Specification and Automatic Verification of Computational Reductions

Julien Grange¹, Fabian Velken², Nils Vortmeier², Thomas Zeume²

¹LACL, Université Paris-Est Créteil, France ²Ruhr Universität Bochum, Germany

Complexity Days December 14th, 2023

Julien Grange

Goal : develop a platform to help students learn complexity theory

- $\checkmark\,$ Understand the classic reductions
- 2 Design their own reductions, and get feedback

Goal : develop a platform to help students learn complexity theory

- $\checkmark\,$ Understand the classic reductions
- 🙎 Design their own reductions, and get feedback
 - easy-to-grasp specification language for reductions
 - automatic tools to check the validity of such reductions
 - produce a counter-example if the reduction is incorrect

To specify formally a reduction $P \leq P^{\star}$, either

• give an algorithmic procedure

instance of $P \mapsto \text{instance of } P^\star$

To specify formally a reduction $P \leq P^{\star}$, either

• give an algorithmic procedure

```
instance of P \mapsto \text{instance of } P^\star
```

- 🙎 procedural
- ✓ left-to-right

To specify formally a reduction $P \leq P^{\star}$, either

• give an algorithmic procedure

```
instance of P \mapsto \text{instance of } P^{\star}
```

- 🙎 procedural
- ✓ left-to-right
- give an FO-interpretation to define instances of P^{\star} in instances of P

Definition (FO-interpretation between graphs)

$$ho = \left(arphi_{\mathsf{domain}}(ar{x}), arphi_{\sim}(ar{x},ar{y}), arphi_{\textit{E}}(ar{x},ar{y})
ight)$$
 transforms

• a graph
$$\mathcal{G} = (V, E)$$

To specify formally a reduction $P \leq P^{\star}$, either

• give an algorithmic procedure

```
instance of P \mapsto \text{instance of } P^{\star}
```

- 🙎 procedural
- ✓ left-to-right
- give an FO-interpretation to define instances of P^* in instances of P
 - ✓ declarative
 - 🙎 right-to-left

Definition (FO-interpretation between graphs)

$$ho = \left(arphi_{\mathsf{domain}}(ar{x}), arphi_{\sim}(ar{x},ar{y}), arphi_{\mathsf{E}}(ar{x},ar{y})
ight)$$
 transforms

• a graph $\mathcal{G} = (V, E)$

To specify formally a reduction $P \leq P^{\star}$, either

• give an algorithmic procedure

```
instance of P \mapsto \text{instance of } P^{\star}
```

- 🙎 procedural
- ✓ left-to-right
- give an FO-interpretation to define instances of P^{\star} in instances of P
 - ✓ declarative
 - 🙎 right-to-left

Best of both worlds :

- \checkmark declarative
- ✓ left-to-right

Cookbook reduction

$$k - \text{CLIQUE} \leq (k+1) - \text{CLIQUE}$$

Cookbook reduction

$$k - \text{CLIQUE} \leq (k+1) - \text{CLIQUE}$$

Cookbook reduction \mapsto \bullet \bullet \bullet \bullet \bullet

$$k - \text{CLIQUE} \le (k + 1) - \text{CLIQUE}$$

$$k - \text{CLIQUE} \leq (k + 1) - \text{CLIQUE}$$

Cookbook reduction \mapsto \bullet \bullet

 $k - \text{CLIQUE} \le (k+1) - \text{CLIQUE}$

Cookbook reduction \mapsto \bullet \bullet

 $k - \text{CLIQUE} \le (k+1) - \text{CLIQUE}$

Cookbook reduction \mapsto \bullet \bullet

 $k - \text{CLIQUE} \le (k+1) - \text{CLIQUE}$

$$k - \text{CLIQUE} \leq (k+1) - \text{CLIQUE}$$

 $k \!-\! \mathrm{VertexCover} \leq k \!-\! \mathrm{FVS}$

 $\operatorname{HamCycle}_d \leq \operatorname{HamCycle}_u$

 $k - \text{CLIQUE} \le k - \text{INDEPSET}$

Theorem

Every cookbook reduction is equivalent to a quantifier-free interpretation

...but not all QF-interpretations are cookbook reductions

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable g for $\mathcal{R} = \{\text{FO-interpretations}\}$ and any non-trivial P^*

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- 2 for $\mathcal{R} = \{ \mathsf{QF} \text{-interpretations} \}$ and some $P^* \in \mathsf{FO}$

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF} \text{-interpretations}\}$ and some $P^{\star} \in \mathsf{FO}$
- \mathbf{a} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^0$

Edge-gadget reductions

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- 2 for $\mathcal{R} = \{QF\text{-interpretations}\}\ \text{and some}\ P^* \in FO$
- \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{O}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^* \in \mathsf{FO}$
- \mathbf{a} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{O}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable \checkmark for $\mathcal{R} = \{$ cookbook reductions of arity $\leq r \}$, any P, and $P^* \in FO$

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

 \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}

 \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^* \in \mathsf{FO}$

 \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{O}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable \checkmark for $\mathcal{R} = \{$ cookbook reductions of arity $\leq r \}$, any P, and $P^* \in FO$ \checkmark for $\mathcal{R} = \{$ edge-gadget reductions $\}$, any P, and $P^* \in MSO$

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^* \in \mathsf{FO}$
- \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{0}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable \checkmark for $\mathcal{R} = \{$ cookbook reductions of arity $\leq r \}$, any P, and $P^* \in FO$ \checkmark for $\mathcal{R} = \{$ edge-gadget reductions $\}$, any P, and $P^* \in MSO$

For input P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable \checkmark for $\mathcal{R} = \{QF\text{-interpretations}\}, P, P^* \in \exists FO$

Theorem

Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.

Theorem

Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.

The recipe for the cookbook reduction ρ of arity 2 from k-CLIQUE to (k+1)-CLIQUE

Theorem

Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.

The recipe for the cookbook reduction ρ of arity 2 from k-CLIQUE to (k+1)-CLIQUE $\rho(\mathcal{A})$ can be FO-interpreted in $\mathcal{A} \uplus \operatorname{recipe}(\rho)$.

Theorem

Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.

The recipe for the cookbook reduction ρ of arity 2 from k-CLIQUE to (k+1)-CLIQUE $\rho(\mathcal{A})$ can be FO-interpreted in $\mathcal{A} \uplus \operatorname{recipe}(\rho)$.

Hence, the correction of ρ only depends on the FO-type of its recipe at some depth.

Prototype on Iltis

Enter your gadget-reduction

Julien Grange

Prototype on Iltis

Enter your gadget-reduction

Julien Grange

Prototype on Iltis

Wrong reduction: feedback via counter-example

Julien Grange

Cookbook reductions : specification langage for reductions

- ✓ intuitive
- \checkmark powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

Cookbook reductions : specification langage for reductions

- ✓ intuitive
- $\checkmark\,$ powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

To come :

• allow parameter manipulation (e.g. k in k - CLIQUE)

Cookbook reductions : specification langage for reductions

- ✓ intuitive
- \checkmark powerful enough for many common reductions
- $\checkmark\,$ good decidable properties compared to other languages

To come :

- allow parameter manipulation (e.g. k in k CLIQUE)
- develop and deploy this feature on Iltis

Cookbook reductions : specification langage for reductions

- ✓ intuitive
- $\checkmark\,$ powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

To come :

- allow parameter manipulation (e.g. k in k CLIQUE)
- develop and deploy this feature on Iltis

Theorem

Fix any problem P and any $P^* \in MSO$. One can decide whether an edge-gadget reduction is a valid reduction $P \leq P^*$.

Cookbook reductions : specification langage for reductions

- ✓ intuitive
- \checkmark powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

To come :

- allow parameter manipulation (e.g. k in k CLIQUE)
- develop and deploy this feature on Iltis

Theorem Conjecture

Fix any problem P and any $P^* \in MSO$ - MSO². One can decide whether an edge-gadget reduction a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.