First order synthesis for data words revisited

Julien Grange¹, Mathieu Lehaut²

¹LACL, Université Paris-Est Créteil, France ²University of Gothenburg, Sweden

October 1st, 2023

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones
- ...acting in an uncontrollable environment...

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones
- ...acting in an uncontrollable environment...
- ...to satisfy some specification

- We want an unbounded number of agents...
 - processes
 - computers in a network
 - drones
- ...acting in an uncontrollable environment...
- ...to satisfy some specification

System and **Environment**, playing actions (a and b for System, c and d for Environment) in turn on shared or proper agents:

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

- One element for each position
- One element for each agent

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

 Three unary relations P_s, P_e and P_{se} to denote ownership of the agents

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

- A binary relation +1 between successive positions
- A binary relation < for its transitive closure

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

• A unary relation for each action

$$(1,a)(8,b)(7,d)(4,c)(6,a)(6,c)(7,a)(6,d)(2,b)(7,d)(7,a)$$

ullet An equivalence relation \sim with a class for each agent

Fragment of first-order logic, with a subset of the binary predicates

Fragment of first-order logic, with a subset of the binary predicates

$$\bullet \ \mathsf{FO}^2[\sim,<,+1]$$

two variables

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

all predicates

Fragment of first-order logic, with a subset of the binary predicates

 $\bullet \ \mathsf{FO}^2[\sim,<,+1]$

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it:

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it:
$$\forall x, \text{ req}(x) \rightarrow \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$$

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it:
$$\forall x, \text{ req}(x) \rightarrow \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$$

no restriction

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it:
$$\forall x, \text{ req}(x) \rightarrow \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$$

no positional predicate

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it:
$$\forall x, \ \mathtt{req}(\mathtt{x}) \to \ \exists y, \ y \sim x \ \land \ y > x \ \land \ \mathtt{gets}(\mathtt{y})$$

Fragment of first-order logic, with a subset of the binary predicates

 $\bullet \ \mathsf{FO}^2[\sim,<,+1]$

Every agent requesting a resource eventually gets it:

$$\forall x, \text{ req(x)} \rightarrow \exists y, y \sim x \land y > x \land \text{gets(y)}$$

FO[~]

Every System agent requests at most twice a resource:

Fragment of first-order logic, with a subset of the binary predicates

• $FO^2[\sim, <, +1]$

Every agent requesting a resource eventually gets it:
$$\forall x, \text{ req}(x) \rightarrow \exists y, \ y \sim x \ \land \ y > x \ \land \ \text{gets}(y)$$

Every System agent requests at most twice a resource:
$$\forall x, P_{\mathtt{s}}(x) \rightarrow \left[\forall y_1, y_2, y_3, \bigwedge_i \left(x \sim y_i \land \mathtt{req}(y_i) \right) \rightarrow \bigvee_{i \neq j} y_i = y_j \right]$$

Agent control

We consider three configurations:

• All the agents belong to System

Agent control

We consider three configurations:

- All the agents belong to System
- There is no shared agent

Agent control

We consider three configurations:

- All the agents belong to System
- There is no shared agent
- 4 All the agents are shared by System and Environment

Synthesis problem

Parameters:

- ullet a logic (specification language) ${\cal L}$
- a configuration for agent control (System only, partitioned or shared)

Synthesis problem

Parameters:

- ullet a logic (specification language) ${\cal L}$
- a configuration for agent control (System only, partitioned or shared)

Synthesis problem for \mathcal{L} for this configuration:

Input: a formula $\varphi \in \mathcal{L}$

Question: does there exist a distribution of agents, complying with the configuration, such that System has a winning strategy for φ ?

Filling the gaps

Logic\Agents	System only ^a	Partitioned	Shared
$FO^2[\sim]$	decidable ¹	?	?
FO[∼]	decidable ²	?	undecidable ²
$FO^2[\sim,<]$	decidable ¹	?	?
$FO^2[\sim,+1]$	decidable ¹	?	?
$FO^2[\sim,<,+1]$	decidable ¹	?	undecidable ²

^{1: [}Bojańczyk et al. '06]

^{2: [}Bérard et al. '20]

athis amounts to the satisfiability problem

Filling the gaps

Logic\Agents	System only ^a	Partitioned	Shared
$FO^2[\sim]$	decidable ¹	?	<u>undecidable</u>
FO[∼]	decidable ²	<u>decidable</u>	undecidable ²
$FO^2[\sim,<]$	decidable ¹	<u>undecidable</u>	?
$FO^2[\sim,+1]$	decidable ¹	<u>undecidable</u>	?
$FO^2[\sim,<,+1]$	decidable ¹	?	undecidable ²

^{1: [}Bojańczyk et al. '06]

^{2: [}Bérard et al. '20]

athis amounts to the satisfiability problem

Filling the gaps

Logic\Agents	System only ^a	Partitioned	Shared
$FO^2[\sim]$	$decidable^1$	decidable 7	<u>undecidable</u> \
FO[∼]	$decidable^2$	decidable)	undecidable ²
$FO^2[\sim,<]$	$decidable^1$	undecidable \	undecidable √
$FO^2[\sim,+1]$	$decidable^1$	undecidable \	undecidable √
$FO^2[\sim,<,+1]$	$decidable^1$	undecidable √	$undecidable^2$

^{1: [}Bojańczyk et al. '06]

^{2: [}Bérard et al. '20]

athis amounts to the satisfiability problem

Two-counter Minksy machine:

ullet a finite set of states ${\mathcal Q}$ with $q_0,q_h\in{\mathcal Q}$

Two-counter Minksy machine:

- a finite set of states Q with $q_0, q_h \in Q$
- ullet two non-negative counters c_0 and c_1

Two-counter Minksy machine:

- a finite set of states Q with $q_0, q_h \in Q$
- two non-negative counters c_0 and c_1
- ullet a set ${\mathcal T}$ of transitions between two states either
 - increasing a counter
 - decreasing a counter
 - zero-testing a counter

Two-counter Minksy machine:

- a finite set of states $\mathcal Q$ with $q_0,q_h\in\mathcal Q$
- two non-negative counters c_0 and c_1
- ullet a set ${\mathcal T}$ of transitions between two states either
 - increasing a counter
 - decreasing a counter
 - zero-testing a counter

Run: sequence of states linked by transitions that do not

- decrease a counter below zero
- use a zero-testing transition on a non-zero counter

Two-counter Minksy machine:

- a finite set of states $\mathcal Q$ with $q_0,q_h\in\mathcal Q$
- two non-negative counters c₀ and c₁
- ullet a set ${\mathcal T}$ of transitions between two states either
 - increasing a counter
 - decreasing a counter
 - zero-testing a counter

Run: sequence of states linked by transitions that do not

- decrease a counter below zero
- use a zero-testing transition on a non-zero counter

Halting run: run starting in q_0 with zero counters, and ending in q_h

Halting problem for two-counter Minsky machines:

Input: a two-counter Minsky machine M

Question: does M have a halting run?

This problem is undecidable: we reduce it to the Synthesis problem for $FO^2[\sim,<]$ with partitioned agents

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

 q_0 $c_0:0$ $c_1:0$

$$(\circ, \mathsf{ok}_{\mathcal{S}})(\circ, \mathsf{ok}_{\mathcal{E}})(\circ, q_0)$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0$$
 $c_0:1$ $c_1:0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\blacksquare, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$
$$(\circ, q_0)$$

$$\mathcal{Q} := \{q_0, q_1, q_2, q_h\} \text{ and } \mathcal{T} := \{t_0, t_1, t_2, t_3\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow{c_0 = 0} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0$$
 $c_0: 2$ $c_1: 0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$
$$(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$
$$(\circ, q_0)$$

$$\mathcal{Q} := \left\{q_0, q_1, q_2, q_h\right\} \text{ and } \mathcal{T} := \left\{t_0, t_1, t_2, t_3\right\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow[\substack{c_0 + + \\ c_0 - - \\ t_2 : q_1 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 = 0 \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 = 0 \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 = 0 \\ c_0 = 0 \\ t_3 : q_1 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 = 0 \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 = 0 \\ c_0 = 0 \\ t_3 : q_1 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 = 0 \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - - \\ c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_2 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_3 : q_3 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_3 : q_3 \xrightarrow[\substack{c_0 - c_0 = 0 \\ t_3 : q_3 :$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_1} q_1$$
 $c_0:1$ $c_1:0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\blacksquare, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_1)(\blacksquare, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_1)$$

$$\mathcal{Q} := \left\{q_0, q_1, q_2, q_h\right\} \text{ and } \mathcal{T} := \left\{t_0, t_1, t_2, t_3\right\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow[c_0 \to ++]{c_0 \to +-} q_0 \\ t_1 : q_0 \xrightarrow[c_0 \to --]{c_0 \to --} q_2 \\ t_2 : q_1 \xrightarrow[c_0 \to --]{c_0 \to --} q_2 \\ t_3 : q_2 \xrightarrow[c_0 \to --]{c_0 \to --} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_1} q_1 \xrightarrow{t_2} q_2$$
 $c_0:0$ $c_1:0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\blacksquare, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_0)(\circ, t_1)(\blacksquare, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_1)(\circ, t_2)(\bullet, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)$$

$$(\circ, q_2)$$

$$\mathcal{Q} := \left\{q_0, q_1, q_2, q_h\right\} \text{ and } \mathcal{T} := \left\{t_0, t_1, t_2, t_3\right\}, \text{ where } \begin{cases} t_0 : q_0 \xrightarrow[c_0 + +]{c_0 + +} q_0 \\ t_1 : q_0 \xrightarrow[c_0 - -]{c_0 - -} q_1 \\ t_2 : q_1 \xrightarrow[c_0 - -]{c_0 - -} q_2 \\ t_3 : q_2 \xrightarrow[c_0 - -]{c_0 - -} q_h \end{cases}$$

$$q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_0} q_0 \xrightarrow{t_1} q_1 \xrightarrow{t_2} q_2 \xrightarrow{t_3} q_h$$
 $c_0:0$ $c_1:0$

$$(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_0)(\circ, t_0)(\blacksquare, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E) \\ (\circ, q_0)(\circ, t_0)(\bullet, \mathsf{inc}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E) \\ (\circ, q_0)(\circ, t_1)(\blacksquare, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E) \\ (\circ, q_1)(\circ, t_2)(\bullet, \mathsf{dec}_0)(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E) \\ (\circ, q_2)(\circ, t_3)(\circ, \mathsf{noop})(\circ, \mathsf{ok}_S)(\circ, \mathsf{ok}_E)(\circ, q_h)$$

Conclusion

Logic\Agents	System only	Partitioned	Shared
$FO^2[\sim]$	decidable	decidable	undecidable
FO[∼]	decidable	decidable	undecidable
$FO^2[\sim,<]$	decidable	undecidable	undecidable
$FO^2[\sim,+1]$	decidable	undecidable	undecidable
$FO^2[\sim,<,+1]$	decidable	undecidable	undecidable

Conclusion

Logic\Agents	System only	Partitioned	Shared
$FO^2[\sim]$	decidable	decidable	undecidable
FO[∼]	decidable	decidable	undecidable
$FO^2[\sim,<]$	decidable	undecidable	undecidable
$FO^2[\sim,+1]$	decidable	undecidable	undecidable
$FO^2[\sim,<,+1]$	decidable	undecidable	undecidable

Consider the intersection \lesssim of < and \sim

What about $FO^2[\lesssim]$ when agents are partitioned?