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Abstract. We consider a class of Markov chains known for its closed
form transient and steady-state distributions. We show that some ab-
sorbing chains can be also seen as members of this class and we provide
the closed form solution for their absorption time distributions. By con-
structing upper and lower bounding chains that belong to this particular
class one can easily compute both lower and upper bounds for absorption
time distribution of an arbitrary absorbing Markov chain. We provide a
new algorithm for the construction of bounding chains from this class
and we show a possible application of these bounds.

1 Introduction

Markov chains are widely used to model complex systems due to their simplicity
to represent in an intuitive manner the behavior of a studied system. Various
high-level formalisms such as Stochastic Petri Nets, Stochastic Automata Net-
works or PEPA nets have been proposed making the modeling task more efficient
since one needs only to specify different components of the system, their local
behaviors and their interactions. The generation of the underlying Markov chain
and the computation of different performance or reliability measures of interest
can be then performed by one of many existing tools, depending on the formalism
used. However, most of the resolution techniques for transient or steady-state
distributions of Markov chains depend on the actual size of the entire state space,
which is often near to the product of the number of states of each component of
the system.

In order to overcome the state space explosion problem various approximation
methods have been proposed which ignore or simplify the complicating aspects
of the underlying models. However, only some of those methods estimate the
error committed by the approximation or guarantee that the approximate value
of measure of interest is smaller (resp. greater) than the exact one. Different
bounding methods have been proposed for steady-state analysis. Most of them
use linear algebra arguments and resume the steady-state analysis to the solution
of a linear system. The advantage of stochastic comparison techniques is that
they use probabilistic arguments, allowing thus both steady-state and transient
analysis of the system.

Stochastic orderings have been largely studied in different areas of applied
probability [13,16]. Various stochastic orders have been proposed and the most



well known is certainly strong stochastic order defined through the comparison of
the expectation of all increasing rewards. Different bounding methods have been
proposed by using this stochastic order. The main idea behind all these methods
is to modify the transitions of the original chain in order to simplify its analysis,
yet preserving the comparison of both steady-state and transient distributions.
The proof of this comparison can be established by different techniques such as
sample-path arguments or stochastic monotonicity. While the first one is specific
to the strong stochastic order, construction of monotone bounding chains can
be used with different stochastic orders such as for instance increasing convex
order allowing to compare the variability of two Markov chains. Moreover, it
is possible to construct algorithmically a bounding monotone chain using both
strong stochastic ordering [1] or increasing convex stochastic ordering [3]. Finally,
the simplification of the model can consist in a special structure adapted to
some special numerical resolution method [11,9], in construction of lumpable
bounding models reducing thus the size of the model [17] or in construction of
the bounding models having known closed-form solutions that will be considered
in this paper.

In [5,6] a class of Markov chains having closed-form solution for the steady-
state distribution has been introduced by Ben Mamoun and Pekergin: class C
chains. The same authors showed that the chains from this class have also closed-
form solutions for their transient distributions [7]. A generalization of this class to
a larger CY class of Markov chains has been recently proposed in [4]. This larger
class allows one more degree of freedom and permits thus to obtain more precise
bounds. We show in this paper that this additional degree of freedom allows
also simple construction of bounding matrices that belong to this new class.
Class CY structures can be imposed as the bounding matrices, in the algorithmic
stochastic comparison approach [6,4]. Thus, bounds on distributions can be
computed by means of closed-form solutions of class CY matrices leading to
important numerical complexity reductions. For instance, in [8], class C bounds
have been applied to perform a first step rapid model checking.

Several two-level resolution methods which consist in analyzing several smaller
sub-models separately and then finding the global solution by combining sub-
solutions have been proposed. In [10], the cycle time of PEPA model where each
component is a PEPA sub-model is considered. Holding times of sub-models
which are continuous Phase distributions are bounded by exponential random
variables, providing thus a far simpler precedence PEPA model that can be
then analyzed by classical numerical techniques. In reliability studies, bounding
schemes have been proposed by dividing large state spaces in several macro-
states. One macro-state is taken into account explicitly while the others are
reduced to single states. The transition rates for these states are obtained by
computing bounds on the underlying sub-models [14,12]. Class CY bounds may
be useful to compute bounds of sub-models. To illustrate the applicability of this
approach, we consider in this work a task graph where task execution times are
given by discrete time Phase distributions. We first compute CY9 class bounds for



task execution times and then incorporate them in the considered task graph
which is the high-level model.

We present briefly in Section 2 the generalized class C matrices and their basic
properties: closed-form solutions for transient and steady-state distributions. We
show that some absorbing chains also belong to this class and we give the closed
form solution for their absorption times. This class of matrices can therefore be
used to compute simple lower or upper absorption time bounds. In Section 3 we
provide a new algorithm for construction of bounds that belong to this class.
This new algorithm presents different advantages compared to the algorithm
presented in [4]. The most important is certainly its simplicity and the possibility
of computing both upper and lower class CY bounds. Finally, we show in Section
4 how this new algorithm can be used to obtain fast closed form bounds for PH
distributions modeling service times in a multi-level model.

2 Class CY matrices

The CY class of stochastic matrices has been introduced recently in [4] as the
generalization of the C class introduced in [5, 6]. We give first the definition of the
CY class and the closed form solution for transient and steady-state distributions
for the transition matrices that belong to this class. Further details and proofs
can be found in [4].

2.1 Definition and basic properties

Throughout this paper we will denote the vectors and the matrices with boldface
letters. All the vectors are row vectors and ! will denote column vector obtained
by transposing the vector . When comparing vectors or matrices < y stands
for the usual component-wise comparison: * <y < x; < y;, Vi.

Definition 1 (Class CY). A stochastic matriz P of size n belongs to CY if there
are three vectors v, ¢ and r in R™ such that:

P =1%v+rle,

where 1 denotes the row-vector having all the components equal to 1 and the
vectors v and ¢ satisfy:

— v is a probability vector (v; > 0,Vi, v1' =3 " v, =1),
—cl'=3" ¢ =0.

For vector r such that r; = i — 1, Vi we obtain the class C Markov chains defined
in [5]. Thus the class CY is larger than the class C.

Certainly one of most important properties of class CY matrices is that they
have closed form solution for the transient distributions:



Theorem 1 (Transient distributions). [4, Theorem 2] Let { Xy, k > 0} be
a discrete time Markov chain with probability transition matriz P that belongs
to the class CY, such that P = 1'v + rte, and let v* be the distribution vector
of Xi. Let a, B and ~y be the following constants:

a=cr', p=uvr"andy ="

Then for all k > 0,

v = v+ ae, (1)

where ay, is the constant defined as:

ﬁki it = By ah
ap = o' +ya”T = —a ’
A A B (k—1)+n, a=1.

The following corollary gives now the closed-form form for the steady-state dis-
tribution:

Corollary 1 (Steady-state distribution). [/, Corollary 1] Let {X}, k > 0}
be a discrete time Markov chain with probability transition matriz P € CY9 such
that P = 1'v + rlc and let @ = ert. If |a| < 1, then {Xx, k > 0} has a
steady-state distribution given by:

m =v + Re, (2)
where R is a constant defined as: R = 13’;;.

2.2 Closed form solution for absorption time distribution

Note that one can easily construct absorbing transition matrices that belong to
the class CY. Indeed, take an arbitrary probability vector v and define the vector
c as follows:

Ci=—V;, 1<n, cpb =1—v,.

Then obviously €1 = 0. Then for an arbitrary vector r satisfying:
0 S T S 1, V’L,
rn =1,

the matrix is clearly stochastic, thus P € CY. Furthermore, we have P, =
(0,0,...,0,1), so state n is absorbing.

Ezample 1. Let v = (0.1 0.3 0.6). Thus ¢ = (—=0.1 —0.3 0.4). By taking
r = (0.1 0.2 1), matrix P = 1*v + r’c is defined as follows:

1 0.1 0.09 0.27 0.64
1](01030.6)+{0.2](-0.1-0.30.4)=( 0.080.240.68
1 1 0 0 1



Suppose now that we have an absorbing discrete time Markov chain { X, k > 0}
such that the unique absorbing state is the last state (state n). Denote by P the
transition matrix of this chain. We show now that class CY matrices have also
the closed form solution for the absorption time.

Proposition 1. Let T denote the absorption time of an absorbing discrete time
Markov chain {Xy, k > 0} such that the unique absorbing state is the last
state (state n). Denote by t € N°° the probability distribution vector of T. If the
transition matriz P € CY9 (P = 1'v + rtc), then the vector t satisfies:

_ .0
to—l/n,

t1 =V +yCn — V?u
ty =" 2(B+y(a—1))en, k> 2,

Proof. Note first that for each k, P(T < k) = P(Xy = n). Thus tc = P(T =
0) =12 and

tk=P(T=k)=P(T§k)—P(T<k—1)—V —V , Vk >0,
where v* denotes the distribution of Xj. From Theorem 1 we have

t1 = vy +yCn — ug,
ty = (V4 arc)n — (Vv +ag—1¢)n = (ar — ar—1) cxn
= a2 40t — aF2)e, = F 2B+ y(a = 1))en, k> 2.
O

Corollary 2. If |a| < 1 then the mean absorption time E[T] is finite and equal
to:

ET)=v,+ {7 + (B +v(a— 1))(12__75)2] Cn.-

Proof. From Proposition 1 we have :

E[T] =vn +ven + Z kty, = vn +ven + (B+v(a—1))e, Z kak—2
=2 =2

=uv,+yc + (B+v(a—1))c <2Za —i—Zza)

:vn+70n+(ﬁ+7(0‘_1))cn(13a+ (1—0404)2> -

=vn + |7+ (B+(a— 1))(12__70[032} Cn-



3 Algorithmic construction of bounding matrices

The closed-form solutions to compute transient distributions and absorption
time distribution make class CY matrices interesting to construct bounding chains.
These bounds can be derived by means of stochastic comparison techniques. We
first state the basic definitions and theorems of this approach and refer to [13,
16] for further details.

3.1 Stochastic Comparison

Let denote by Fs the class of all increasing real functions on £ and by Fi.,
the class of all increasing and convex real functions on £. We denote by <z the
stochastic order relation, where F can be replaced by st or icx to be associated
respectively to the class of functions Fg or Ficy.

Definition 2. Let X and Y be two random variables taking values on a totally
ordered state space &.

X=rY = EBEf(X)<Ef(Y), VfeF
whenever the expectations exist.

In the sequel, we consider & = {1,...,n} with the usual total order <.
Stochastic orders <4 and =<;.; can be also defined through matrices. We give
here K4 and K., matrices related respectively to the <, and <., orders. In
the sequel Kz denotes the matrix related to the <z order, F € {st,icx}.

100...0 10 0 ...0
110...0 21 0 .0
Ko = 111...0 Koy = 32 1 .0
111...1 nn—1n—-2...1

Notice that for discrete random variables X and Y with probability vectors
p and q, the notations p <r q and X <z Y are used interchangeably. Moreover,
we have the following characterization [13]:

Property 1. X 7Y if and only if pKr < gK£.

It is shown in Theorem 5.2.11 of [13, p.186] that monotonicity and comparability
of the probability transition matrices of time-homogeneous Markov chains yield
sufficient conditions to compare stochastically the underlying chains. We first
define the monotonicity and comparability of stochastic matrices and then state
this theorem.

Definition 3. Let P be a stochastic matriz. P is said to be stochastically <xz-
monotone if for any probability vectors p and q,

p<rq = pP <rqP.



Definition 4. Let P and Q be two stochastic matrices. Q is said to be an upper
bounding matriz of P in the sense of the <x order (P <r Q) if

PKr<QKgr.
Note that this is equivalent to saying that P <r Q, if
Pi.2rQ;,, Yie{l,...,n}
where P; . denotes the ith row of matriz P.

Theorem 2. Let P (resp. Q) be the probability transition matriz of the time-
homogeneous Markov chain {Xy, k > 0} (resp. {Yi,k > 0}). If

- XO =r }/0)

— at least one of the probability transition matrices is monotone, that is, either
P or Q is <F-monotone,

— the transition matrices are comparable, that is, P <y Q,

then
X 2rYs Vk.

Let X = {Xy,k >0} and Y = {Yj, k > 0} be now two Markov chains with
an absorbing state n. Then under the same conditions as in the above theorem
we have also the < -comparison of absorption times to n. We will denote by
TX (resp. by TY) the absorption time to n of chain X (resp. Y).

Corollary 3. [3, Proposition 2.9] Let P and Q be the transition matrices of two
Markov chains X = { Xy, k > 0} and Y = {Yj, k > 0} with an absorbing state
n. If Xo 27 Yy, P or Q is <g-monotone, and P <r Q, then

TY <, TX.

Note that we obtain the =< -comparison of absorption times even if the two
chains are comparable only in the increasing convex ordering sense. Indeed,
the above result is even more general and the ordering relation needs only to
allow the comparison of the probabilities of being in state n (see [3] for further
details). Note also that the absorption time is <g-larger for a smaller chain in
the <z-ordering sense. This might seem strange at a first sight. Intuitively, as
we consider the absorption time to the last state, the larger chain goes faster to
this state and its absorption time is thus smaller.

Monotonicity properties of C9 matrices The sufficient conditions for the
monotonicity of class CY9 matrices are given in terms of vectors ¢ and r.

Proposition 2. [4, Proposition 2] A matriz P € CY, P = 1'v 4 rtc such that:
cKr>0 and reF

18 X F-monotone.



3.2 Algorithms for upper and lower bounding class CY monotone
matrices

In [4] an algorithm for construction of upper bounding monotone C9-matrices has
been proposed for < and =;.,-orders. The proposed algorithm takes as input
an arbitrary stochastic matrix P and a non-negative vector » € F (F denotes
either st or icz), and it returns vectors ¢ and v such that Q = 1'v +rfc € CY,
P <r Q and Q is 2z-monotone. Some heuristics for choosing a vector r by
using some information from the original matrix P have also been proposed.
However, the algorithm proposed in [4] is far from being intuitive and it cannot
be easily modified to compute lower bounds. Note that this is not a problem in
the case of the < order since, due to the symmetry properties of this order,
lower < -bounds can be obtained by inversing the order on the states of the
chain and then computing an upper bound. In the case of class C or C9-bounds,
=icx order provides often considerably more precise results [6,4]. Unfortunately,
this order is not symmetric and the algorithms that compute upper =<;..-bounds
cannot be used. The algorithm proposed in [4] is a direct generalization of al-
gorithms proposed in [5,6] to CY class of matrices. We propose here a far more
intuitive algorithm, more adapted to the CY-structure. Furthermore, we propose
the algorithms for both upper and lower bounds.

Let P be an arbitrary stochastic matrix. We take the first row of matrix P
for the vector w. In order to find a vector ¢, we compute first a probability vector
x that is greater in the <rz-ordering sense than all the rows of matrix P. We
will discuss this step of the algorithm more in details after presenting the general
structure of the algorithm, since this step depends on the underlying stochastic
order. We would like to obtain a bounding matrix @ such that @, , = v and
Q,, . = x. In order to assure this, we can take Q = 1* v + h'c, where hy = 0,
hp =1. Then Q,, , = v + ¢ = x defines completely the vector c:

C=T—".

Notice that we have clearly cK x > 0, as v <z x by the construction of vectors
x and v. In order to satisfy P <r Q we need to compute a vector h such that:
Pi,* j}- v + hic == Qi7*7
ie. vKr + hicKy > P, ,Kr. Note w = vKr and A = PKy. Since z =

cK r > 0, we can take:
s
h; = max —2—2.
jlz;>0 Zj

We obtain a vector h < 1 as z = w+y, wherey > A; ., ,V1 <1 < n. It remains
us to satisfy the monotonicity constraints for matrix Q. If vector h € F, then
Proposition 2 and ¢K # > 0 implies that Q is <z-monotone. Unfortunately, we
do not always have h € F. However, note that we can modify the entries of
vector h as long as they stay smaller than 1. Indeed, for a vector r such that
h<r < 1 the matrix Q = 1% v + rte is also a stochastic matrix such that
P <7 Q. Thus we need to find a vector r satisfying:



-relF,
—h<r<1.

The construction of such a vector for the case of strong stochastic order and in-
creasing convex order will be discussed later. The construction of upper bound-
ing <-monotone CY-matrix is given in Algorithm 1. The proof of the following
theorem follows directly from the above discussion.

Algorithm 1: Construction of an <z-monotone class CY upper bound

1 Set v =P, and set w=v Kr.
2 Find a probability vector & such that P; . <rx, V1 <i<n.Sety =zKr.
3 Compute z=y—w and c =z K}l.
4 Let A =P K r. Compute the vector h = (h1,...,hn):
hi; = max M
§1z;>0 Zj

Note that we have always h1 = 0.
5 Find a vector r such that h <r <1 (component-wise) and r € F.
6 Set Q =1 v+ rle.

Theorem 3. The matriz Q obtained by Algorithm 1 is a stochastic matriz that
belongs to the class CY. Moreover, the matriz Q is =r-monotone and P <5 Q.

A lower-bounding < z-monotone matrix @ € CY9 can be obtained by a similar
algorithm. Here we preserve the last row of the original matrix and we compute
a probability vector v that is smaller in the <r-sense than all the rows in the
original matrix P:

v j]: Pi,*-

In order to obtain a bounding matrix @ such that @, , = v and Q,, , = Py, »
we can take Q = 1 v + h'e, where hy = 0, h, = 1 and ¢ = P,.—wv. As
v =25 P, ., we have cKr = P,, . — vKz > 0. To guarantee the comparison of
the matrices P and Q we compute a vector h such that:

Qi)* =v + hlc j]: Pi,*7

ie. vKr+ hicKy < P; ,Kx. Let us denote by w = vKr and A = PKy.
Since z = ¢K r > 0, we can take:
Ai_’j — ’LUj

h; = min
jlz;>0 Zj

Note that by the construction of vector v as a vector that is smaller than all
the rows of matrix P, we clearly have: h > 0 and h,, = 1. If the vector h € F,



then Proposition 2 and ¢K # > 0 imply that the matrix Q is <z-monotone. As
unfortunately this is not always the case, we need to modify this vector and, in
order to preserve the comparison of the matrices P and @ and the stochastic
property of matrix @, we can only decrease the entries of the vector h. Thus, in
order to satisfy the monotonicity constraints for matrix @ we need to compute
a vector r such that:

—relF,
—0<r<h.

We resume the construction of a lower bounding monotone CY matrix in Algo-
rithm 2. We have shown the following theorem:

Theorem 4. The matrix Q obtained by Algorithm 2 is a stochastic matriz that
belongs to the class CY. Moreover, the matriz Q is <xz-monotone and Q <5 P.

Algorithm 2: Construction of an <z-monotone class CY lower bound

1 Find a probability vector v such that v <7 P; ., V1 <i < n., Set w =vKr.
2 Compute ¢ = Pp« —v, 2z =cKr.
3 A Let A= P Kx. Compute the vector h = (h1,...,hn):

Ai o — ws
Jlz;>0 Zj
Note that we have always h, = 1.
4 Find a vector r such that 0 < r < h (component-wise) and r € F.
5 Set Q = 1" v + r'ec.

Computation of an upper or lower bounding vector for all the rows of
the original matrix. We discuss now the construction of an upper bounding
vector & (resp. a lower bounding vector v) for all the rows of the original matrix
P in line 2 of Algorithm 1 (resp. line 1 of Algorithm 2) for the strong stochastic
order and increasing convex order. The construction is similar for both orders,
thus we will denote by K r the corresponding matrix Kz = Kg (resp. Kz =
Kcz). Let A = PK . Then the upper bounding vector x:

Pia * XF Z,
can be obtained as @ = yK;_-l, where:

;= A; i, V7.
Yj lrél%xn i,5s VJ
We have clearly Pi, * <z x. It remains us to show that the vector x is stochastic.
We will show first that ) . #; = 1. For strong stochastic order this is trivial
. n . . .
since ) ), x; = Y1 = maxi<;<n A;;1 =1, as A;; =1, Vi. For increasing convex
order notice that A;1 = A;2 + 1, Vi, thus . | #; = y1 — y2 = 1. Finally,



we need to show that x; > 0, Vi. For strong stochastic order we have clearly
l=y1>2yp2>...2yp >20,thuszy, =y, > 0and 2; = y; —yj+1 >0, j < n.
For increasing convex order the proof is slightly more complex. Note that for an
arbitrary vector a we have

(aKicz); = (aKst); + (aKica)j+1, J <1, (3)
Let z = x K ;. Note that we have also:
z= stfl.
By using (3) it is now easy to show that the vector z satisfies:
l=21>220>...2 2, >0.

Therefore, 2; > 0, Vj and vector x is stochastic. Note that this vector x is the
smallest upper bounding vector for all the rows of matrix P.
Similarly, a lower bounding vector v can be obtained as v = wK £ where:
C— min A . Vi
w; 11;11_1%171 ij> Vi
The vector v is the greatest lower bounding vector for rows of matrix P. The

proof that the vector v is a stochastic vector is similar to the proof for the upper
bounding case.

Computation of monotone bounding vectors. It remains us to show how
to compute the upper or lower bounding monotone vectors in line 5 of Algorithm
1 and line 4 of Algorithm 2. We consider again strong stochastic and increasing
convex order.

Strong stochastic order. In the upper bound case we need to find an increasing
vector r such that h < r < 1. Additionally we know that h; = 0 and h; <
1, Vi by the construction of vector h. Therefore the vector r, defined as r; =
maxy<ihi, Vi and computed by:

r = hl, r, = max{hi, ’I”l',l}, 1> 0,

satisfies clearly h < r < 1.
Similarly, in the case of a lower bound we have h,, = 1 and h > 0 and a
vector r such that 0 < r < h can be obtained by taking r; = ming<;h;, Vi, i.e.

Tn = hp, 73 = min{h;, ri01}, @ <n.

Increasing convex order. Consider first the upper bounding case. We will suppose
that the vector h is increasing. Note that if this is not the case, then an increasing
vector h’ such that h < h’ < 1 should be first computed as described in the
strong stochastic upper bound case described above. Then we need to find a



vector 7 such that b’ < r < 1. For an increasing vector h, an increasing and
convex vector r such that h < r <1 can then be easily obtained as follows:

Tn = hn, Tn—1 = hnfl, r, = max{hi, 2Ti+1 — TiJrQ}, 7 S n— 2.

Let us now consider the lower bound computation. We need to find a vector
r that is increasing and convex and that 0 < r < h. Similarly as in the upper
bounding case, we can suppose that the vector h is increasing. If this is not the
case, we can find an increasing vector h’ such that 0 < h’ < h as described in
lower bound computation case for the strong stochastic order. For an increasing
vector h an increasing and convex vector r such that 0 < r < h can be find by
Algorithm 3. We illustrate this Algorithm on an example in Figure 1.

Algorithm 3: Computation of lower bounding increasing convex vector

Notation : We will denote by 1 < s1,s2,...,8m < n the indexes for which the

vector h strictly increases. Then we define zp = 1, and for i such
that 1 < ¢ < m we define the last index just before the vector h
strictly increases: z; = s; — 1, 1 < ¢ < m. Finally, if 2, < n then we
define zm+41 = n. For example for (0.1,0.3,0.3,0.5,0.6) we have:
s1=2,80=4,s3=5and zo =1,21 = 1,20 = 3,23 = 4,25 = 5.

11= O, T = hl

2 while (z; <n) do

hy.—h, . hy.—h,.
J =, k=argminjs; u

a = min;s;

3 zj—z; z25—2;
4 for (u=2z +1to z;)do ry=au+r;
5 i=k

6 end

Fig. 1. Computation of lower bounding increasing convex vector by Algorithm 3. The
bounding vector is constructed par intervals, by taking the smallest slope at each step.

Remark 1 (Complexity of Algorithms 1 and 2). The complexity of Algorithms
1 and 2 is quadratic with the size of the state space in the case of the full
matrix implementation. Indeed, we used a matrix notation in both algorithms
to simplify the presentation. Note that for instance (PKsgt);; can be sim-
ply obtained as (PKst)i j+1 + Pij, j < n where (PKgt)in = Pin. PKica



can be easily computed using the fact that K;cp = o2, In a similar way,
(AK ') j can be easily computed by applying the inverse transformation. For
<ot (AKg )iy = Aij — Ajj1, j <n, where (AKgy )i ; = A

Example 2. We illustrate here the CY absorption time bounds for mean absorp-
tion time (Corollary 2). Note however that Algorithms 1 and 2 can also be used
to compute both transient and steady-state bounds. We consider a very simple
example of an absorbing chain with n states, where state n is absorbing. We
suppose that the initial state is 1 and for each state i < n we have the following
transitions:

— with probability a; the system goes directly to the absorbing state n,
— with probability b; the system goes to the next state (i 4+ 1),
— with probability ¢; = 1 — a; — b; the system returns to state 1.

Although the class CY9 bounds become interesting only for huge chains for which
we cannot directly compute the absorption times using the classical numerical
methods, we will consider here a small state space in order to easily compare
the bounds with the exact values. In Table 1 we give the exact values and the
bounds for the following parameters (p = 0.6, n = 20):

—Case Ara; =5, bij=1-p, ¢; =5, Vi.<n.
— Case B:a; =2 b, =1—0p, ci:@,w<n.

n

We can see from this example that it is not possible to compare the accuracy
of the new upper bounds (providing lower bounds for absorption time) with
those of [4]: they may be better or worse depending on the parameter values.
We can see also that for this example =<;., bounds are more accurate than the
<4t bounds as it is usually the case with class C or €Y bounds.

Table 1. Class CY bounds for mean absorption time

exact ||st-inf (new)|st-inf [4]|st-sup |[|icx-inf (new)|icx-inf [4]|icx-sup
A||3.3333(|2.3243 2.3243 (3.3333 ||3.2386 2.5556 3.3333
B(|1.8182}|1.4704 1.7544 |16.6667|1.7544 1.7544 3.4379

4 Bounding PH-distributions modeling service times

We consider a task graph with n nodes representing tasks where arcs represent
synchronization constraints. The task execution (service) times are defined by
discrete time PHase (PH) distributions. Let d; (resp. t;) be the execution time
(resp. the completion) time of task (node) i and Preced(i) be the set of immedi-
ate predecessors of 7. Since task ¢ can start its execution once all the predecessors
have completed, task ¢ terminates its execution at time ¢; :

ti = di + Marcpreced(i)t;



Without loss of generality, we assume that task 1 has no predecessor and task
n has no successor. Therefore t; = d; and t,, is the completion time of the task
graph which is the measure of interest.

The absorbing chains representing discrete PH distributions constitute the
low-level formalism while the task graph formalism is the high level formalism.
Let us remark here that high level formalism can be extended to any (max,+)
formalism [2].

The state space size of the Markov chain to compute the completion time
grows exponentially with the number of tasks even for exponential (geometric)
execution times. The stochastic bounds on the execution times of acyclic task
graphs have been proposed in [15]. These bounds are based on the compatibility
of the <., order with the maz and the + operators. It has been proven that if
d;"f =ice di Ricx d;"P Vi, then the completion time of the same task graph by
considering bounding execution times, provides bounds on the completion time:
til"f Sicz tn Ricx 3PP, Thus we propose to compute class CY <,es bounds on
d; which can be computed by the close-form solution of absorbing time given in
section 2.2.

In the high-level model, bounds are provided by considering specific distribu-
tions with the same mean for task execution times. Lower bounds are computed
by deterministic random variables while upper bounds are computed by geomet-
ric random variables. We do not give the proof here but refer to [15] for bounds
on task graphs. The lower bound is well-known as folk theorem: deterministic
minimizes the randomness [2]. The upper bound is established for a family of
distributions used in reliability [13]. An integer valued X is called Discrete New
Better than Used (DNBU), if [X —¢|X > t] <4 X, V¢; X is called DNBUE if this
is satisfied for the expectations: E[X —t|X > t] < E[X],Vt. Geometric distribu-
tions are the maximal distributions for DNBUE distributions: If X is DNBUE
of mean m, then X is smaller in the <., sense than geometric distributed ran-
dom variable of mean m (X =jc Geom(m)). In [3], it has been shown that
monotone PH distributions belong to DNBU distributions. Therefore d;"" can
be remplaced by geometric distributions with the same means to provide upper
bounds.

5 Conclusion

We have shown in this paper that the class CY9 matrices can be used to derive
rapid bounds for absorption times. We proposed simple numerical algorithms
to construct both lower and upper <g-(resp. <;c.-)monotone bounds that be-
long to this class. To the best of our knowledge this is the first algorithm for
lower =;.;-monotone bound computation. For the simplicity of presentation, we
consider here only discrete Markov chains. Similar results can be obtained for
uniformizable continuous time Markov chains by applying the Algorithms 1 and
2 to the uniformized chain.
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