
ascoV

1

De KAOS à RBAC :
conception de règles de contrôle d'accès à partir

d'une analyse des besoins - une étude de cas
From KAOS to RBAC:

a case study in designing access control rules from a requirements analysis

Yves Ledru, Jean-Luc Richier, Akram Idani, Mohamed
Amine Labiadh

Université Grenoble Alpes/ Grenoble INP /CNRS
Laboratoire d’Informatique de Grenoble

6th conf. On Network Architectures and Information Systems Security, La Rochelle, May 2011
This work is sponsored by the ANR Selkis Project (ANR-08-SEGI-018)
and MODMED Project (ANR-15-CE25-0010)

ascoV

2

Goal of this research

• Elicit requirements for a security policy
• Design a set of access control rules enforcing the

policy.

• Our starting point: a set of UML diagrams specifying
the functional aspects of the Information System (IS)
– UML class diagrams
– UML use cases

ascoV

3

Our case study : Res@mu

• Information system for an urgency medical help
service (SAMU)

• Developed by IFREMMONT,
a french association for e-medecine.

• Functional model :
77 classes, 100 use cases
developed before this study.

ascoV

4

The need for security in
Res@mu

• Access to the information system must be
restricted to authorized personal

• The authorized personal are numerous and
evolve over the life-time of the information
system => need for a role-based approach

• Medical data
– Are confidential
– Must be available to the rescue teams
– Must be protected against unauthorized

modifications (integrity)

ascoV

5

The proposed
methodology

• Builds on the existing functional model
(UML diagrams)

• Gathers functional and non-functional requirements
in a goal hierarchy (expressed in KAOS)

• Targets an access control policy
(expressed in SecureUML)

• Follows the steps of Haley et al:
1. Identify functional requirements
2. Identify security goals
3. Identify security requirements
4. Construct satisfaction arguments

C. B. Haley, R. C. Laney, J. D. Moffett, and B. Nuseibeh, “Security
requirements engineering: A framework for representation and analysis,”
IEEE Trans. Software Eng., vol. 34, no. 1, pp. 133–153, 2008.

ascoV

6

The proposed
methodology : 8 steps

0. (Build a functional model)
1. Construct agent hierarchy
2. Identify relevant use cases
3. Construct a functional goal hierarchy
4. Identify security goals
5. Refine into security requirements
6. Design RBAC rules
7. Check satisfiability of functional goals

ascoV

7

0. Functional model

• Security target : ManagementAct
• Management acts are all kinds of medical acts (diagnosis,

advice, prescription, instruction, care,…)
• Each medical act is linked to a single patient
• Prehospital actors are the medical personal who perform

these acts
(they must be
qualified for the
medical act)

Patient
PreHospitalActorManagementAct

+id
+dateTime
+preHospitalActor
+patient
+validated

+validate()
+getManagementActInfos()
+modifyManagementActInfo()

InstructionDiagnosis

MedicalAdvice

DrugAdministration
Prescription

Care

ascoV

8

1. Construct an agent
hierarchy

• KAOS associates goals to agents responsible for
these goals

• Agents were identified during long discussions,
based on the presentation of the functional model
by the IFREMMONT domain experts

• KAOS agents are candidates for RBAC roles.

ascoV

9

1. Construct an agent
hierarchy (2)

• The agent hierarchy distinguishes between
– Doctors vs non doctors
– Mobile team members, call center members and

administrative personal

DOCTOR

NURSE

RESCUER

PARM

OPERATOR

SAMU DIRECTOR
SYSTEM ENGINEER

REGULATOR
Rescuers are Fire fighters,
Ambulance drivers,...

USERTEAM MEMBER

TEAM DOCTOR

ADMINISTRATOR

CALL CENTER MEMBERS

Doctors may issue prescriptions
and instructions.

ascoV

10

Manage a patient

<<extend>>

2. Identify relevant use
cases

• Keep only the use cases relevant to management acts (28
out of 100)

• For example, the following use cases detail remote and local
management of a patient

• In both cases, acts must be validated!

Manage a patient
locally Manage a patient

remotely

Record an
instruction

Record a
prescription

<<extend>>
<<extend>>

Record a
medical advice

<<extend>>

Perform
validation of

ManagementActs

<<extend>>

<<extend>>

…

…

ascoV

11

3. Construct a functional
goal hierarchy

• Use cases are turned
into KAOS
functional goals

Achieve [Remote care of patient]

[Prescription or instruction issued] [Implicit validation]

Res@mu

[Medical advice given]

REGULATORPARM

Manage a patient

<<extend>>

Manage a patient
remotely

Record an
instruction

Record a
prescription

<<extend>>
<<extend>>

Record a
medical advice

<<extend>>

Perform
validation of

ManagementActs

• Concrete goals are linked to agents (human or software)

ascoV

12

4. Identify security goals

• Security goals identified by reviewing ACIT properties
(availability, confidentiality, integrity, traceability)

• This results in two goal hierarchies (functional or not)

Achieve [Patient managed]

Achieve [Call Managed]

PriorityScore assigned to the call
Achieve [Call Information recorded]

Patient’s data confidentiality
<<Goal>>

Patient’s data availability
<<Goal>>

Quality Samu

Secure Samu Functional SAMU

Data integrity
<<Goal>>

Traceability of any access
to the patient’s data

<<Goal>>

ascoV

13

5. Refine into security
requirements

• Find all functional and non-functional goals
linked to Management acts

Achieve [State of the patient recorded]
Achieve [Provision of medical care dealt with]

Achieve [Remote care of patient]

[Prescription or Instruction issued]

[Medical advice given]

[Care recorded]

[Care or Instruction or Prescription validated]

[Implicit validation]

Patient’s data confidentiality
<<Goal>>

Patient’s data availability
<<Goal>>

Traceability of any access to the patient’s data
<<Goal>>

ManagementAct
+id
+dateTime
+preHospitalActor
+patient
+validated

+validate()
+getManagementActInfos()
+modifyManagementActInfo()

[Validation carried out explicitly]

Data integrity
<<Goal>>

Secure SAMU

ascoV

14

5. Refine into security
requirements

Achieve [Remote care of patient]

[Prescription or
instruction issued]

REGULATOR

Res@mu

Res@mu

Data integrity
<<Goal>>

[Right granted to add
management act]

AccessRight1
<<SecUML.permission>>

+addValidManagementAct: execute

<<MethodAction>>+addValidManagementAct()

[Implicit validation]

ManagementAct
+id
+dateTime
+preHospitalActor
+patient
+validated

+validate()
+getManagementActInfos()
+modifyManagementActInfo()

Functional goalsSecurity goals

These goals are
linked to the same
data to protect !

An additional goal
(security requirement)
ensures that the security
goal applies in the context
of the functional goal!

The security requirement
is fulfilled by an access
control rule

ascoV

15

6. Design RBAC rules

• Access control rules are expressed in the
SecureUML syntax

ManagementAct
+id
+dateTime
+preHospitalActor
+patient
+validated
+validate()
+getManagementActInfos()
+modifyManagementActInfo()

REGULATOR

AccessRight1
<<SecUML.permission>>

+ActionName: addValidManagementAct

A Regulator can only create a
ManagementAct of types Instruction,
Prescription or MedicalAdvice. To be
able to do it, he must take part in one
of the interventions of the patient.

ManagementActPerm1
<<SecUML.permission>>

+actionType: Read

Patient
<<secuml.resourceView>>

+managements
+addManagementAct()
+addValidManagementAct()

Rule AccessRight1 grants
to the regulator the right
to create validated
management acts
(with some restrictions)

Rule ManagementActPerm1
grants to the regulator the
Right to read any management act

ascoV

16

7. Check satisfiability of
functional goals

• For each functional goal, check that there are
sufficient permissions to authorize it!

• For example, « Prescription or Instruction Issued »
requires that the regulator
– Is allowed to create a management act

of subclasses prescription and instruction
(OK due to AccessRight1)

– Has read access to all other management
acts related to the patient associated to the
prescription or instruction (to avoid interference with other
current management acts)
(OK due to ManagementActPerm1)

[Prescription or
instruction issued]

REGULATOR

ascoV

17

Comparison
with Haley et al

• Haley et al

– 4 steps

– Based on Jackson’s problem
frames

– A formal verification process
based on causal logic

• Our KAOS2RBAC
approach
– 8 steps covering the 4 steps

of Haley et al
– Based on KAOS : a richer

framework with goals linked
to agents, data, permission
rules

– Our KAOS diagrams allow
traceability between security
goals and access control
rules

– Our verification step remains
rather informal

ascoV

18

Conclusion

• An approach to design access control rules from
security goals

• Applied on a real world case study, using an
existing functional model

• Provides traceability from goals to rules
• Perspectives

– KAOS suggests the systematic identification of
« obstacles » to the most concrete goals to make the
model stronger

– This identification could benefit from a risk analysis based
on a list of standard attacks.

ascoV

19

Questions?

Photo Credits:
http://commons.wikimedia.org/wiki/File:Vasco_da_Gama_Bridge_03.JPG

http://commons.wikimedia.org/wiki/File:Sala_de_Regulacion_del_Samu_de_Paris.jpg?uselang=fr
http://commons.wikimedia.org/wiki/File:Logo_Samu.gif?uselang=fr

http://commons.wikimedia.org/wiki/File:H%C3%B4pital_d%27Orl%C3%A9ans-la-
Source_SAMU_1.jpg?uselang=fr

