Synthesis for fragments of first-order logic on data words J

Julien Grange!, Mathieu Lehaut?

LLACL, Université Paris-Est Créteil, France
2University of Gothenburg, Sweden

May 7th, 2024

Julien Grange Synthesis for fragments of first-order logic on data words 1/17

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
o drones

Julien Grange Synthesis for fragments of first-order logic on data words 2 /17

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
e drones

@ ...acting in an uncontrollable environment...

Julien Grange Synthesis for fragments of first-order logic on data words 2 /17

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
e drones

@ ...acting in an uncontrollable environment...

@ ...to satisfy some specification

Julien Grange Synthesis for fragments of first-order logic on data words 2 /17

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
e drones

@ ...acting in an uncontrollable environment...

@ ...to satisfy some specification

System and Environment, playing actions (a and b for System, c and d
for Environment) in turn on shared or proper

(1,a)(8,b)(7,d) (4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)

Julien Grange Synthesis for fragments of first-order logic on data words 2 /17

Executions : finite or infinite data words

(1,2)(8,b) (7,d) (4,c) (6,2) (6,c) (7,a) (6,d) (2,b) (7,d) (7,2)

Julien Grange Synthesis for fragments of first-order logic on data words 3/17

Executions : finite or infinite data words

(1,2)(8,b) (7,d) (4,c) (6,2) (6,c) (7,a) (6,d) (2,b) (7,d) (7,2)

o2 o o8
1e °3 4o %5 ° o7

@ One element for each position

@ One element for each agent

Julien Grange Synthesis for fragments of first-order logic on data words 3/17

Executions : finite or infinite data words

(1,2)(8,b) (7,d) (4,c) (6,2) (6,c) (7,a) (6,d) (2,b) (7,d) (7,2)

[] [] [) [) [) [) [[] [] [] []
6® 8
o7
Pg Pe
@ Three unary relations Py, P, and to denote ownership of the
agents

Julien Grange Synthesis for fragments of first-order logic on data words 3/17

Executions : finite or infinite data words

(1,2)(8,b) (7,d) (4,c) (6,2) (6,c) (7,a) (6,d) (2,b) (7,d) (7,2)

7,
’ e ,” \\‘ /;0’ AN 4 A
o —> 06— 06— 0 —> 0 —> 0 —> 0 —> 0 —> 0 —> 0 —> ©

PS Pe Pse

@ A binary relation +1 between successive positions

@ A binary relation < for its transitive closure

Julien Grange Synthesis for fragments of first-order logic on data words 3/17

Executions : finite or infinite data words

(1,2)(8,b) (7,d) (4,c) (6,2) (6,c) (7,a) (6,d) (2,b) (7,d) (7,2)

”—‘ ‘\\\ ”— ‘\\\
P oS L e - - ~
. .- e N3N e ~o N
4 -, ’—‘ -N\\\ /,’—‘ -N\ ~ ~
’ .’ - ~ 4 - N
a.” b. d.- a “#c,%* a d ~ab ad xa
o —» 06 —> 0 —»> 0 —> 0 —> 0 —> 0 —> 0 —> 0 —> 0 —> ¢

@ A unary relation for each action

Julien Grange Synthesis for fragments of first-order logic on data words 3/17

Executions : finite or infinite data words

(1,2)(8,b) (7,d) (4,c) (6,2) (6,c) (7,a) (6,d) (2,b) (7,d) (7,2)

- o
~eoeQ

@ An equivalence relation ~ with a class for each agent

Julien Grange Synthesis for fragments of first-order logic on data words 3/17

Specification language

Fragment of first-order logic, with a subset of the binary predicates

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

two variables

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

all predicates

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it :

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it :

Vx, req(x) = Jy, y~x A y>x A gets(y)

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it :

Vx, req(x) = Jy, y~x A y>x A gets(y)

e FO[~]

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

no restriction

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it :

Vx, req(x) = Jy, y~x A y>x A gets(y)

e FO[~]

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

no positional predicate

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it :

Vx, req(x) = Jy, y~x A y>x A gets(y)

e FO[~]

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

7

Every agent requesting a resource eventually gets it :

Vx, req(x) = Jy, y~x A y>x A gets(y)

e FO[~]

7

Every System agent requests at most twice a resource :

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

7

Every agent requesting a resource eventually gets it :

Vx, req(x) = Jy, y~x A y>x A gets(y)

e FO[~]

7

Every System agent requests at most twice a resource :

VX,PS(X) — [Vy1,yz,}/3, /\i (X ~ y,-/\req(y,-)) — \/’.7&1. Yi=Y;

Julien Grange Synthesis for fragments of first-order logic on data words 4 /17

Agent control

We consider three configurations :

@ All the agents belong to System

Julien Grange Synthesis for fragments of first-order logic on data words 5 /17

Agent control

We consider three configurations :
@ All the agents belong to System
@ There is no shared agent

Julien Grange Synthesis for fragments of first-order logic on data words 5 /17

Agent control

We consider three configurations :
@ All the agents belong to System
@ There is no shared agent
© All the agents are shared by System and Environment

Julien Grange Synthesis for fragments of first-order logic on data words 5 /17

Synthesis problem

Parameters :
@ a logic (specification language) £

@ a configuration for agent control (System only, partitioned or shared)

Julien Grange Synthesis for fragments of first-order logic on data words 6 /17

Synthesis problem

Parameters :
@ a logic (specification language) £

@ a configuration for agent control (System only, partitioned or shared)

Synthesis problem for £ for this configuration :

Input : a formula ¢ € £

Question : does there exist a distribution of agents, complying with
the configuration, such that System has a winning strategy for ¢ ?

Julien Grange Synthesis for fragments of first-order logic on data words 6 /17

Filling the gaps

Logic\Agents ‘ System only @ Partitioned Shared
FO?[~] decidable! ? ?
FO[~] decidable? ? undecidable?

FO?[~, <] decidable! ? ?
FO?[~, +1] decidable! ? ?
FO?[~, <, +1] decidable! ? undecidable?

1 : [Bojanczyk et al. '06]
2 : [Beérard et al. '20]

a. this amounts to the satisfiability problem

Julien Grange Synthesis for fragments of first-order logic on data words 7/17

Filling the gaps

Partitioned

Shared

Logic\Agents ‘ System only @

FO?[~]
FO[~]
FO?[~, <]
FO?[~, +1]
FO?[~, <, +1]

decidable?
decidable?
decidable!
decidable!
decidable?

?
decidable

undecidable
undecidable

?

undecidable

undecidable?
?
?

undecidable?

1 : [Bojanczyk et al. '06]
2 : [Beérard et al. '20]

a. this amounts to the satisfiability problem

Julien Grange

Synthesis for fragments of first-order logic on data words

7/17

Filling the gaps

Partitioned

Shared

Logic\Agents ‘ System only @

FO?[~] decidable! decidable 5 undecidable
FO[~] decidable? decidable undecidable?
FO?[~, <] decidable! undecidable undecidable
FO?[~, +1] decidable! undecidable? undecidable
FO?[~, <, +1] decidable! undecidable undecidable?

1 : [Bojanczyk et al. '06]
2 : [Beérard et al. '20]

a. this amounts to the satisfiability problem

Julien Grange

Synthesis for fragments of first-order logic on data words 7/17

Synthesis problem for FO?[~, <] with partitioned agents

Two-counter Minksy machine :
@ a finite set of states Q with qo, gy € Q

Julien Grange Synthesis for fragments of first-order logic on data words 8 /17

Synthesis problem for FOQ[N, <] with partitioned agents

Two-counter Minksy machine :
@ a finite set of states Q with qo, gy € Q

@ two non-negative counters ¢g and ¢;

Julien Grange Synthesis for fragments of first-order logic on data words 8 /17

Synthesis problem for FOQ[N, <] with partitioned agents

Two-counter Minksy machine :
@ a finite set of states Q with qg, gy € Q
@ two non-negative counters cg and ¢;

@ a set T of transitions between two states either

e increasing a counter
e decreasing a counter
e zero-testing a counter

Julien Grange Synthesis for fragments of first-order logic on data words 8 /17

Synthesis problem for FOz[N, <] with partitioned agents

Two-counter Minksy machine :
@ a finite set of states Q with qg, gy € Q
@ two non-negative counters cg and ¢;

@ a set T of transitions between two states either

e increasing a counter
e decreasing a counter
e zero-testing a counter

Run : sequence of states linked by transitions that do not
@ decrease a counter below zero

@ use a zero-testing transition on a non-zero counter

Julien Grange Synthesis for fragments of first-order logic on data words 8 /17

Synthesis problem for FOz[N, <] with partitioned agents

Two-counter Minksy machine :
@ a finite set of states Q with qg, gy € Q
@ two non-negative counters ¢g and ¢;

@ a set 7 of transitions between two states either
e increasing a counter
e decreasing a counter
e zero-testing a counter

Run : sequence of states linked by transitions that do not
@ decrease a counter below zero

@ use a zero-testing transition on a non-zero counter

Halting run : run starting in go with zero counters, and ending in g

Julien Grange Synthesis for fragments of first-order logic on data words 8 /17

Synthesis problem for FOQ[N, <] with partitioned agents

Halting problem for two-counter Minsky machines :

Input : a two-counter Minsky machine M

Question : does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for
FO?[~, <] with partitioned agents

Julien Grange Synthesis for fragments of first-order logic on data words 9 /17

Synthesis problem for FOQ[N, <] with partitioned agents

Halting problem for two-counter Minsky machines :

Input : a two-counter Minsky machine M

Question : does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for
FO?[~, <] with partitioned agents

@ System is in charge of the simulation

Julien Grange Synthesis for fragments of first-order logic on data words 9 /17

Synthesis problem for FOQ[N, <] with partitioned agents

Halting problem for two-counter Minsky machines :

Input : a two-counter Minsky machine M

Question : does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for
FO?[~, <] with partitioned agents

@ System is in charge of the simulation

@ Environment can interrupt if System is cheating

Julien Grange Synthesis for fragments of first-order logic on data words 9 /17

Synthesis problem for FOz[N, <] with partitioned agents

Halting problem for two-counter Minsky machines :

Input : a two-counter Minsky machine M

Question : does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for
FO?[~, <] with partitioned agents

@ System is in charge of the simulation
@ Environment can interrupt if System is cheating
@ The value of ¢; is encoded as the number of System agents
who have played inc;
{who have not played dec;

Julien Grange Synthesis for fragments of first-order logic on data words 9 /17

Svynthesis problem for FO%[~. <] with partitioned agents
y p : P g

to : go = qo

Q = {qo’ q1, a2, qh} and T = {t07 t17 t2a t3}v Where fiigo ——q

co——
igr— Q2

co==0
t3:q2 —— qp

Julien Grange Synthesis for fragments of first-order logic on data words 10 / 17

Svynthesis problem for FO%[~. <] with partitioned agents
y p : P g

to : go = qo

Q = {QO, q1, a2, qh} and T = {t07 t17 t2a t3}v Where fiigo ——q

co——
t2:q1 — q2

co==0
t3:q2 — qp

q0 c:0 c:0

(O’ Oks)(07 OkE)(07 qO)

(o)

Julien Grange Synthesis for fragments of first-order logic on data words 10 / 17

Svynthesis problem for FO%[~. <] with partitioned agents
y p : P g

to : go = qo

Q = {QO, q1, a2, qh} and T = {t07 t17 t2a t3}v Where fiigo ——q

co——
t2:qr — q2

co==0
t3:q2 —— g

do — 4o c:1 c:0

(o, 0ks)(o,0kg) (o, go)(o, to)(m, inco)(o, oks) (o, okg)
(07 qO)

(o)

Julien Grange Synthesis for fragments of first-order logic on data words 10 / 17

Svynthesis problem for FO%[~. <] with partitioned agents
y p : P g

to : go = qo

Q = {QO, q1, a2, qh} and T = {t07 t17 t2a t3}v Where fiigo ——q

co——
t2:q1 — Q2

co==0
t3:q2 ——qn

g0 — o — qo ©:2 :0

(o, 0ks)(o,0kg) (o, go)(o, to)(m, inco)(o, oks) (o, okg)
(07 qO)(Ov t0)('? inC())(O, OkS)(07 OkE)
(07 qO)

Julien Grange Synthesis for fragments of first-order logic on data words 10 / 17

Svynthesis problem for FO%[~. <] with partitioned agents
y p : P g

to : go = qo

Q = {qo’ q1, a2, qh} and T = {t07 t17 t2a t3}v Where fiigo ——q

co——
t2:q1 — Q2

co==0
t3:q2 ——qn

(0, 0ks)(o, 0kg)(, go)(o; to)(m ,inco)(o, oks)(o, oke) = incotdeco
(o, 90)(o, to)(e,inco)(o, oks)(o, oke) o
(°,q0)(, t1)(m, deco)(o, oks)(o, okg)
(o, q1)

Julien Grange Synthesis for fragments of first-order logic on data words 10 / 17

Synthesis problem for FO?[~, <] with partitioned agents
to: g0 25 qo
Q = {qo’ q1, a2, qh} and T = {t07 t17 t2a t3}v Where f:qo = a

co——
t2:q1 — Q2

co==0
t3:q2 ——qn

go = o —> Go — q1 — G2 ©:0 c:0

(o, 0ks)(o, 0ke)(, go)(o, to)(m , inco)(o, oks)(o, oke) = incotdeco
(°,q0)(o; to) (e, inco)(o, oks)(o, okg) o meotdeco
(°,q0)(, t1)(m, deco)(o, oks)(o, okg)
(0, q1)(0, t2)(e, deco)(o, oks)(o, okg)
(°, q2)

Julien Grange Synthesis for fragments of first-order logic on data words 10 / 17

Synthesis problem for FO?[~, <] with partitioned agents

co++
to : go —— qo

Q = {q0. a1, 42, an} and T = {to, 11, to, s}, where { 7% @

co——
t2:q1 — Q2

co==0
t3:q2 ——qn

to) n InCO)(O,Oks)(O,OkE) W incotdeco
)(O’ Oks)(O, OkE)

(o, t0)(

(o, to)(

(o, t1)(=, deco)(o, oks)(o, oke)
0, q1)(o, t2)(e, deco)(o, oks) (o, okg) @Pe
0, q2)(o, t3)(o, noop)(o, oks)(o, okg)(o, gn)

Julien Grange Synthesis for fragments of first-order logic on data words 10 / 17

@ incot-deco
O

Decidability boundary

Partitioned

Shared

Logic\Agents ‘ System only
FO?[~] decidable
FO[~] decidable

FO?[~, <] decidable
FO?[~, +1] decidable
FO?[~, <, +1] decidable

decidable

decidable
undecidable
undecidable
undecidable

undecidable
undecidable

undecidable

undecidable

undecidable

Julien Grange

Synthesis for fragments of first-order logic on data words

11 /17

Decidability boundary

Julien Grange

Logic\Agents ‘
FO?[~]
FO[~]

FO?[~, <]
FO?[~, +1]
FO?[~, <, +1]

Partitioned

decidable

decidable

undecidable
undecidable

undecidable

Synthesis for fragments of first-order logic on data words

11 /17

Decidability boundary

Julien Grange

Logic\Agents ‘
FO?[~]
FO[~]
FOP*/(<]
FO?[~, <]
FO?[~, +1]
FO?[~, <, +1]

Partitioned

decidable

decidable
?
undecidable
undecidable

undecidable

Synthesis for fragments of first-order logic on data words

11 /17

Prefix first-order logic on words : FOP™f

As FO[<] on words, where...

Phe - ~ Phe R ~
- -=" TN -7 =~ RN
. - ~ e <~
- eSS T = - ~ N
. . _- N J - ~o <
’ , - RN > < N
- A 4 £y
’ i % A

7’
o —>r 06— 06— 0 —> 0 —> 0 —> 0 —> 0 —> 0 —>» 0 —> ¢

Synthesis for fragments of first-order logic on data words 12 /17

Prefix first-order logic on words : FOP™f

Definition (FOP'*f)
As FO[<] on words, where...

o first quantifier : Vx or Ix

-~ N - ~o
- < - ~
- e m == - e emmm- - N
. - ~J. e ~ N
- - - - - —— ~ ~
s - - SN s 2, - ~o ~
’ ’ - ~ 2, ~ ~ q
’ . .) % LN 4
o —» 06— 06— 06 — ©

— 0 —> 06 —» 06 —>»> 06 —> 06 —> ©

~

X

Julien Grange Synthesis for fragments of first-order logic on data words

12 /17

Prefix first-order logic on words : FOP™f

Definition (FOP'*f)
As FO[<] on words, where...
o first quantifier : Vx or 3x

e following quantifiers : Vx < X or Ix < X

- - o

. e N
’ ‘ e P ‘\\Q
. . .7
o —>r 06— 06— 06— 0 —» 0 —> ©
X
Julien Grange Synthesis for fragments of first-order logic on data words

12 /17

Prefix first-order logic on words : FOP™f

Definition (FOP'*f)
As FO[<] on words, where...
o first quantifier : Vx or 3x

e following quantifiers : Vx < X or Ix < X

[Some factor never appears before some other factor]

Julien Grange Synthesis for fragments of first-order logic on data words 12 / 17

Prefix first-order logic on words : FOP™f

Definition (FOP'*f)
As FO[<] on words, where...
o first quantifier : Vx or 3x

e following quantifiers : Vx < X or Ix < X

[Some factor never appears before some other factor

Not expressible in FOP™f :

[There is an infinite number of a

Julien Grange Synthesis for fragments of first-order logic on data words 12 / 17

Prefix first-order logic on data words : FOP*/[<]

FOp'ef[S] : FOP™f independently on each data class

JPtae ~~\\ ,:_’ _____ ‘*~\
L < Nt ~o <
s == o, ” N S
, - R Pid N N
’ e \4 “ A A p
° ° ° . ° [° b b ®
7 6 7 4 6 7 7 6 6 1 7

Synthesis for fragments of first-order logic on data words 13 /17

Prefix first-order logic on data words : FOP*/[<]

FOp'ef[S] : FOP™f independently on each data class

- -~

/’/ ,“,— ‘~\\\4 X

° ° ° ° ° ° ° L4

7 6 7 4 6 7 7 6 6 7 7
%

Synthesis for fragments of first-order logic on data words 13 /17

Prefix first-order logic on data words : FOP*/[<]

FOp'ef[S] : FOP™f independently on each data class

- =~

~le
e
~e
s e
e

Synthesis for fragments of first-order logic on data words 13 /17

Prefix first-order logic on data words : FOP*/[<]

FOp'ef[S] : FOP™f independently on each data class

- =~

~le
e
~e
s e
e

Synthesis for fragments of first-order logic on data words 13 /17

Prefix first-order logic on data words : FOpref[fJ]

Definition (FOP™*f[<]) J

FOP"*f[<] : FOPf independently on each data class

An agent only closes a resource they opened and did not already close :

Julien Grange Synthesis for fragments of first-order logic on data words 13 / 17

Prefix first-order logic on data words : FOp'ef[fJ]

Definition (FOP™*f[<])

FOP"*f[<] : FOPf independently on each data class

An agent only closes a resource they opened and did not already close :
Vx, close(x) — (Ix < x,0pen(x) A Vy < X,x Sy — —close(y))

Julien Grange Synthesis for fragments of first-order logic on data words 13 / 17

Prefix first-order logic on data words : FOpref[,S]

Definition (FOP™*f[<])
Fopfef[g] : FOP™f independently on each data class J

An agent only closes a resource they opened and did not already close :
Vx, close(x) — (Ix < x,0pen(x) A Vy < X,x Sy — —close(y))

Not expressible in FOP*f[<]

Two agents never have the same resource open simultaneously

An agent always ends up closing an open resource

Julien Grange Synthesis for fragments of first-order logic on data words 13 / 17

Synthesis problem for FOP([<]

Input : a formula ¢ € FOP*f[<]

Question : does there exist a distribution of partitioned agents such
that System has a winning strategy for 7

Julien Grange Synthesis for fragments of first-order logic on data words 14 / 17

Synthesis problem for FOP([<]

Input : a formula ¢ € FOP*f[<]

Question : does there exist a distribution of partitioned agents such
that System has a winning strategy for ¢ ?

Theorem
The synthesis problem for FOP[<] with partitioned agents is decidable J

Julien Grange Synthesis for fragments of first-order logic on data words 14 / 17

Synthesis problem for FOP([<]

Input : a formula ¢ € FOP*f[<]

Question : does there exist a distribution of partitioned agents such
that System has a winning strategy for ¢ ?

Theorem

The synthesis problem for FOP[<] with partitioned agents is decidable J

Sketch of proof :

© normalize the game (strict alternation between players)

Julien Grange Synthesis for fragments of first-order logic on data words 14 / 17

Synthesis problem for FOP([<]

Input : a formula ¢ € FOP*f[<]

Question : does there exist a distribution of partitioned agents such
that System has a winning strategy for ¢ ?

Theorem

The synthesis problem for FOP[<] with partitioned agents is decidable J

Sketch of proof :
@ normalize the game

@ convert it to a token game

Julien Grange Synthesis for fragments of first-order logic on data words 14 / 17

Synthesis problem for FOP([<]

Input : a formula ¢ € FOP*f[<]

Question : does there exist a distribution of partitioned agents such
that System has a winning strategy for ¢ ?

Theorem

The synthesis problem for FOP[<] with partitioned agents is decidable J

Sketch of proof :
© normalize the game
@ convert it to a token game

© solve the token game (by showing it admits some kind of cutoff)

Julien Grange Synthesis for fragments of first-order logic on data words 14 / 17

Synthesis problem for FOP™[<]

Set of sentences of FOP™f

@ with as many nested quantifiers as ¢

o satisfied by w

Synthesis for fragments of first-order logic on data words 15 / 17

Synthesis problem for FOP([<]

Definition (FOP™®' type of a word w)

Set of sentences of FOP™f
@ with as many nested quantifiers as ¢
@ satisfied by w

FOPf types are stationary :

Lemma

For every infinite word w, there exists i € N such that for every j > i,
w and w[l...j] have the same FOP"f type

Julien Grange Synthesis for fragments of first-order logic on data words 15 / 17

Synthesis problem for FOP([<]

Definition (FOP™®' type of a word w)

Set of sentences of FOP™ef
@ with as many nested quantifiers as ¢
@ satisfied by w

Conversion to token game :

Arena : set of FOP™f types (finite)

Julien Grange Synthesis for fragments of first-order logic on data words 15 / 17

Synthesis problem for FOP([<]

Definition (FOP™®' type of a word w)

Set of sentences of FOP™f

@ with as many nested quantifiers as ¢
@ satisfied by w

Conversion to token game :
Arena : set of FOP™f types (finite)
Tokens : one per agent, starting in the FOP™f type of &

Julien Grange Synthesis for fragments of first-order logic on data words 15 / 17

Synthesis problem for FOP([<]

Definition (FOP™®' type of a word w)

Set of sentences of FOP™ef
@ with as many nested quantifiers as ¢

@ satisfied by w

Conversion to token game :

Arena : set of FOP™f types (finite)

Tokens : one per agent, starting in the FOP™f type of &
Transitions : 7 — 7’ iff there exists a finite word w of type T,

there exists u such that wu has type 7/

Julien Grange Synthesis for fragments of first-order logic on data words 15 / 17

Synthesis problem for FOP([<]

Definition (FOP™®' type of a word w)

Set of sentences of FOP™f
@ with as many nested quantifiers as ¢

@ satisfied by w

Conversion to token game :

Arena : set of FOP™f types (finite)

Tokens : one per agent, starting in the FOP™f type of &
Transitions : 7 — 7’ iff there exists a finite word w of type T,

equiv., for all
there exists u such that wu has type 7/

Julien Grange Synthesis for fragments of first-order logic on data words 15 / 17

Synthesis problem for FOP([<]

Definition (FOP™®' type of a word w)

Set of sentences of FOP™f
@ with as many nested quantifiers as ¢

@ satisfied by w

Conversion to token game :
Arena : set of FOP™f types (finite)

Tokens : one per agent, starting in the FOP™f type of &
Transitions : 7 — 7’ iff there exists a finite word w of type T,
equiv., for all

there exists u such that wu has type 7

Win config : set of configurations,
with token counting up to the quantifier nesting of ¢

/

Julien Grange Synthesis for fragments of first-order logic on data words 15 / 17

Synthesis problem for FOP([<]

ns

ng

Julien Grange Synthesis for fragments of first-order logic on data words 16 / 17

Synthesis problem for FOP([<]

ns ns

ng fE nge

Lemma

Beyond some threshold fg, if Environment can win with some number of
tokens, they can win with a larger number of tokens

Julien Grange Synthesis for fragments of first-order logic on data words 16 / 17

Synthesis problem for FOP([<]

ns ns ns

fs(ng)

ng fE nge fE ne

Lemma

There exists fs : N — N such that for every ng € N,

if System can win with > fs(ng) tokens when Environment has ng tokens,
then System can already win with fs(ng) tokens

Julien Grange Synthesis for fragments of first-order logic on data words 16 / 17

Synthesis problem for FOP([<]

ns ns ns

fs(ng)

ng fE nge fE ne

Lemma

For fixed ns, ng € N, one can decide whether System can win with ng
tokens when Environment has ng tokens

Julien Grange Synthesis for fragments of first-order logic on data words 16 / 17

Conclusion

Logic\Agents ‘ System only Partitioned Shared
FO?[~] decidable decidable undecidable
FO[~] decidable decidable undecidable

FOPf[<] decidable decidable undecidable
FO?[~, <] decidable undecidable undecidable
FO?[~, +1] decidable undecidable undecidable
FO?[~, <, +1] decidable undecidable undecidable

Julien Grange

Synthesis for fragments of first-order logic on data words

17 / 17

Conclusion

Logic\Agents ‘ System only Partitioned Shared
FO?[~] decidable decidable undecidable
FO[~] decidable decidable undecidable

FOPf[<] decidable decidable undecidable
FO?[~, <] decidable undecidable undecidable
FO?[~, +1] decidable undecidable undecidable

FO?[~, <, +1] decidable undecidable undecidable

Conjecture

The synthesis problem for FO?[<] with partitioned agents is decidable

Julien Grange

Synthesis for fragments of first-order logic on data words

17 / 17

Conclusion

Logic\Agents ‘ System only Partitioned Shared
FO?[~] decidable decidable undecidable
FO[~] decidable decidable undecidable

FOPf[<] decidable decidable undecidable
FO?[~, <] decidable undecidable undecidable
FO?[~, +1] decidable undecidable undecidable

FO?[~, <, +1] decidable undecidable undecidable

Conjecture

The synthesis problem for FO?[<] with partitioned agents is decidable

We considered a centralized strategy. What about distributed strategies ?

Julien Grange

Synthesis for fragments of first-order logic on data words

17 / 17

