Cours 3

eTableaux

eTableaux a 2 dimensions
*Tableaux d’objets

*Classes String et StringBuffer
eEnumération

POO

Les tableaux ne sont pas ni des objets ni des types primitifs.

Un tableau se rapproche d’un objet
o[l est manipulé par référence (adresse)
[l nécessite de new pour etre défini

Déclaration
char tableau[] ou char[] tableau

Création

eEn utilisant new

int tab[]; tab=new int[5];

char t2[]= new char[4];

e implicitement avec I’initialisation
int 2[]={1,2,3};

POO

POO

o] a taille est fixée

*On peut accéder a la taille par le champ
length

[es indices entre O et length-1

*Dépassement d’indice : lancement d’exception
ArraylndexOutOfBoundsException

*Un objet ou un tableau qui n’est plus référencé
est récupéré par ramasse-miettes (garbage)

public class TabAffec
{public static void maln(Strlng args[])

¥

{char t1[]={" b' , ']) , U, R

char t2[]={"h", '1' ,'L','0 },

char t3[]={'x','x','x','x'};

t3=tl; tl1=t2; t2=t3;

System.out.print("tl =");

for (int 1=0;1<tl.length;i++) System.out.print (tl1[1]);
System.out.println();

System.out.print("t2 =");

for (int 1=0;1<t2.length;i1++) System.out.print (t2[1]);
System.out.println();

System.out.print("t3 =");

for (int 1=0;1<t3.length;i1++) System.out.print (t3[1]);
System.out.println();

¥

tl=hello
t2=bonjour
t3=bonjour

POO 4

Les parametres du programme

class Prog23 {
public static void main (String args[])
{int 1;
System.out.println("les arguments :");
for (1=0; i<args.length ; ++1)
System.out.printlnCargs[i]);}
¥

Exécution

java Prog23 "Bonjour coucou" a b
les arguments :

Bonjour coucou

a

b

POO

class UtilTab
{static double somme(double[] t)
{double s=0; int 1;
for (1=0;1 <t.length; 1++) s+=t[1]; return s;}

static void affiche (double[] t)
{for (int 1=0; 1 <t.length; 1i1++) System.out.print(t[i]+" ");
System.out.println();}

public static double[] somme (double[] tl1l, double[] t2)

{ int n=tl.length;
1f (n!=t2.length) return null;
double [] res= new double[n];
for (int 1=0; i <n; i++) res[i]=tl1[1i]+t2[1]; return res;}

}

public class TstUtil

{ public static void main(String[] args)
{ double tabl[]={1.5, 2.25, 3.5, 4.0%;
System.out.println("tabl "); UtilTab.affiche(tabl);
System.out.println("somme" + UtilTab.somme(tabl));
double tab2[]={2.5, 1.5, 3.5, 4.5};
System.out.println("tab2 "); UtilTab.affiche(tab2);
double [] tab3= UtilTab.somme(tabl,tab?);
System.out.println("tabl+tab2 ");UtilTab.affiche(tab3);}

¥ POO

Tableaux a deux dimensions

int [][] tab; laréférence tab qui pointe sur null
tab=new int [2][3]; un tableau de taille 2 de
tableaux d’entiers de taille 3 initialisés par défaut a 0

tableau[1][1]=3;

tableau[O]=new int[2];

POO 7

import java.io.*;
import java.util.Scanner;

class Matrice{
int[][] tab;
int nb_ligne, nb_col;

public Matrice() {

int 1,7;Scanner keyboard =new Scanner(System.in);
nb_l1gne=keyboard.nextInt();nb_col=keyboard.nextInt();
tab=new int[nb_ligne][nb_col];

for (1=0;1<nb_ligne;1++)

{for(j=0;j<nb_col; j++)

tab[1][j]=keyboard.nextInt(); }
3

public void affiche()

{int 1,3;for (1=0;1<nb_l1igne;1i++)

{for (3=0;j<nb_col;j++) System.out.printCtab[i1][7]+" ");
System.out.println(" ");

¥ poo

class TableauB
{public static void main(String[] argv)

{boolean|[] tableau={true false.true};
System.out.println("Deuxieme element de tableau : "+ tableau[1]); }

¥

/*A l'execution, on obtient :
Deuxieme element de tableau : false

*/

POO 9

Tableaux d’objets

class Point
{private int x,y;

public Point(int a, int b)
{x=a; y=b;}

public int getx() {return x;}
public int gety() {return y;}

public void affiche()
{System.out.println("x = "+x+" y = "+y);}
¥

class Gestion_tab
{ private Point[] tab;
private int nb_pts_positifs;

public Gestion_tab(int n) {tab=new Point[n];}

public void ajout_pts()
pador (int 1=0; 1 <tab.length;i++) tab[i]=new Point();} 10

public void calcul_pts_positifs()

{int nb=0, 1;

for (1=0;1 < tab.length;i++)
1f ((tab[1].getx() >0) &&(tab[1].gety()>0)) nb++;
nb_pts_positifs=nb;

}

public void affiche()
{for (int 1=0; 1 <tab.length;i++) tab[1].affiche();}
}

public class TestGestion

{ public static void main (String[] args)
{Gestion_tab t=new Gestion_tab(3);
t.ajout_pts(); t.affiche(Q);
t.calcul_pts_positifs();}

POO

11

FOR EACH

double[] a=new double[3];

for (int 1 = 0; i1 < a.length; i++)
a[i] = 0.0;
—equivalent a
for (double element : a)
element = 0.0;

for (TypedeBaseTableau NomVariable : NomTableau)
{instructions}

Méthodes avec un nombre variable d’arguments
int... a

Type... ArrayName
les arguments sont placés dans un tableau

POO 12

public class UtilityClass

{
/**
Returns the largest of any number of int values.
*/
public static int max(int... arg)
{
i1f (arg.length == 0)
{
System.out.println("Fatal Error: maximum of zero values.™);
System.exit(0);
}
int largest = arg[0];
for (int 1 = 1; 1 < arg.length; 1++)
1f (Carg[i] > largest)
largest = arg[1i];
return largest;
¥
¥

POO 13

POO

Classe String

eDéfinie dans le paquetage java.lang
String blessing = "Live long and prosper.";

eMéthodes
e public int length();

epublic int compareTo(String s);

>0 si1 la chaine est apres s (ordre lexicographique)
<0 sielle est avant s

=0 s1 égale

int 1= "bonjour ".length();
String s= "abc" ; String s1= "dbc" ;
if (s.compareTo(s1) <0)

14

Concatenation: +
String greeting ="Hello ”,
String javaClass ='""class”,

greeting + javaClass est "Hello class"

concatenation de String avec un autre type
est un String

"The answer is " + 42 est
"The answer is 42"

POO

15

Classe StringBuffer

Les chaines modifiables
echarAt(int 1) retourne le ieme char

(classe String a aussi cette méthode)
esetCharAt(int 1, char ¢) remplace le 1eme char par ¢

POO

16

Some Methods in the Class String

int length()

Returns the length of the calling object (which is a string) as a value of type int.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.length() returns6.

boolean equals(Other_String)

Returns true if the calling object string and the Other_String are equal. Otherwise, returns false.

EXAMPLE

After program executes String greeting = "Hello";
greeting.equals(""Hello") returns true
greeting.equals("Good-Bye") returns false
greeting.equals("hello") returns false

Note that case matters. "Hello" and "hello" are not equal because one starts with an uppercase
letter and the other starts with a lowercase letter.
(continued)

Rgaglright © 2008 Pearson Addison-Wesley. All rights IZ 17
reserved i

Some Methods in the Class String

boolean equalsIgnoreCase(Other_String)

Returns true if the calling object string and the Other_String are equal, considering uppercase and low-
ercase versions of a letter to be the same. Otherwise, returns false.

EXAMPLE

After program executes String name = "mary!";
greeting.equalsIgnoreCase("Mary!") retums true

String tolLowerCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to lowercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.tolLowerCase() returns "hi mary!".

(continued)

RQQ/right © 2008 Pearson Addison-Wesley. All rights 1§ 18
reserved i

Some Methods in the Class String

String toUpperCase()

Returns a string with the same characters as the calling object string, but with all letter characters con-
verted to uppercase.

EXAMPLE

After program executes String greeting = "Hi Mary!";
greeting.toUpperCase() retums "HI MARY!".

String trim()

Returns a string with the same characters as the calling object string, but with leading and trailing white
space removed. Whitespace characters are the characters that print as white space on paper, such as the
blank (space) character, the tab character, and the new-line character '\n".

EXAMPLE

After program executes String pause = Hmm -
pause.trim() returns "Hmm".

(continued)

POO 19
Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

Some Methods in the Class String

char charAt(Position)

Returns the character in the calling object string at the Position. Positions are counted o, 1, 2, etc.

EXAMPLE

After program executes String greeting = "Hello!";
greeting.charAt(0) returns 'H', and
greeting.charAt(1l) returns '

e'.
String substring(Start)

Returns the substring of the calling object string starting from Start through to the end of the calling
object. Positions are counted o, 1, 2, etc. Be sure to notice that the character at position Startis included in
the value returned.

EXAMPLE

After program executes String sample = "AbcdefG";
sample.substring(2) returns "cdefG".

(continued)

Rgaglright © 2008 Pearson Addison-Wesley. All rights 2(1) 20
reserved i

Some Methods in the Class String

int indexOf(A_String, Start)

Returns the index (position) of the first occurrence of the string A_String in the calling object string that
occurs at or after position Start. Positions are counted o, 1, 2, etc. Returns —1 if A_String is not found.

EXAMPLE

After program executes String name = "Mary, Mary quite contrary";
name.indexOf("Mary", 1) returns 6.

The same value is returned if 1 is replaced by any number up to and including 6.
name.indexOf("Mary", 0) returns 0.

name.indexOf("Mary", 8) returms —1.

int lastIndexOf (A_String)

Returns the index (position) of the last occurrence of the string A_String in the calling object string. Posi-
tions are counted o, 1, 2, etc. Returns —1, if A_String is not found.

EXAMPLE

After program executes String name = "Mary, Mary, Mary quite so";
greeting.indexOf("Mary") returns 0, and
name. lastIndexOf("Mary"™) returns 12.

(continued)

1?%pyright © 2008 Pearson Addison-Wesley. All rights

reserved 1-21

Display 1., Some Methods in the Class String

int compareTo(A_String)

Compares the calling object string and the string argument to see which comes first in the lexicographic
ordering. Lexicographic order is the same as alphabetical order but with the characters ordered as in
Appendix 3. Note that in Appendix 3 all the uppercase letters are in reqular alphabetical order and all the
lowercase letters are in alphabetical order, but all the uppercase letters precede all the lowercase letters.
So, lexicographic ordering is the same as alphabetical ordering provided both strings are either all
uppercase letters or both strings are all lowercase letters. If the calling string is first, it returns a negative
value. If the two strings are equal, it returns zero. If the argument is first, it returns a positive number.

EXAMPLE

After program executes String entry = "adventure";
entry.compareTo("zoo") returns a negative number,
entry.compareTo("adventure") returns 0, and
entry.compareTo("above™) returns a positive number.

(continued)

Rgaglright © 2008 Pearson Addison-Wesley. All rights 2% 5o
reserved i

*Méthode toString
public String toString()

retourne la chaine de caracteres pour les données d’un objet

Point a=new Point(1,3);
System.out.println(a);affichera

Point@?2ac982

s1 la méthode toString est définie comme suit dans la classe Point:

public String toString()
{return("x= "+x+ " y= "+y);}

System.out.println(a.toString); affichera
x=1y=3

System.out.println(Ca); affichera
x= b= 3 23

ENUMERATIONS

Définis avant les méthodes (avec les constantes)
enum TypeName {VALUE 1, VALUE 2, .., VALUE N};

majuscules (constantes)
enum WorkDay {MONDAY, TUESDAY,WEDNESDAY, THURSDAY,FRIDAY'

Déclaration des variables
WorkDay meetingDay, availableDay;

Affectation des wvaleurs
meetingDay = WorkDay.THURSDAY;
availableDay = null;

WorkDay meetingDay = WorkDay.THURSDAY;

POO 24

Affichage

System.out.println (meetingDay) ;
résultat:
THURSDAY

comme
System.out.println (WorkDay.THURSDAY) ;

égalité avec (==) ou (equals)

if (meetingDay == availableDay)

System.out.println(”“reunion aura lieu.");

if (meetingDay == WorkDay.THURSDAY)
System.out.println ("weekend prolonge!) ;

POO

25

Display 6.13 An Enumerated Type

=

(8]

~N o v B

8
9
10
11

public class EnumDemo

{

enum WorkDay {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY};

public static void main(String[] args)

{
WorkDay startDay = WorkDay.MONDAY;
WorkDay endDay = WorkDay.FRIDAY,
System.out.println("Work starts on " + startDay);
System.out.println("Work ends on " + endDay);

}

SAMPLE DIALOGUE

Work starts on MONDAY
Work ends on FRIDAY

Copyrigh}§ 2008 Pearson Addison-Wesley. All rights

reserved

£0

Some Methods Included with Every Enumerated Type

public boolean equals(Any_Value_Of An_Enumerated_Type)

Returns true if its argument is the same value as the calling value. While it is perfectly legal to use
equals, it is easier and more common to use ==.

EXAMPLE

For enumerated types, (Valuer.equals(Value2)) is equivalent to (Valuer == Valuez).
public String toString()

Returns the calling value as a string. This is often invoked automatically. For example, this method is
invoked automatically when you output a value of the enumerated type using System.out.println or
when you concatenate a value of the enumerated type to a string. See Display 6.15 for an example of this
automatic invocation.

EXAMPLE

WorkDay .MONDAY. toString () returns "MONDAY".
The enumerated type WorkDay is defined in Display 6.13.

(continued)

Rﬁ%@/right © 2008 Pearson Addison-Wesley. All rights 27
reserved

Some Methods Included with Every Enumerated Type

public int ordinal()

Returns the position of the calling value in the list of enumerated type values. The first position is 0.
EXAMPLE

WorkDay .MONDAY.ordinal() returns 0, WorkDay . TUESDAY.ordinal () returns 1, and so forth. The
enumerated type WorkDay is defined in Display 6.13.

public int compareTo(Any_Value_Of_The_Enumerated_Type)

Returns a negative value if the calling object precedes the argument in the list of values, returns 0 if the
calling object equals the argument, and returns a positive value if the argument precedes the calling
object.

EXAMPLE

WorkDay . TUESDAY . compareTo(WorkDay . THURSDAY) returns a negative value. The type WorkDay is
defined in Display 6.13.

public EnumeratedType[] values()

(continued)

@enbyight © 2008 Pearson Addison-Wesley. All rights 28
reserved

Some Methods Included with Every Enumerated Type

Returns an array whose elements are the values of the enumerated type in the order in which they are
listed in the definition of the enumerated type.

EXAMPLE

Copyright © 2008 Pearson Addison-Wesley. All rights reserved
See Display 6.15.

public static EnumeratedType valueOf(String name)

Returns the enumerated type value with the specified name. The string name must be an exact match.
EXAMPLE

WorkDay.valueOf ("THURSDAY")returns WorkDay . THURSDAY. The type WorkDay is defined in
Display 6.13.

Capgyight © 2008 Pearson Addison-Wesley. All rights reserved 29

import java.util.Scanner;
public class EnumSwitchDemo
{ enum Flavor {VANILLA, CHOCOLATE, STRAWBERRY};

public static void main(String[] args)

{ Flavor favorite = null;
Scanner keyboard = new Scanner(System.in);
System.out.println("What 1is your favorite flavor?");
String answer = keyboard.next();

answer = answer.toUpperCase();

favorite = Flavor.valueOf(answer);

switch (favorite)

{case VANILLA:
System.out.println("Classic");
break;

case CHOCOLATE:
System.out.println("Rich");

break;
default:
System.out.println("I suppose you said STRAWBERRY.™);
break;
¥
PO% 30

