Synthesis for fragments of first-order logic on data words

Julien Grange¹, Mathieu Lehaut²

¹LACL, Université Paris-Est Créteil, France ²University of Gothenburg, Sweden

May 7th, 2024

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones
- ...acting in an uncontrollable environment...

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones
- ...acting in an uncontrollable environment...
- ...to satisfy some specification

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones
- ...acting in an uncontrollable environment...
- ...to satisfy some specification

System and **Environment**, playing actions (a and b for System, c and d for Environment) in turn on shared or proper agents:

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

- One element for each position
- One element for each agent

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

 Three unary relations P_s, P_e and P_{se} to denote ownership of the agents

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

- A binary relation +1 between successive positions
- A binary relation < for its transitive closure

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

• A unary relation for each action

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

ullet An equivalence relation \sim with a class for each agent

Fragment of first-order logic, with a subset of the binary predicates

Fragment of first-order logic, with a subset of the binary predicates

$$\bullet \ \mathsf{FO}^2[\sim,<,+1]$$

two variables

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

all predicates

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it :

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it : $\forall x, \ \text{req}(x) \rightarrow \ \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$

$$\forall x, \text{ req(x)} \rightarrow \exists y, y \sim x \land y > x \land \text{gets(y)}$$

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it :
$$\forall x, \ \text{req}(x) \rightarrow \ \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$$

no restriction

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it :
$$\forall x, \ \text{req}(x) \rightarrow \ \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$$

no positional predicate

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it : $\forall x, \ \text{req}(x) \rightarrow \ \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$

$$\forall x, \text{ req}(x) \rightarrow \exists y, y \sim x \land y > x \land \text{gets}(y)$$

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it :

$$\forall x, \text{ req(x)} \rightarrow \exists y, y \sim x \land y > x \land \text{gets(y)}$$

FO[~]

Every System agent requests at most twice a resource :

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it : $\forall x, \ \text{req}(x) \rightarrow \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$

$$\forall x, \ \text{req}(x) \rightarrow \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$$

Every System agent requests at most twice a resource :
$$\forall x, P_{\mathtt{s}}(x) \rightarrow \left[\forall y_1, y_2, y_3, \ \bigwedge_i \left(x \sim y_i \land \mathtt{req}(y_i) \right) \rightarrow \bigvee_{i \neq j} y_i = y_j \right]$$

Agent control

We consider three configurations :

• All the agents belong to System

Agent control

We consider three configurations:

- All the agents belong to System
- 2 There is no shared agent

Agent control

We consider three configurations:

- All the agents belong to System
- 2 There is no shared agent
- 3 All the agents are shared by System and Environment

Synthesis problem

Parameters:

- ullet a logic (specification language) ${\cal L}$
- a configuration for agent control (System only, partitioned or shared)

Synthesis problem

Parameters:

- ullet a logic (specification language) ${\cal L}$
- a configuration for agent control (System only, partitioned or shared)

Synthesis problem for $\mathcal L$ for this configuration :

Input : a formula $\varphi \in \mathcal{L}$

Question: does there exist a distribution of agents, complying with the configuration, such that System has a winning strategy for φ ?

Filling the gaps

Logic\Agents	System only ^a	Partitioned	Shared
$FO^2[\sim]$	decidable ¹	?	?
FO[∼]	decidable ²	?	undecidable ²
$FO^2[\sim,<]$	$decidable^1$?	?
$FO^2[\sim,+1]$	$decidable^1$?	?
$FO^2[\sim,<,+1]$	decidable ¹	?	undecidable ²

1 : [Bojańczyk et al. '06]

2 : [Bérard et al. '20]

a. this amounts to the satisfiability problem

Filling the gaps

Logic\Agents	System only ^a	Partitioned	Shared
$FO^2[\sim]$	$decidable^1$?	<u>undecidable</u>
FO[∼]	decidable ²	<u>decidable</u>	undecidable ²
$FO^2[\sim,<]$	$decidable^1$	<u>undecidable</u>	?
$FO^2[\sim,+1]$	$decidable^1$	<u>undecidable</u>	?
$FO^2[\sim,<,+1]$	$decidable^1$?	undecidable ²

1 : [Bojańczyk et al. '06]

2 : [Bérard et al. '20]

a. this amounts to the satisfiability problem

Filling the gaps

Logic\Agents	System only ^a	Partitioned	Shared
$FO^2[\sim]$	$decidable^1$	decidable 7	<u>undecidable</u> \
FO[∼]	$decidable^2$	decidable)	undecidable ²
$FO^2[\sim,<]$	$decidable^1$	undecidable \	undecidable 🗸
$FO^2[\sim,+1]$	$decidable^1$	undecidable \	undecidable √
$FO^2[\sim,<,+1]$	$decidable^1$	undecidable 🗸	undecidable ²

1 : [Bojańczyk et al. '06]

2 : [Bérard et al. '20]

a. this amounts to the satisfiability problem

Two-counter Minksy machine:

ullet a finite set of states ${\mathcal Q}$ with $q_0,q_h\in{\mathcal Q}$

Two-counter Minksy machine:

- a finite set of states Q with $q_0, q_h \in Q$
- ullet two non-negative counters c_0 and c_1

Two-counter Minksy machine:

- a finite set of states Q with $q_0, q_h \in Q$
- two non-negative counters c₀ and c₁
- ullet a set ${\mathcal T}$ of transitions between two states either
 - increasing a counter
 - decreasing a counter
 - zero-testing a counter

Two-counter Minksy machine:

- a finite set of states Q with $q_0, q_h \in Q$
- two non-negative counters c₀ and c₁
- ullet a set ${\mathcal T}$ of transitions between two states either
 - increasing a counter
 - decreasing a counter
 - zero-testing a counter

Run: sequence of states linked by transitions that do not

- decrease a counter below zero
- use a zero-testing transition on a non-zero counter

Two-counter Minksy machine:

- ullet a finite set of states ${\mathcal Q}$ with $q_0,q_h\in{\mathcal Q}$
- ullet two non-negative counters c_0 and c_1
- ullet a set ${\mathcal T}$ of transitions between two states either
 - increasing a counter
 - decreasing a counter
 - zero-testing a counter

Run: sequence of states linked by transitions that do not

- decrease a counter below zero
- use a zero-testing transition on a non-zero counter

Halting run: run starting in q_0 with zero counters, and ending in q_h

Halting problem for two-counter Minsky machines:

Input: a two-counter Minsky machine M

Question: does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for $FO^2[\sim,<]$ with partitioned agents

Halting problem for two-counter Minsky machines :

Input: a two-counter Minsky machine M

Question: does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for $FO^2[\sim,<]$ with partitioned agents

• System is in charge of the simulation

Halting problem for two-counter Minsky machines:

Input: a two-counter Minsky machine M

Question: does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for $FO^2[\sim,<]$ with partitioned agents

- System is in charge of the simulation
- Environment can interrupt if System is cheating

Halting problem for two-counter Minsky machines:

Input: a two-counter Minsky machine M

Question: does M have a halting run?

This problem is undecidable : we reduce it to the Synthesis problem for $FO^2[\sim,<]$ with partitioned agents

- System is in charge of the simulation
- Environment can interrupt if System is cheating
- The value of c_i is encoded as the number of System agents

```
\begin{cases} who have played inc_i \\ who have not played dec_i \end{cases}
```

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

 q_0 $c_0:0$ $c_1:0$

$$(\circ, \mathsf{ok}_{\mathcal{S}})(\circ, \mathsf{ok}_{\mathcal{E}})(\circ, q_0)$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0$$
 $c_0: 1$ $c_1: 0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\blacksquare, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

 (\circ, q_0)

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0$$
 $c_0: 2$ $c_1: 0$

$$(\circ, \mathsf{ok}_{\mathcal{S}})(\circ, \mathsf{ok}_{\mathcal{E}})(\circ, q_0)(\circ, t_0)(\blacksquare, \mathsf{inc}_0)(\circ, \mathsf{ok}_{\mathcal{S}})(\circ, \mathsf{ok}_{\mathcal{E}})$$

$$(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_{\mathcal{S}})(\circ, \mathsf{ok}_{\mathcal{E}})$$

$$(\circ, q_0)$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_1} q_1$$
 $c_0:1$ $c_1:0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\blacksquare, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_1)(\blacksquare, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_1)$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow[c_0 + \rightarrow]{c_0 + \rightarrow} q_0 \\ t_1 : q_0 \xrightarrow[c_0 - \rightarrow]{c_0 - \rightarrow} q_1 \\ t_2 : q_1 \xrightarrow[c_0 = \rightarrow]{c_0 - \rightarrow} q_h \\ t_3 : q_2 \xrightarrow[c_0 = \rightarrow]{c_0 - \rightarrow} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_1} q_1 \xrightarrow{t_2} q_2$$
 $c_0: 0 \qquad c_1: 0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_1)(\bullet, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_1)(\circ, t_2)(\bullet, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_2)$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} ext{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, ext{ where } egin{cases} t_0 : q_0 & \stackrel{c_0++}{\longrightarrow} q_0 \ t_1 : q_0 & \stackrel{c_0--}{\longrightarrow} q_1 \ t_2 : q_1 & \stackrel{c_0--}{\longrightarrow} q_2 \ t_3 : q_2 & \stackrel{c_0=0}{\longrightarrow} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_1} q_1 \xrightarrow{t_2} q_2 \xrightarrow{t_3} q_h$$
 $c_0:0$ $c_1:0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_1)(\bullet, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_1)(\circ, t_2)(\bullet, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_2)(\circ, t_3)(\circ, \mathsf{noop})(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_h)$$

Decidability boundary

Logic\Agents	System only	Partitioned	Shared
$FO^2[\sim]$	decidable	decidable	undecidable
FO[∼]	decidable	decidable	undecidable
$FO^2[\sim,<]$	decidable	undecidable	undecidable
$FO^2[\sim,+1]$	decidable	undecidable	undecidable
$FO^2[\sim,<,+1]$	decidable	undecidable	undecidable

Decidability boundary

Logic\Agents	Partitioned
$FO^2[\sim]$	decidable
$FO[\sim]$	decidable
$FO^2[\sim,<]$	undecidable
$FO^2[\sim,+1]$	undecidable
$FO^2[\sim,<,+1]$	undecidable

Decidability boundary

Logic\Agents	Partitioned
$FO^2[\sim]$	decidable
$FO[\sim]$	decidable
$FO^{pref}[\lesssim]$?
$FO^2[\sim,<]$	undecidable
$FO^2[\sim,+1]$	undecidable
$FO^2[\sim,<,+1]$	undecidable

Prefix first-order logic on words: FO^{pref}

Definition (FO^{pref})

As FO[<] on words, where...

Definition (FO^{pref})

As FO[<] on words, where...

• first quantifier : $\forall \bar{x}$ or $\exists \bar{x}$

Definition (FO^{pref})

As FO[<] on words, where...

- first quantifier : $\forall \bar{x}$ or $\exists \bar{x}$
- following quantifiers : $\forall x < \bar{x}$ or $\exists x < \bar{x}$

Definition (FO^{pref})

As FO[<] on words, where...

- first quantifier : $\forall \bar{x}$ or $\exists \bar{x}$
- following quantifiers : $\forall x < \bar{x}$ or $\exists x < \bar{x}$

Some factor never appears before some other factor

Definition (FO^{pref})

As FO[<] on words, where...

- first quantifier : $\forall \bar{x}$ or $\exists \bar{x}$
- following quantifiers : $\forall x < \bar{x}$ or $\exists x < \bar{x}$

Some factor never appears before some other factor

Not expressible in FO^{pref}:

There is an infinite number of a

Definition ($FO^{pref}[\lesssim]$)

 $\mathsf{FO}^{\mathsf{pref}}[\lesssim] : \mathsf{FO}^{\mathsf{pref}} \ \mathsf{independently} \ \mathsf{on} \ \mathsf{each} \ \mathsf{data} \ \mathsf{class}$

Definition ($FO^{pref}[\lesssim]$)

 $\mathsf{FO}^{\mathsf{pref}}[\lesssim] : \mathsf{FO}^{\mathsf{pref}} \ \mathsf{independently} \ \mathsf{on} \ \mathsf{each} \ \mathsf{data} \ \mathsf{class}$

Definition (FO^{pref}[\lesssim])

 $\mathsf{FO}^\mathsf{pref}[\lesssim] : \mathsf{FO}^\mathsf{pref}$ independently on each data class

Definition ($FO^{pref}[\lesssim]$)

 $\mathsf{FO}^\mathsf{pref}[\lesssim] : \mathsf{FO}^\mathsf{pref}$ independently on each data class

Definition ($FO^{pref}[\lesssim]$)

 $\mathsf{FO}^\mathsf{pref}[\lesssim] : \mathsf{FO}^\mathsf{pref}$ independently on each data class

An agent only closes a resource they opened and did not already close :

Definition ($FO^{pref}[\lesssim]$)

FO^{pref}[≲] : FO^{pref} independently on each data class

An agent only closes a resource they opened and did not already close :

$$\forall \bar{x}, \mathsf{close}(\bar{x}) \to (\exists x \lesssim \bar{x}, \mathsf{open}(x) \land \forall y \lesssim \bar{x}, x \lesssim y \to \neg \mathsf{close}(y))$$

Definition ($FO^{pref}[\lesssim]$)

FO^{pref}[≲] : FO^{pref} independently on each data class

An agent only closes a resource they opened and did not already close :

$$\forall \bar{x}, \mathsf{close}(\bar{x}) \to \big(\exists x \lesssim \bar{x}, \mathsf{open}(x) \ \land \ \forall y \lesssim \bar{x}, x \lesssim y \to \neg \mathsf{close}(y)\big)$$

Not expressible in $FO^{pref}[\lesssim]$:

Two agents never have the same resource open simultaneously

An agent always ends up closing an open resource

 $\textbf{Input: a formula } \varphi \in \mathsf{FO}^{\mathsf{pref}}[\lesssim]$

Question : does there exist a distribution of partitioned agents such that System has a winning strategy for φ ?

Input : a formula $\varphi \in \mathsf{FO}^{\mathsf{pref}}[\lesssim]$

Question : does there exist a distribution of partitioned agents such that System has a winning strategy for φ ?

Theorem

The synthesis problem for $FO^{pref}[\lesssim]$ with partitioned agents is decidable

Input : a formula $\varphi \in \mathsf{FO}^{\mathsf{pref}}[\lesssim]$

Question: does there exist a distribution of partitioned agents such that System has a winning strategy for φ ?

Theorem

The synthesis problem for $FO^{pref}[\lesssim]$ with partitioned agents is decidable

Sketch of proof:

• normalize the game (strict alternation between players)

Input : a formula $\varphi \in \mathsf{FO}^{\mathsf{pref}}[\lesssim]$

Question: does there exist a distribution of partitioned agents such that System has a winning strategy for φ ?

Theorem

The synthesis problem for $FO^{pref}[\lesssim]$ with partitioned agents is decidable

Sketch of proof:

- normalize the game
- convert it to a token game

Input : a formula $\varphi \in \mathsf{FO}^{\mathsf{pref}}[\lesssim]$

Question: does there exist a distribution of partitioned agents such that System has a winning strategy for φ ?

Theorem

The synthesis problem for $FO^{pref}[\lesssim]$ with partitioned agents is decidable

Sketch of proof:

- normalize the game
- 2 convert it to a token game
- 3 solve the token game (by showing it admits some kind of cutoff)

Definition (FO^{pref} type of a word w)

Set of sentences of FO^{pref}

- ullet with as many nested quantifiers as arphi
- satisfied by w

Definition (FO^{pref} type of a word w)

Set of sentences of FO^{pref}

- ullet with as many nested quantifiers as arphi
- satisfied by w

FO^{pref} types are stationary:

Lemma

For every infinite word w, there exists $i \in \mathbb{N}$ such that for every $j \geq i$, w and $w[1 \dots j]$ have the same $\mathsf{FO}^\mathsf{pref}$ type

Definition (FO^{pref} type of a word w)

Set of sentences of FO^{pref}

- ullet with as many nested quantifiers as arphi
- satisfied by w

Conversion to token game:

Arena: set of FO^{pref} types (finite)

Definition (FO^{pref} type of a word w)

Set of sentences of FO^{pref}

- ullet with as many nested quantifiers as arphi
- satisfied by w

Conversion to token game:

Arena: set of FO^{pref} types (finite)

Tokens : one per agent, starting in the FO^{pref} type of ε

Definition (FO^{pref} type of a word w)

Set of sentences of FO^{pref}

- ullet with as many nested quantifiers as arphi
- satisfied by w

Conversion to token game :

Arena: set of FO^{pref} types (finite)

Tokens : one per agent, starting in the FO^{pref} type of ε

Transitions: $\tau \to \tau'$ iff there exists a finite word w of type τ ,

there exists u such that wu has type τ'

Definition (FO^{pref} type of a word w)

Set of sentences of FO^{pref}

- ullet with as many nested quantifiers as arphi
- satisfied by w

```
Conversion to token game :
```

Arena: set of FO^{pref} types (finite)

Tokens : one per agent, starting in the FO^{pref} type of ε

Transitions: $\tau \to \tau'$ iff there exists a finite word w of type τ ,

equiv., for all

there exists u such that wu has type au'

Definition (FO^{pref} type of a word w)

Set of sentences of FO^{pref}

- ullet with as many nested quantifiers as arphi
- satisfied by w

```
Conversion to token game :
```

Arena: set of FO^{pref} types (finite)

Tokens : one per agent, starting in the FO^{pref} type of ε

Transitions: $\tau \to \tau'$ iff there exists a finite word w of type τ ,

equiv., for all

there exists u such that wu has type au'

Win config: set of configurations,

with token counting up to the quantifier nesting of φ

Lemma

Beyond some threshold f_E , if Environment can win with some number of tokens, they can win with a larger number of tokens

Lemma

There exists $f_S : \mathbb{N} \to \mathbb{N}$ such that for every $n_E \in \mathbb{N}$, if System can win with $> f_S(n_E)$ tokens when Environment has n_E tokens, then System can already win with $f_S(n_E)$ tokens

Lemma

For fixed n_S , $n_E \in \mathbb{N}$, one can decide whether System can win with n_S tokens when Environment has n_E tokens

Conclusion

Logic\Agents	System only	Partitioned	Shared
$FO^2[\sim]$	decidable	decidable	undecidable
FO[∼]	decidable	decidable	undecidable
$FO^{pref}[\lesssim]$	decidable	decidable	undecidable
$FO^2[\sim,<]$	decidable	undecidable	undecidable
$FO^2[\sim,+1]$	decidable	undecidable	undecidable
$FO^2[\sim,<,+1]$	decidable	undecidable	undecidable

Conclusion

Logic\Agents	System only	Partitioned	Shared
$FO^2[\sim]$	decidable	decidable	undecidable
$FO[\sim]$	decidable	decidable	undecidable
$FO^{pref}[\lesssim]$	decidable	decidable	undecidable
$FO^2[\sim,<]$	decidable	undecidable	undecidable
$FO^2[\sim,+1]$	decidable	undecidable	undecidable
$FO^2[\sim,<,+1]$	decidable	undecidable	undecidable

Conjecture

The synthesis problem for $FO^2[\lesssim]$ with partitioned agents is decidable

Conclusion

Logic\Agents	System only	Partitioned	Shared
$FO^2[\sim]$	decidable	decidable	undecidable
FO[∼]	decidable	decidable	undecidable
$FO^{pref}[\lesssim]$	decidable	decidable	undecidable
$FO^2[\sim,<]$	decidable	undecidable	undecidable
$FO^2[\sim,+1]$	decidable	undecidable	undecidable
$FO^2[\sim,<,+1]$	decidable	undecidable	undecidable

Conjecture

The synthesis problem for $FO^2[\lesssim]$ with partitioned agents is decidable

We considered a centralized strategy. What about distributed strategies?