® used to describe the chain. Let us
illustrate both points with a toy example.

Consider a simple DTMC with three statesb andc, an arbi-
trary initial state and transition probability matrix:

0.5 0.25 0.25
025 0.5 025
0.25 0.25 0.5

P=

Using transform inverse function to represent the traosifunc-
tion, we can writed(a) as:

if U <0.5 P(a)=a
elsifU < 0.75 ®(a) =b
otherwise P(a)=c

In this paper we represent this abstract code by the followin
entry in the transition table to have a more abstract reptasen:

U4 174
a

1/4
b

The usual utilization of this table is to perform a linear reba
from the beginning of the table with comparison on the bouieda
The number of operations we give in the following takes inte a
count this linear search in the entries of the table. Usingttble
representation, this chain may be associated to the failpfuinc-
tions® 4 and®p.

1/4
c

a

Dy | 1/4 | 1/4 | 1/4 ] 1/4
a a b c
b b c a
c c a b

o | 1/4 | 1/4{ 1/4 | 1/4

a a b c

b a b c

c [a b ] ¢

Function® 4 implies that the chain never couples becaugé &

0.5 the state does not change,0ib < U < 0.75 the state in
increased by one in a circular list andGf > 0.75 the state is
decreased by one. Clearly the sample-paths never couple.

But at each step, the probability that the coupling occumsgus
function® 5 is larger thard.5. Thus the expectation of the coupling
time is smaller thar.

Designing algorithms to find the most efficient functiénto
reduce the expectation of coupling time is still an open {eob
Some heuristics have been considered in [17].

Let us now consider the number of operations necessary te com
pute® 4 and®p. If we use an inverse distribution approach the
average number of operations fbr, is 1.5 while the computation
cost of & depends on the state: it1s5 ona and1.75 on b and
c. Note that this complexity is related to the number of norozer

transitions in the chain, their probabilities and the orilewhich

we consider the transitions in the algorithm. It is knownddong

time that ordering the transitions in a decreasing ordeneif {prob-
ability provides the most efficient implementation for irse dis-
tribution implementation. It is worthy to remark here thgtimg to

optimize the number of operations i will eventually lead to a
function ® which does not have a small coupling time.

On the practical point on view, a better implementation Hase
on the alias method has been used in PSI the software we have
developed [20].

This toy model illustrates that the optimization of functi® to
minimize the number of operations before coupling is a cexpl
approach. Hopefully it is also possible to reduce the nundber
sample-paths if the model is event-monotone.

2.3 Monotone perfect sampling

We suppose that the underlying system is governed by a fitite s
of events. Thus the system is described by a transitionifumetith
events. Following the Poisson calculus methodology [3nevare
driven by homogeneous independent Poisson processeseatigtth
namic of the system is defined by a Poisson process (unifarmiz
tion of all the Poisson processes) and a transition funchion, e)
defined for each state and each evert occurring on a Poisson
process. Itis convenient to include the fact that some evemild
not be applied to a state (not allowed transitions) insigetthn-
sition function. For example, the eveahd of servicecould be
executed only if the number of customers in a queue is grézder
one. In a queueing network, a customer arrival, the end ofvécge
and the following routing, a customer departure, are tyipeants
in networks. Firings in Petri nets or Cooperation is Stotibas!-
gebra processes may be handled as well and this allows dilersa
description of models.

Let us now give formal definitions.

DEFINITION1 (EVENT). Aneventis an application defined
on S, that associates to each statec S a new state denoted by
®(z,e). D is called theransition function by events of the system.

DEFINITION 2 (EXECUTION). An execution of the system is
defined by an initial state, € .S and a sequence of everts=
{en}nen. The sequence of statés, }»cn defined by the recur-
rencexnt+1 = ®(xn, ent1) for n > 0is called atrajectory.

DEFINITION3 (MONOTONE EVENTS. An event is said to
be monotone, if it preserves the partial orderiggon S :

V(z,y) € § v <y — ®(z,¢€) < By, e)

If all events are monotone, the global system is said to bateve
monotone.

When the operatod is event-monotone, the algorithm could be
simplified by making iteration only on maximum and minimum
values of the state space. For instance, in an open queuthg ne
work, there is an unigue minimum (all queues are empty) and an
uniqgue maximum (all queues are full). Then we only iterateut
taneously 2 trajectories and the time reduction is in theood the
size of the state space. This concept of event-monotonelswie
clearly help to reduce the computation cost to obtain a sampl

We give in the following backward-coupling for event-mooo¢
models. We consider a set pfevents with rates\i, A2, - -+ , Ap.
LetAbe} " | A

Let us turn now to the expectation of the coupling time forgve
monotone systems. It has been shown [16] that the mean ogupli
time is optimal when steps in the past are multiplied2owhen



Algorithm 2 Backward-coupling simulation (event-monotone ver-
sion)
n=1;
E[1]=Generate-event()
repeat
n=2n;
for all x € M Umdo
y(z) <« x {choice of the initial value of the vectoy,
n = 0}
end for
for i=n downto n/2+1do
E[i]=Generate-event() {generate event according to dis-
tribution (3¢, - -, 22}
for all x € M Umdo
y(z) «— @(y(z), E[4]) {apply the transition given by
eventE[i] }
end for
end for
for i=n/2 downto 1do
{event —i has already been generated in a previous step}
for all z € M Um do
y(z) — ®(y(x), Eli)
end for
end for
until All y(z) are equal
returny(z)

a brief overview on stochastic ordering for Markov chains are
obtain a set of inequalities to imply bounds. Then we present
basic algorithm proposed by Abu Amsha and Vincent [1]. In the
following, P; . will refer to row s of P.

3.1 A brief overview

Following [14], we define the strong stochastic ordering oy t
set of non-decreasing functions or by matf;.

100 0
110 0
K,—|1 11 0
111 1

DEFINITION 4. Let X andY be random variables taking val-
ues on a totally ordered space. Théhis said to be less than
Y in the strong stochastic sense, that s, <.; Y if and only if
E[f(X)] < E[f(Y)] for all non decreasing functiong whenever
the expectations exist.

If X andY take values on the finite state spate- {1,2,...,n}
with p andg as probability distribution vectors, theX is said to
be less thary” in the strong stochastic sense, thatXs,<,; Y if
and only if -7, p; < >0, ¢ fork = 1,2,...,n, or briefly:
szt gsi qKst-

Important performance indices such as average populdties,
rates or tail probabilities are non decreasing functioniseré&fore,

trajectories issued from maximum and minimum states hate no bounds on the distribution imply bounds on these perforraane

coupled at timé. In the algorithmM (resp.m) denotes the set of
maximal (resp. minimal) elements in the state space. Weigive
the following

dices as well. Moreover stochastic bounds are also validr&or
sient distributions. We do not use this property as we areniyai
interested in performance measures on the the steady-dtate

This algorithm has the same convergence properties as Algo- known for a long time that monotonicity [14] and comparabitf
rithm (1). The doubling period of each scheme ensures that th the one step transition probability matrices of time-hoemugpus

coupling time for an event-monotone system is less than dle ¢
pling time for Algorithm (1) multiplied by2. Thus the expected
number of operations BET10p(®4).

MCs vyield sufficient conditions for their stochastic compan.
This is the fundamental result we use in our algorithms. tHas
us define the st-comparability of matrices and the st-maroity

The algorithms and the drawings of the sample paths clearly of a matrix.

show that an iteration of Algorithm (2) is much simpler them a
iteration of Algorithm (1) as it builds less sample-paths.ifone
can transform a model to imply event-monotonicity, one cae u
Algorithm (2) instead of Algorithm (1) and obtain an exactgde
of the new model much more efficiently. We propose to tramsfor

the model to obtain an upper bound of the Markov Chain using

the stochastic comparison approach. Note however that weto
have any information on the expectation of the coupling fimthe
initial model compared to the expectation of the couplimgetiin

the upper bounding model. We just know that on the same model

the algorithms have roughly the same average number ofidtes
Numerical results show very important speedups and thegheo
ical approach proves that both expectations are upper teolibd

the same geometric delay. To the best of our knowledge, we are

only able to obtain an upper bound on the expectation or datc
tic upper bound on the distribution.

3. STOCHASTIC ORDERING ONTOTALLY
ORDERED STATE SPACE

As the first step of the analysis consists in the uniformarati
of the process using the sum of the rates, we restrict owgsety
Discrete Time Markov Chains (DTMC) with finite state spate-

{1,...,n} endowed with a total order. We consider the strong

stochastic ordering (denoted "st" in the following). Finse give

DEFINITION5 (MATRIX STOCHASTICCOMPARISON). LetP
and @ be two stochastic matrice® <.: Q ifand only if PK; <
QK. This can be also characterized &5 <s: Qs for all 4.

DEFINITION6 (MONOTONEMATRIX). Let P be a stochas-
tic matrix, P is st-monotone if and only if for all andv, if u <. v
thenuP <4 vP.

Hopefully, st-monotone matrices are completely charazsdr
(this is not the case for other orderings).

PROPERTY 1. Let P be a stochastic matrixP is < s;-monotone
if and only if K, PK,; > 0 component-wise.

PROPERTY 2. Let P be a stochastic matrixP is st-monotone
if and only if for all,we haveP; . < Piy1,x

THEOREM 1. Let X(¢) andY (¢) be two DTMC andP and @
be their respective stochastic matrices. THe(t) <s Y (¢),t >
0, if

e X(0) <.t Y(0),
e st-monotonicity of at least one of the matrices holds,

e st-comparability of the matrices holds, that3,. <s: Qi « Vi.



Thus, assuming thaP is not monotone, we obtain a set of in-
equalities on entries ap :

Vi,J

Z:zj P < ZZ:]- Qik @)
Vi, j

ZZZjQi,k < ZZ:]-QH-I,k
3.2 Algorithms

It is possible to derive a set of equalities, instead of irditjes.
These equalities provides, once they have been ordereactieas-
ing order fori and in decreasing order fgrin system 3), a con-
structive way to design a stochastic matrix which yieldsalsastic
bound.

{ dopey @i =220, Pk
>k Qitre = maz (33— Qi Yop—y Pit1,k) Vi,
(3)

The following algorithm [1, 9] constructs the optimal st-nwdone
upper bounding DTMQY for a given DTMC P. For the sake
of simplicity, we use a full matrix representation fét and Q.
Stochastic matrices associated to real performance di@iyzob-
lems are usually sparse. And the sparse matrix version thielkl-
gorithms we present here is straightforward. Note that dulkd or-
dering of the indices, the summatiops™_; gi—1,; and>-7_, | qi,;

another algorithm (IMSUB) which solves the problem [9]. IMB
avoids to delete the transitions in the upper triangle ankenaos-
itive the elements of the lower subdiagonal.

Algorithm 4 IMSUB

qi,n :pl,n;
fori=2,3,...,ndo
Qin = maX(Qi—l,n7pi,n);
end for
for | = n-1 downto 1do
qi,1 = P1,i;
fori=2,3,...,ndo

Qi =max (3 Gi1,5, Xy Pig) = Do gy G
if (¢ > 1) and(g;;; = 0) then
g =¢€(1— Z;Z:H—l Gij)
end if
end for
end for
returng

The first step is to prove the relations between the strorahass
tic ordering we use for the DTMC and the event-monotoniciy w
consider for the coupling from the past algorithm.

are already computed when we need them. And they can be store3.3  Stochastic strong monotonicity and

to avoid computations. However, we let them appear as summa-

tions to show the relations with inequalities 2.

Algorithm 3 Construction of the optimal st-monotone upper
bounding DTMCQ:
qi,n = P1,n;
fori=2,3,...,ndo
Gi,n = max(gi—1,n,Pin);

end for
for | = n-1 downto 1do
q1,1 = P1,1;

fori=2,3,...,ndo
qig =max(P_7_; qi-1,5, 25 Pig) — iy G
end for
end for
returng

First let us illustrate Algorithm (3) on a small matrix. Wereo
sider a5 x 5 matrix for P1 and we compute matrig), and both
steady-state distributions.

ro5 02 01 0.2 0.07
01 07 01 00 0.1
P=1]02 01 05 02 00
0.1 00 01 07 0.1

L 0.0 02 02 01 0.5 ]

ros5 02 01 0.2 0.07
01 06 01 01 0.1
Q=101 02 05 01 0.1
0.1 00 01 07 0.1

L00 01 01 03 0.5 |

Unfortunately this algorithm may transform an irreducibhatrix
into a reducible one and we do not have a complete charaatieriz
of matrices where this problem occurs. Indeed due to thaacbt
tion operation in inner loops, some elementgiiay be zero even
if the elements with the same indicesfrare positive. We may use

event-monotonicity

We suppose a totally ordered state sp8@nd give the relation-
ships between the stochastic monotonicity and event-rooigity.

THEOREM 2. When the state space is totally ordered, if the sys-
tem is event-monotone (see Def.3), it is also stochasticadino-
tone, if the underlying model is homogeneously governedibjta
set of event® = {e1,---en}.

Proof :

We must show that for each two states x and y such:thsty,
the rowz and the rowy of the underlying probability transition
matrix are comparable in the sense<f; order:

Plz, «| <st Ply, *]
To demonstrate this, we must show that:

N N
> P(x,i) < Y P(y,i),Vk=1,2,..,N (4)
1=k 1=k
From the event-monotone definition, we have
<y — P(z,e) =2 < B(y,e) =2 5)

Assuming that the same set of events occur in each state, the
transition matrix is defined by the event probabilities for e,, €
E, such thatP[z, 2] = 3 4, . )=, Pe.- ThUS equation 4 can be
written as follows:

N N
S0 pe <303 pe VE=12,N

i=k ®(x,eq)=1 i=k ®(y,eqy)=1
It follows from Eq. 5 that for each,, if p.,, is included in

N
Z Z De,,, thenitis also included in

i=k ®(xz,eq)=1

N
> > pe,. Thus the former inequalities are satisfied @nd
= (yen)=i
is <5 monotone.



THEOREM 3. When the state space is totally ordered, if the 0.5/ 0.0 00 00 00

system is stochastically monotone, then there exists a Beit of 02 03] 00 00 00
eventse, - - - e, for which the system is event-monotone. P=1(02 03 00 00 00| — pe, =03

. _ _ _ _ 01 00 01 0.3 0.0

We give the following algorithm which takes as input a stattta 0.0 00 02 03] 0.0

monotone matrixP = (p;,;)1«n,1-n and gives a set of evenfs

and a transition functio®, such that®(z, e,,) is event-monotone. F0.2] 00 00 0.0 007

02| 00 00 00 0.0

Algorithm 5 Stochastic monotonicity- event-monotonicity

P=1102 0.0 00 0.0 0.0 — Peg = 0.1
S=1{1,2,3,...,N} 01 0.0 [0.1] 0.0 0.0
E = ({the set of events is initially empty} L 0.0 0.0 0.2] 0.0 0.0

d:S+xF — S
V = [v1,v2,...,un]{a vector representing the column index of

the rightmost positive values for each row, initialized t§ N 0.1} 00 0.0 00 00

0.1 0.0 00 00 0.0

fepZatO P=|1]01 00 00 00 00| — p,=0.1
for i — 1to N do [0.1] 0.0 00 0.0 0.0
. L 0.0 0.0 ]0.1] 00 0.0 |
J o= vi
while p; ; = 0do So we can derive an event description of the maltjpusing these
jo—j—1 seven events.
end while
v; «+ j{update vectorV} Peg + Peg + Pey Pey Peg Peq + Peg 0.0
end for Peg + Pey Pes + Pey Peg Peg Peq
k «— k+1{the next eventy} pe trer 0% pes P e by +peg pol
De,, — MINIK<N Pi,v,; {probability for evente,} 00 0.0 Peg T Per Peg Pey + Pey + ey + Pey
for i =1to N do We now give the proof that the transition functidrgiven by the
D(i,er) — v; Algorithm (5) is event-monotone.
Diw; — Piw; — De{Update the matrix} Proof:
end for The proof is done in two steps. First we demonstrate the exis-
until 3°, cppe, = 1 tence and the monotonicity of the generated events and dlgcon

we prove that this set of events is finite.

Before proceeding with the proof, let us illustrate by anregée
on a simple matrix the steps of this algorithm. The companeht
vector V are the index of the elements which are framed in the m
trices. These are indeed the column index of the rightmaositipe
values for each row.

e The principe of this algorithm is to construct the event-wtome
model by defining its monotone events one by one until the
probability sum is equal to one. This algorithm proposes to
choose the first positive value by beginning from the right fo
each row x. Let us note this value &, and the correspond-
ing column bywv,, for all statex € S (R, = P(x,vs)). In

0.5 0.2 0.1 102/ 0.0 fact vectorV is constituted ob,,, x € S.

02 05 01 01 [0.1]

It follows from stochastic monotonicity that
P=]02 03 02 02 01 | = pe, =01

01 00 01 07 [0.1] N , N ,
0.0 00 02 03 |05 > P(x,i) < > P(y,i),Vk=1,2,.,N  (6)
1=k i=k
And vectorV is [4,5,5,5,5]. The first evente; will occur with
probability p., = 0.1. In the sequel we only indicate the event Thus for each two states y such thate < y :

probabilities obtained in each step.
05 02 01 0.1 0.0

R, = P(x,v5), and Ry = P(y,v,) — v < v, (7)

02 05 0.1 [0.1] 0.0 We define an evert, with probabilityp.,, = min;=1,...n (R;)
P=1{(02 03 02 02 0.0 — Ppe, = 0.1 such that for all state (i, e,,) = v;. It follows from Eq. 7
01 00 01 [0.7] 00 that for each two states, y such thatr < y :

00 00 02 03 |04

05 02 [0.1] 00 00 P(z, eu) < P(y, €u)
02 05 [0.1] 00 00

Thuse,, is a monotone event.
P=102 03 02 [0.1] 0.0 — Pes = 0.1

Once this event is defined, we subtract its probability from
0.1 0.0 0.1 [0.6] 0.0 ”» . ; : X

the transition matrix. It is done by using vectbr which
00 00 02 03 |03 .

means that for each row we subtragct, from the right most
05 02 00 00 00 positive entry. We have from equation 6:
02 0.5/ 00 00 00 N N

P = 0.2 0.3 |02| 0.0 0.0 — Pey, = 0.2 Z P(x’z) — De, < Z P(y’z) — De, s Vk=1,2,..., N

0.1 0.0 0.1 [0.5] 0.0 i—k i=k

00 00 02 03 |02 ®)



Therefore the updated matrix satisfies the stochastic mono-

tonicity inequalities for the next iteration to determirtest
next event. The other events are similarly determined by us-
ing the updated matrix and vector.

e During the execution of this algorithm, the construction of
each event makes null at least one matrix entry. Mebe
the number of non zero entries of the underlying matrix. In
the worst case afte¥/ < N? steps all the entries of the tran-
sition matrix will be null and the sum of event probabilities
will be equal to one.

These theorems state that st-monotonicity and event moigeto
ity are equivalent when the state space is totally orderat Al-
gorithm (5) allows us to obtain a monotone event descriptiba
monotone matrix.

3.4 Coupling Time

Consider the time complexity of the perfect simulation algo
rithm. When the chain is not monotone, the backward itenatio
of Algorithm (1) should be done for each state. Then the etgukc
time complexity is of the form

op(®).n.Er;

whereop(®) is the time cost of applying the transition function to
a single statey is the size of the state space anthe number of
iterations until coupling occurs.

Denote by®(x,e1,- - -, en) the state of the system after apply-
ing to the initial stater the sequence of events, - - - , e,,. This no-
tation generalizes to the image of a set of state® (A, e1, - , en).

DEFINITION 7. The coupling time of the backward scheme is
given by

7 = inf {n; such thatCard(®(S,en,---

761)) = 1} :
Provided that there exist with a positive probability aregerk and

a specific coupling pattern of everds, - - - e; such that
Card(®(S,ex, - ,e1)) = 1, thent is almost surely finite and,
moreover, upper bounded by a geometric distribution. Inctee
when the matrix is monotone and the transition functionoih

the inverse of the probability distribution function, théme se-
guenceeq, - - - ,e1 (number of events is the size of the state space)
is a coupling pattern and the backward scheme convergessalmo
surely.

Afirst significant time reduction appears when the chain isoo
tone Algorithm (2). In that case, iterations are done onlytanset
of extreme states, and in our situation, because the state s$p
totally ordered just 2 trajectories are derived backwandt tBis al-
gorithm needs the storage of the event sequence (amountrof me
ory in the order ofr). The doubling scheme in the past ensures that
the total number of iterations is less thzn

Previous works [8] have shown that in many practical situsi
such as queueing networks, the coupling tiBweis linear in the
number of queues and quadratic in the capacities of the gueue
Then itis much smaller than the size of the state space whinisy
exponentially when the number of queues increases.

A second improvement could be done by the utilization of ag-
gregation function. Truffet [13] has proved that we can corab
strong stochastic bounds and aggregation. We have deetojpe
algorithms to build a monotone lumpable upper bounds: LINBSU
[10] and LMSUB [4]. LMBUB is a sparse matrix implementation
of Truffet's method while LIMSUB creates an irreducible miat
Of course in both cases we only build the lumped matrix of the
bound to avoid a very large state space generation. Thisll/re

useful for numerical computation when one must handle vecto
and matrices of the state space size.

Here most of the influence of the size of the state space has bee
cancelled when one uses monotone models and the sandwieh alg
rithm. But lumping the model still helps. We assume that ia th
lumpable algorithm, the aggregation functibpreserves the order
of the initial state space. Then it is easier to simulate tkvard
scheme on the lumped chain and derive the steady state oétlimp
process and extend by decomposition of macro-states tanitfied i
state. Denote by the coupling time of the backward scheme of
the lumped chain. Then we have the theorem

THEOREM 4. If the lumping functiord is order preserving£ <

y impliesi(z) < l(y)), then
7t <ot T.

This comes from the fact that if the initial chain have codptleen

the lumped one have already coupled.

The estimation of coupling time reduction is known to be hard
and counterexamples shows that some aggregation fundtares
the same coupling time distribution as the initial chain.

Let us now return to input model and discuss how we can trans-
form it to be monotone. We present several algorithms in the n
section to deal with various types of Markovian model. Irtgec5
we present some numerical experiments to show the speedemp wh
the model is monotone.

4. MONOTONE PERFECT SAMPLING FOR
NON-MONOTONE MODELS

We need several algorithms because we must consider several
types of input models and several ways to transform thesestaod
into a set of monotone events. In the MESCAL project we have
developed two simulators based on these concepts. PSlims-an i
plementation of the coupling from the past algorithm for eyah
Markov chains (i.e. non monotone). The transitions are é@npl
mented with the alias method to be more efficient. The inpfits o
PSI are a stochastic matrix or a transition rate matrix. RShased
on monotone events and its inputs are a description of maeoto
events.

In this section we present algorithms to transform the ugaey
system which is not event-monotone in order to be able toyappl
monotone perfect sampling using a monotone event repisamt
We suppose that the underlying system is given as a stocimasti
trix P or as a set of non monotone events. We must define a finite
set of monotone events to be able to do monotone perfect sampl
with PSI2. We present several algorithms based on variqussn
and intermediate models: events or stochastic matrix.

4.1 Event transformation

First suppose that the input model is a set of events which is
not monotone. We propose the following algorithm to obtain a
upper bounding monotone transition function. This aldontakes
a transition functiori and returns a transition functioh®“? such
that

e O(z,e) < P*P(x,e) Vx,e
e $°“?P js event-monotone.

The algorithm is simply based on the following approach: Let
{ei} be the initial set of events, we modify the events to be mono-
tone and to build an upper bounding matrix as follows:

e the probability of an event does not change.



e the action of an event on a state is changed and we build a Proof: Let P (resp.Q) be the stochastic matrix associatedbto

new transition functior*“? to describe this new effect:

D7 (e, y) = maz.<y®(es, )

Algorithm 6 Non monotone event representatien monotone
event representation
S=1{1,2,3,..,N}
E = {e1,ez,€3,....p}
:S«EF — S
PP SxE — S
for j =1topdo
D%P(1,e5) «— @(1,¢e5)
end for
for i = 2ton do
for j = 1topdo
D°UP(4,e5) — max(PP(i —1,e;), P(3,e5))
end for
end for

Let us now prove that the Algorithm (6) gives an event moneton
transition function. LetS be the state spacé, = {1,2,...,N}
and E be the event spacé; = {ei1,...,ep}. To prove that the
function proposed by Algorithm (6) is event-monotone, wed®
introduce the following equivalence.

LEMMA 1. For each event, € E, These two propositions are
equivalent:

e N)Vi,jeS: ifi<jthen®(i,en) < P(j,eun)
o (2Q)Vie S:P(i,en) < P(i+1,eq4)
Proof:

e (1) = (2) : This implication is evident, because by taking
j =1+ 1, the proposition (2) is satisfied.

e (2) = (1) : From the proposition (2) we have :
D(l,ey) < .. < P(l,ew) <P+ 1,eu) < .. <DP(N,ey)

Thus, we can obviously see that forallj € S,if i < j:
D(i, eu) < O, €u)

PROPERTY 3. ®“P(4, ¢,,) is event-monotone.

Proof:

To prove that®*“?(i, e, ), i € S is monotone, we must show
that for each two states:€ S, j € S andi < j: ®*P(i,e,) <
®°“P(4,e,). Indeed we can deduce from lemma 1 that it is suffi-
cient to show that :

VieS: 0P (ie,) < DP(i+ 1,eq)
From the algorithm, we have for each event € F, and state
1€ S:
P (i + 1, e;) = max(P*P(i,en), (i, e4))

Then,®°*? (i 4+ 1, e,) = ®°“P(i, e, ). Therefore we conclude that
D°“P (4, e,,) is event-monotone.

PROPERTY 4. LetII (resp. I1p) be the stationary distribution
estimated by doing the monotone perfect samplingf (resp.
of ®). We must show thdlp <, II.

(resp. @°“?). It follows from theorem (2) that event monotonicity
implies <5 monotonicity. Thus is <s:-monotone. The proof of
P < Q is exactly the proof of Vincent’s algorithm (i.e. Algo-
rithm 3). It is omitted here and it can be found in [1]. It is raor
important to remark that some important properties of Alldpon
(3) such as optimality are still true for Algorithm (6).

4.2 Matrix and IMSUB

Assume now that the input of the model is a stochastic matrix.
The algorithm we have already presented provides a first way t
obtain a monotone set of events for an upper bound. We first ap-
ply IMSUB (i.e. Algorithm 4) to construct & s;-monotone upper
bounding matrix)). From theorem 3, it is possible to compute the
set of monotone-events. This can be done by means of Algorith
(5(. The stationary distribution af ( 1) can be estimated with
monotone perfect sampling Algorithm (1) through PSI2. 8ibg
constructionP <,: @, we obtain a stochastic upper bound on the
stationary distribution o (Ilp <. ).

4.3 Matrix and transformation of events

Another solution with the same input is to find a set of events
directly from the initial matrix. These events are not mama as
the matrix is not. This algorithm tries to minimize the numbé
events. Then we build from this set a new set of events whieh ar
monotone and which describe an upper bound of the matrix.

We first obtain the transition functiod® for the input matrixpP.

We give the following algorithm which takes as input a stetita
matrix P and returns a transition functich corresponding ta.

Algorithm 7 event representation for a transition matrix
S =1{1,2,3,...,N}
E = ({the set of events is initially empty}
d:S+xF — S
V = [1)1,1)2, ceey ’UN]

k — 0
repeat
fori=1toN do
v; — 1

for j =2to N do
if Pi,j > Piwv; then
Vi 7
end if
end for
end for
k <« k+ 1 {the next eventy}
Pep, — mi’l’b1gig1\r Piv; {the probability for eventak}
fori=1toN do
D(i,er) — v;
Diw; — Piw; — De{Update the matrix}
end for
until 3, cppe, = 1

As the proof that the function given by of Algorithm (7) is ee
monotone is very similar to the former proof it is omitted é&er
Since the underlying matri® is not<s;-monotoned is not event-
monotone but it is now quite simple to complete the transfaive
just have to use Algorithm (6) to obtain a new set which is now
consistent with the inputs of PSI2 and which allows to buid a
upper bound of the original Markov chain.



5. BOUNDSAND PERFECT SIMULATION:
SOME EXAMPLE

We consider a slightly modified version of the M/M/1/B queue.
The service are exponential and the service raje /e consider
the superposition of two independent arrival processese firkt
process is a Poisson process of rate The second process is a
Poisson batch arrival process. The distribution of thelb&state
dependent. At state it has sizek > 2. For all other states, the
batch size id almost surely. The arrival rate is.

Clearly this system is not monotone because of the transitio
out of state0. Thus we must use Algorithm (1) to obtain some
samples We have a matrix based implementation of this afgori
in PSI a software tool developed by some of us at INRIA (see
http://www-id.imag.fr/Logiciels/psi/). The input modisla stochas-
tic matrix in sparse form.

We also apply Algorithm (3) to build a monotone upper bound
which can be described as follows:

e the transitions due to Poisson arrivals and exponential ser
vices (with rate\ andy are kept unchanged,;

the transitions due to the batch Poisson arrivals still Hhee

Algorithm (2) seams to have a linear complexity with the sizthe
state space. The complexity of Algorithm (1) is more tharedin
with the state space. A linear part comes from the sampleshwhi
must begin in every state. The other part comes from the aaypl
time, the length of which is dependent of the size of the Sp#ee.

6. CONCLUSION

In this paper we show how we can combine monotone bounds
and coupling from the past to obtain efficiently an exact darp
a strong stochastic bound. One can generalize to other rtrads}t
formation. For instance, we have developed some algebrantpn
ulations of the chain which do not change the steady-stataluli-
tion and which make some chains monotone or almost monotone
[6]. Recently a general algorithm has been presented in [i¢hwv
outputs a monotone matrix compliant to a pattern (basiesliist of
non zero transitions in the matrix). All the patterns presdrallow
to simplify the numerical computation of the steady-stateputa-
tion of the chain. In the future we will try to identify pattes which
provide a fast coupling time. Note that the theory we devéddpr
totally ordered Markov chains. When the state space is eedow
with a partial order the equivalence between event monoityni

same rate, and the size of the batch is still state dependent.and stochastic monotonicity is much more complex.

However the distribution changes. Assume that we are at
statex, if x < k then the chain jumps to stake otherwise

the chain jumps to state + 1. Thus the size of the batch is
mazx(k — x,1). The description with jumps come from the
matrix representation of the chain while the descriptiothwi

a state dependent batch arrival is suitable for an eventlbase
model.

We also have an experimental tool called PSI2 to perform the
CFTP algorithm for monotone systems. The input model isdbase
on events description.

We perform the following experiments on an ordinary PC (pro-

cessor P4 3.0 GHz, 2Gb of memory). We first generate the models
and we make the measurements once the models have been store

on disk. The first set of experiments deal with a system with a
load smaller thari.0. The service rate i$.0 while A = 0.8 and

a = 0.1. We have fixed: = 12 for all experiments and we change
the value of the queue size to change the number of stategin th
model. We gather in Table 1 the numerical values obtaineeie g

erate 1000 samples. The data are the CPU user times in second[

measured by the time Linux command. In the second set of ex-

B 200 | 1000 | 5000 | 10000
Algol | 8 187 | 4600 | 12200
Algo2 | 2.8 | 16 72 144

Table 1: CPU User Time for 1000 samples

periments, we model a queue with a load equal$.to We only
change the input rat® to 1.4.

B 200 | 1000 | 5000 | 10000 | 100000
Algo1 | 5.1 | 127 | 3000 | 12000 none
Algo2 | 0.8 | 45 | 21.6| 38 295

Table 2: CPU User Time for 1000 samples

In both tables we can see that CFTP for monotone Markov Chain
is much more efficient than CFTP for an arbitrary Markov Chain

Note that it is also possible to use a lower bounding algorith
to obtain a monotone matrix. One can obtain two monotone sys-
tems which can be efficiently simulated and gives some inddion
about bounding accuracy as we have lower and upper bounds.

It is also worthy to remark that we can build a stochastic mono
tone finite Markov Chain for an infinite one. Thus using a model
transformation we can obtain a finite Markov Chain which can b
simulated using coupling from the past while the usual aliyors
do not apply on infinite state space.
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