
POO 1

 Cours 3

•Tableaux
•Tableaux à 2 dimensions
•Tableaux d’objets
•Classes String et StringBuffer
•Enumération

POO 2

Les tableaux ne sont pas ni des objets ni des types primitifs.

Un tableau se rapproche d’un objet
•Il est manipulé par référence (adresse)
•Il nécessite de new pour être défini

Déclaration
char tableau[] ou char[] tableau

Création
•En utilisant new
int tab[]; tab=new int[5];
char t2[]= new char[4];
• implicitement avec l’initialisation
int t2[]={1,2,3};

POO 3

•La taille est fixée

•On peut accéder à la taille par le champ
length

•Les indices entre 0 et length-1

•Dépassement d’indice : lancement d’exception
ArrayIndexOutOfBoundsException

•Un objet ou un tableau qui n’est plus référencé
est récupéré par ramasse-miettes (garbage)

POO 4

public class TabAffec
{public static void main(String args[])

{char t1[]={'b','o','n','j','o','u','r'};
char t2[]={'h','e','l','l','o'};
char t3[]={'x','x','x','x'};
t3=t1; t1=t2; t2=t3;
System.out.print("t1 =");
for (int i=0;i<t1.length;i++) System.out.print (t1[i]);
System.out.println();
System.out.print("t2 =");
for (int i=0;i<t2.length;i++) System.out.print (t2[i]);
System.out.println();
System.out.print("t3 =");
for (int i=0;i<t3.length;i++) System.out.print (t3[i]);
System.out.println();
}

}

t1=hello
t2=bonjour
t3=bonjour

POO 5

Les paramètres du programme

class Prog23 {
 public static void main (String args[])
 {int i;
 System.out.println("les arguments :");
 for (i=0; i<args.length ; ++i)
 System.out.println(args[i]);}
}

Exécution
java Prog23 "Bonjour coucou " a b
les arguments :
Bonjour coucou
a
b

POO 6

class UtilTab
{static double somme(double[] t)

{double s=0; int i;
for (i=0;i <t.length; i++) s+=t[i]; return s;}

static void affiche (double[] t)
{for (int i=0; i <t.length; i++) System.out.print(t[i]+" ");
System.out.println();}

public static double[] somme (double[] t1, double[] t2)
{ int n=t1.length;

if (n!=t2.length) return null;
double [] res= new double[n];
for (int i=0; i <n; i++) res[i]=t1[i]+t2[i]; return res;}

}
public class TstUtil
{ public static void main(String[] args)

{ double tab1[]={1.5, 2.25, 3.5, 4.0};
System.out.println("tab1 "); UtilTab.affiche(tab1);
System.out.println("somme" + UtilTab.somme(tab1));
double tab2[]={2.5, 1.5, 3.5, 4.5};
System.out.println("tab2 "); UtilTab.affiche(tab2);
double [] tab3= UtilTab.somme(tab1,tab2);
System.out.println("tab1+tab2 ");UtilTab.affiche(tab3);}

}

POO 7

Tableaux à deux dimensions

int [][] tab; la référence tab qui pointe sur null
tab=new int [2][3]; un tableau de taille 2 de

 tableaux d’entiers de taille 3 initialisés par défaut à 0

tableau[1][1]=5;

tableau[0]=new int[2];

POO 8

import java.io.*;
import java.util.Scanner;

class Matrice{
int[][] tab;
int nb_ligne, nb_col;

 public Matrice() {
 int i,j;Scanner keyboard =new Scanner(System.in);
 nb_ligne=keyboard.nextInt();nb_col=keyboard.nextInt();
 tab=new int[nb_ligne][nb_col];
 for (i=0;i<nb_ligne;i++)
 {for(j=0;j<nb_col;j++)

tab[i][j]=keyboard.nextInt(); }
 }

 public void affiche()
 {int i,j;for (i=0;i<nb_ligne;i++)
 {for (j=0;j<nb_col;j++) System.out.print(tab[i][j]+" ");
 System.out.println(" ");
 } }

POO 9

class TableauB
{public static void main(String[] argv)
 {boolean[] tableau={true,false,true};
System.out.println("Deuxieme element de tableau : "+ tableau[1]); }
}

/*A l'execution, on obtient :
Deuxieme element de tableau : false
*/

POO 10

Tableaux d’objets

class Point
{private int x,y;

public Point(int a, int b)
{x=a; y=b;}

public int getx() {return x;}

public int gety() {return y;}

public void affiche()
{System.out.println("x = "+x+" y = "+y);}
}

class Gestion_tab
{ private Point[] tab;
 private int nb_pts_positifs;

public Gestion_tab(int n) {tab=new Point[n];}

public void ajout_pts()
{for (int i=0; i <tab.length;i++) tab[i]=new Point();}

POO 11

public void calcul_pts_positifs()
{int nb=0, i;
for (i=0;i < tab.length;i++)

if ((tab[i].getx() >0) &&(tab[i].gety()>0)) nb++;
nb_pts_positifs=nb;

}

public void affiche()
{for (int i=0; i <tab.length;i++) tab[i].affiche();}
}

public class TestGestion
{ public static void main (String[] args)

{Gestion_tab t=new Gestion_tab(3);
t.ajout_pts(); t.affiche();
t.calcul_pts_positifs();}

}

POO 12

FOR EACH

double[] a=new double[3];

for (int i = 0; i < a.length; i++)
a[i] = 0.0;

–équivalent à
for (double element : a)

element = 0.0;

for (TypedeBaseTableau NomVariable : NomTableau)
{instructions}

Méthodes avec un nombre variable d’arguments
int... a
Type... ArrayName

les arguments sont placés dans un tableau

POO 13

public class UtilityClass
{
 /**
 Returns the largest of any number of int values.
 */
 public static int max(int... arg)
 {
 if (arg.length == 0)
 {
 System.out.println("Fatal Error: maximum of zero values.");
 System.exit(0);
 }

 int largest = arg[0];
 for (int i = 1; i < arg.length; i++)
 if (arg[i] > largest)
 largest = arg[i];
 return largest;
 }
}

POO 14

Classe String

•Définie dans le paquetage java.lang
String blessing = "Live long and prosper.";

•Méthodes
• public int length();

•public int compareTo(String s);
 >0 si la chaîne est après s (ordre lexicographique)
<0 si elle est avant s
=0 si égale

int l= "bonjour ".length();
String s= "abc" ; String s1= "dbc" ;
if (s.compareTo(s1) <0)

POO 15

•Concatenation: +
String greeting ="Hello ”;
String javaClass ="class”;

 greeting + javaClass est "Hello class"

concatenation de String avec un autre type
est un String

"The answer is " + 42 est
 "The answer is 42"

POO 16

Classe StringBuffer

Les chaînes modifiables

•charAt(int i) retourne le ième char
 (classe String a aussi cette méthode)
•setCharAt(int i, char c) remplace le ième char par c

POO 17
1-17Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

POO 18
1-18Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

POO 19
1-19Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

POO 20
1-20Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

POO 21
1-21Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

POO 22
1-22Copyright © 2008 Pearson Addison-Wesley. All rights

reserved

POO 23

•Méthode toString
public String toString()

 retourne la chaîne de caractères pour les données dʼun objet

Point a=new Point(1,3);
System.out.println(a);affichera
Point@2ac982

si la méthode toString est définie comme suit dans la classe Point:
public String toString()
{return("x= "+x+ " y= "+y);}

System.out.println(a.toString); affichera
x= 1 y= 3

 System.out.println(a); affichera
x= 1 y= 3

POO 24

ENUMERATIONS

Définis avant les méthodes (avec les constantes)
enum TypeName {VALUE_1, VALUE_2, …, VALUE_N};
majuscules (constantes)
enum WorkDay {MONDAY,TUESDAY,WEDNESDAY,THURSDAY,FRIDAY};

Déclaration des variables
WorkDay meetingDay, availableDay;

Affectation des valeurs
meetingDay = WorkDay.THURSDAY;
availableDay = null;

WorkDay meetingDay = WorkDay.THURSDAY;

POO 25

Affichage

System.out.println(meetingDay);
 résultat:

THURSDAY
 comme

System.out.println(WorkDay.THURSDAY);

égalité avec (==) ou (equals)

if (meetingDay == availableDay)
System.out.println(”reunion aura lieu.");

if (meetingDay == WorkDay.THURSDAY)
System.out.println("weekend prolonge!);

POO 26Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

POO 27Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

POO 28Copyright © 2008 Pearson Addison-Wesley. All rights
reserved

POO 29

Copyright © 2008 Pearson Addison-Wesley. All rights reserved

Copyright © 2008 Pearson Addison-Wesley. All rights reserved

POO 30

import java.util.Scanner;
public class EnumSwitchDemo
{ enum Flavor {VANILLA, CHOCOLATE, STRAWBERRY};

 public static void main(String[] args)
 { Flavor favorite = null;
 Scanner keyboard = new Scanner(System.in);
 System.out.println("What is your favorite flavor?");
 String answer = keyboard.next();

 answer = answer.toUpperCase();
 favorite = Flavor.valueOf(answer);
 switch (favorite)
 {case VANILLA:
 System.out.println("Classic");
 break;
 case CHOCOLATE:
 System.out.println("Rich");
 break;
 default:
 System.out.println("I suppose you said STRAWBERRY.");
 break;
 }
 }
}

