Order-Invariant First-Order Logic over Hollow Trees

Julien Grange ENS, PSL, Inria Luc Segoufin Inria, ENS, PSL

01/13/2020

Introduction

Databases stored on disk come with an order

- Useful to scan the database
- Query results shouldn't depend upon it

Example (Order-dependent query)

 $\mathcal{Q}_{\text{red}} :=$ "The first node is red"

Example (Order-dependent query)

 $Q_{red} :=$ "The first node is red"

Example (Order-invariant query)

 $\mathcal{Q}_{\mathsf{odd}} :=$ The last node belongs to P, where $P := \{1, 3, 5, \cdots\}$

Example (Order-invariant query)

 $\mathcal{Q}_{\mathsf{odd}} :=$ "The last node belongs to P, where $P := \{1,3,5,\cdots\}$ "

Example (Order-invariant query)

 $Q_{\text{odd}} :=$ The last node belongs to P, where $P := \{1, 3, 5, \cdots\}$

Definition of <-inv FO

 $\varphi \in FO(\Sigma, <)$ is **order-invariant** over a finite Σ -structure \mathcal{A} if:

$$\forall <_1, <_2 \qquad (\mathcal{A}, <_1) \models \varphi \quad \leftrightarrow \quad (\mathcal{A}, <_2) \models \varphi$$

Definition of <-inv FO

 $\varphi \in FO(\Sigma, <)$ is **order-invariant** over a finite Σ -structure \mathcal{A} if:

$$\forall <_1, <_2 \qquad (\mathcal{A}, <_1) \models \varphi \quad \leftrightarrow \quad (\mathcal{A}, <_2) \models \varphi$$

Definition (Order-invariant First-Order Logic)

<-inv $FO := \{ \varphi : \varphi \text{ is order-invariant over every finite } \mathcal{A} \}$

Definition of <-inv FO

 $\varphi \in FO(\Sigma, <)$ is **order-invariant** over a finite Σ -structure \mathcal{A} if:

$$\forall <_1, <_2 \qquad (\mathcal{A}, <_1) \models \varphi \quad \leftrightarrow \quad (\mathcal{A}, <_2) \models \varphi$$

Definition (Order-invariant First-Order Logic)

<-inv FO := $\{\varphi : \varphi \text{ is order-invariant over every finite } \mathcal{A}\}$

<-inv FO doesn't have a recursive syntax.

Potthoff's example (1994)

Complete unordered binary tree, with the descendant relation.

$$(aa)^* \notin FO$$
:
even_height $\notin FO$

Potthoff's example (1994)

Complete unordered binary tree, with the descendant relation.

$$(aa)^* \notin FO$$
:
even_height $\notin FO$

Potthoff's example (1994)

Complete unordered binary tree, with the descendant relation.

$$(aa)^* \notin FO$$
:
even_height $\notin FO$

$$(Ir)^* \in FO$$
:
even_height $\in <$ -inv FO

Immermann-Vardi (1982):

 \bullet <-inv LFP = PTIME

Immermann-Vardi (1982):

 \bullet <-inv LFP = PTIME

Gurevich (circa 1991):

• $FO \subseteq <$ -inv FO

Immermann-Vardi (1982):

 \bullet <-inv LFP = PTIME

Gurevich (circa 1991):

• $FO \subseteq <$ -inv FO

Benedikt, Segoufin (2009):

- \bullet <-inv FO \subseteq MSO on
 - graphs of bounded degree
 - graphs of bounded treewidth
- \bullet <-inv FO = FO on
 - words
 - binary trees without the descendant relation

Immermann-Vardi (1982):

 \bullet <-inv LFP = PTIME

Gurevich (circa 1991):

• $FO \subseteq <$ -inv FO

Benedikt, Segoufin (2009):

- \bullet <-inv FO \subseteq MSO on
 - graphs of bounded degree
 - graphs of bounded treewidth
- \bullet <-inv FO = FO on
 - words
 - binary trees without the descendant relation

Conjecture

<-inv FO = FO on graphs of bounded treewidth

 $<\!$ -inv FO collapses to FO on Hollow Trees Example of operations

From Pathwidth 2 to Hollow Trees

 $<\!$ -inv FO collapses to FO on Hollow Trees Example of operations

From Pathwidth 2 to Hollow Trees

 $<\!$ -inv FO collapses to FO on Hollow Trees Example of operations

From Pathwidth 2 to Hollow Trees

 $<\!$ -inv FO collapses to FO on Hollow Trees Example of operations

Definition of Hollow Trees

Two binary relations:

- *S* (oriented)
- E (symmetric)

Nodes are coloured with unary predicates.

<-inv FO collapses to FO on Hollow Trees

Theorem

<-inv FO = FO on Hollow Trees

<-inv FO collapses to FO on Hollow Trees

Theorem

<-inv FO = FO on Hollow Trees

$$\varphi \in <$$
-inv FO

 \downarrow

 $\exists \psi \in \mathrm{FO}, \quad \psi \leftrightarrow \varphi \text{ on Hollow Trees}$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$
 \downarrow $(\mathcal{T},<) \equiv_k (\mathcal{A}_1,<_1')$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$
 \downarrow
 $(\mathcal{T},<) \equiv_k (\mathcal{A}_1,<_1')$
 $(\mathcal{A}_1,<_1) \equiv_k (\mathcal{A}_2,<_2')$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$
 \downarrow
 $(\mathcal{T},<) \equiv_k (\mathcal{A}_1,<_1')$
 $(\mathcal{A}_1,<_1) \equiv_k (\mathcal{A}_2,<_2')$
 \vdots
 $(\mathcal{A}_n,<_n) \equiv_k (\mathcal{T}',<')$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$

$$\downarrow$$

$$(\mathcal{T},<) \equiv_{k} (\mathcal{A}_{1},<'_{1})$$

$$(\mathcal{A}_{1},<_{1}) \equiv_{k} (\mathcal{A}_{2},<'_{2})$$

$$\vdots$$

$$(\mathcal{A}_{n},<_{n}) \equiv_{k} (\mathcal{T}',<')$$

$$\varphi \in <$$
-inv FO, of quantifier rank k $\mathcal{T} \models \varphi$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$

$$\downarrow$$

$$(\mathcal{T},<) \equiv_{k} (\mathcal{A}_{1},<'_{1})$$

$$(\mathcal{A}_{1},<_{1}) \equiv_{k} (\mathcal{A}_{2},<'_{2})$$

$$\vdots$$

$$(\mathcal{A}_{n},<_{n}) \equiv_{k} (\mathcal{T}',<')$$

$$\varphi \in <$$
-inv FO, of quantifier rank k $\mathcal{T} \models \varphi$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$
 \downarrow
 $(\mathcal{T},<) \equiv_k (\mathcal{A}_1,<_1')$
 $(\mathcal{A}_1,<_1) \equiv_k (\mathcal{A}_2,<_2')$
 \vdots
 $(\mathcal{A}_n,<_n) \equiv_k (\mathcal{T}',<')$

$$\varphi \in \langle -\text{inv FO}, \rangle$$
of quantifier rank k
 $\mathcal{T} \models \varphi$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$

$$\downarrow$$

$$(\mathcal{T},<) \equiv_{k} (\mathcal{A}_{1},<'_{1})$$

$$(\mathcal{A}_{1},<_{1}) \equiv_{k} (\mathcal{A}_{2},<'_{2})$$

$$\vdots$$

$$(\mathcal{A}_{n},<_{n}) \equiv_{k} (\mathcal{T}',<')$$

$$\varphi \in <$$
-inv FO, of quantifier rank k $\mathcal{T} \models \varphi$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$
 \downarrow
 $(\mathcal{T},<) \equiv_k (\mathcal{A}_1,<_1')$
 $(\mathcal{A}_1,<_1) \equiv_k (\mathcal{A}_2,<_2')$
 \vdots
 $(\mathcal{A}_n,<_n) \equiv_k (\mathcal{T}',<')$

$$\varphi \in <$$
-inv FO, of quantifier rank k $\mathcal{T} \models \varphi$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$
 \downarrow
 $(\mathcal{T},<) \equiv_k (\mathcal{A}_1,<_1')$
 $(\mathcal{A}_1,<_1) \equiv_k (\mathcal{A}_2,<_2')$
 \vdots
 $(\mathcal{A}_n,<_n) \equiv_k (\mathcal{T}',<')$

 $\varphi \in <\text{-inv FO,}$ of quantifier rank k $\mathcal{T} \models \varphi \leftrightarrow \mathcal{T}' \models \varphi$

$$\mathcal{T} \equiv_{f(k)} \mathcal{T}'$$

$$\downarrow$$

$$(\mathcal{T},<) \equiv_k (\mathcal{A}_1,<_1')$$

$$(\mathcal{A}_1,<_1) \equiv_k (\mathcal{A}_2,<_2')$$

$$\vdots$$

$$(\mathcal{A}_n,<_n) \equiv_k (\mathcal{T}',<')$$

$$\varphi \in <\text{-inv FO},$$
of quantifier rank k

$$\mathcal{T} \models \varphi \leftrightarrow \mathcal{T}' \models \varphi \qquad \exists \psi \in \text{FO of qr. } f(k),$$

$$\psi \leftrightarrow \varphi \text{ on Hollow Trees}$$

Proposition

There exist operations $(o_i)_i$ such that

$$\mathcal{A} \xrightarrow{o_i} \mathcal{B} \quad \rightarrow \quad \exists <_A, <_B, \quad (\mathcal{A}, <_A) \equiv_k (\mathcal{B}, <_B)$$

Proposition

There exist operations $(o_i)_i$ such that

$$\mathcal{T} \stackrel{o_1}{\longrightarrow} \mathcal{A}_1 \ \mathcal{A}_1 \stackrel{o_2}{\longrightarrow} \mathcal{A}_2$$

$$\mathcal{A}_n \xrightarrow{o_{n+1}} \mathcal{T}'$$

Vertical swap

Vertical swap

Vertical swap

Horizontal swap

Horizontal swap

Horizontal swap

Mirror swap

Mirror swap

Mirror swap

Aperiodicity

Aperiodicity

Aperiodicity

<-inv FO collapses to FO on Hollow Trees

Proposition

With $(o_i) = (\{\text{vertical, horizontal, mirror}\}\)$ swap, aperiodicity, . . .), $\forall \mathcal{T} \equiv_{f(k)} \mathcal{T}'$,

Theorem

<-inv FO = FO on Hollow Trees

Conclusion

Theorem

<-inv FO = FO on Hollow Trees

Open questions

<-inv FO = FO on graphs of pathwidth 2

<-inv FO = FO on graphs of bounded treewidth

Conclusion

Theorem

<-inv FO = FO on Hollow Trees

Open questions

- <-inv FO = FO on graphs of pathwidth 2
- <-inv FO = FO on graphs of bounded treewidth

- $(E,S) \rightarrow E \cup S \cup S^{-1}$
- unbounded degree

