First order synthesis for data words revisited

Julien Grange!, Mathieu Lehaut?

1LACL, Université Paris-Est Créteil, France
2University of Gothenburg, Sweden

October 1st, 2023

Julien Grange & Mathieu Lehaut FO synthesis on data words 1/11

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
e drones

Julien Grange & Mathieu Lehaut FO synthesis on data words 2/11

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
e drones

@ ...acting in an uncontrollable environment...

Julien Grange & Mathieu Lehaut FO synthesis on data words 2/11

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
e drones

@ ...acting in an uncontrollable environment...

@ ...to satisfy some specification

Julien Grange & Mathieu Lehaut FO synthesis on data words 2/11

Motivation

@ We want an unbounded number of agents...

@ processes
e computers in a network
e drones

@ ...acting in an uncontrollable environment...

@ ...to satisfy some specification

System and Environment, playing actions (a and b for System, c and d
for Environment) in turn on shared or proper

(1,2)(8,b) (7,d) (4,c) (6,2) (6,c) (7,2) (6,d) (2,b) (7,d) (7,2)

Julien Grange & Mathieu Lehaut FO synthesis on data words 2/11

Executions: finite or infinite data words

(1,a)(8,b) (7,d) (4,¢c) (6,a) (6,c) (7,a) (6,d) (2,b) (7,d) (7,a)

Julien Grange & Mathieu Lehaut FO synthesis on data words 3/11

Executions: finite or infinite data words

(1,a)(8,b) (7,d) (4,¢c) (6,a) (6,c) (7,a) (6,d) (2,b) (7,d) (7,a)

.2 Py .8
1¢ o3 4e °5 ° o7

@ One element for each position

@ One element for each agent

Julien Grange & Mathieu Lehaut FO synthesis on data words 3/11

Executions: finite or infinite data words

(1,a)(8,b) (7,d) (4,¢c) (6,a)(6,c)(7,a)(6,d)(2,b) (7,d)(7,a)

[] [] [] [] [] [] [] [] [] [[]
6® 8
o7
Pg Pe
@ Three unary relations Pg, P, and to denote ownership of the
agents

Julien Grange & Mathieu Lehaut FO synthesis on data words 3/11

Executions: finite or infinite data words

(1,a)(8,b) (7,d) (4,¢c) (6,a)(6,c)(7,a)(6,d)(2,b) (7,d)(7,a)

, e - \\‘ e “a " X
O —» 0 —> 06 —> 0 —> 06— 0 —> 0 —> 0 —> 06— 0 —> O

Y 6 62

PS Pe Pse

@ A binary relation +1 between successive positions

@ A binary relation < for its transitive closure

Julien Grange & Mathieu Lehaut FO synthesis on data words 3/11

Executions: finite or infinite data words

(1,a)(8,b) (7,d) (4,¢c) (6,a)(6,c)(7,a)(6,d)(2,b) (7,d)(7,a)

- \\ f— ‘NN
. < . <
-7 P <~ LT T T~ - S
,/, ,” - = :1:\ ,/,,’_’ ____ ~ o \\\ \\
N N
a.” b. d.,-- a “#c,% a d ~ab «d aa
®—> 0 —>0—>0—>0—>0—>0—>0—>0—>0—>0
As:{aab}
Ae:{ ad}
Pg Pe Pse

@ A unary relation for each action

Julien Grange & Mathieu Lehaut FO synthesis on data words 3/11

Executions: finite or infinite data words

(1,a)(8,b) (7,d) (4,¢c) (6,a)(6,c)(7,a)(6,d)(2,b) (7,d)(7,a)

- o0
~eoQ

@ An equivalence relation ~ with a class for each agent

Julien Grange & Mathieu Lehaut FO synthesis on data words 3/11

Specification language

Fragment of first-order logic, with a subset of the binary predicates

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

|
Specification language

two variables

Fragment of first-order logic, with a subset of the binary predicates

o FO’[~, <, +1]

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

|
Specification language

all predicates

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it:

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it:

Vx, req(x) — dy, y~x A y>x A gets(y)

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it:

Vx, req(x) — dy, y~x A y>x A gets(y)

e FO[~]

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

|
Specification language

no restriction

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it:

Vx, req(x) — dy, y~x A y>x A gets(y)

e FO[~]

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

|
Specification language

no positional predicate

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it:

Vx, req(x) — dy, y~x A y>x A gets(y)

e FO[~]

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it:

Vx, req(x) — dy, y~x A y>x A gets(y)

e FO[~]

Every System agent requests at most twice a resource:

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

Specification language

Fragment of first-order logic, with a subset of the binary predicates

o FO?[~, <, +1]

Every agent requesting a resource eventually gets it:

Vx, req(x) — dy, y~x A y>x A gets(y)

e FO[~]

Every System agent requests at most twice a resource:

Vx,Pg(x) = [V)/1,)/27}/37 Ni (x ~ yinrea(yi)) = Viyjyi = v

Julien Grange & Mathieu Lehaut FO synthesis on data words 4/11

Agent control

We consider three configurations:

@ All the agents belong to System

Ps P,

Julien Grange & Mathieu Lehaut FO synthesis on data words 5/11

Agent control

We consider three configurations:
@ All the agents belong to System
@ There is no shared agent

G ©

Julien Grange & Mathieu Lehaut FO synthesis on data words 5/11

Agent control

We consider three configurations:
@ All the agents belong to System
@ There is no shared agent

© All the agents are shared by System and Environment
Ps Pe

Julien Grange & Mathieu Lehaut FO synthesis on data words 5/11

|
Synthesis problem

Parameters:
@ a logic (specification language) £
@ a configuration for agent control (System only, partitioned or shared)

Julien Grange & Mathieu Lehaut FO synthesis on data words 6/11

|
Synthesis problem

Parameters:
@ a logic (specification language) £
@ a configuration for agent control (System only, partitioned or shared)

Synthesis problem for £ for this configuration:

Input: a formula p € £

Question: does there exist a distribution of agents, complying with
the configuration, such that System has a winning strategy for ?

Julien Grange & Mathieu Lehaut FO synthesis on data words 6/11

|
Filling the gaps

Logic\Agents System only? Partitioned Shared
FO2[~] decidable! ? ?
FO[~] decidable? ? undecidable?

FO?[~, <] decidable? ? ?
FO?[~, +1] decidable? ? ?
FO?[~, <, +1] decidable? ? undecidable?

1: [Bojanczyk et al. '06]

2: [Bérard et al. '20]

?this amounts to the satisfiability problem

Julien Grange & Mathieu Lehaut FO synthesis on data words 7/11

|
Filling the gaps

Logic\Agents System only? Partitioned Shared
FO2[~] decidable? ? undecidable
FO[~] decidable? decidable undecidable?

FO?[~, <] decidable? undecidable ?
FO?[~, +1] decidable? undecidable ?
FO?[~, <, +1] decidable? ? undecidable?

1: [Bojanczyk et al. '06]

2: [Bérard et al. '20]

?this amounts to the satisfiability problem

Julien Grange & Mathieu Lehaut FO synthesis on data words 7/11

|
Filling the gaps

Logic\Agents System only? Partitioned Shared
FO2[~] decidable? decidable) undecidable
FO[~] decidable? decidable undecidable?

FO?[~, <] decidable? undecidable undecidable
FO?[~, +1] decidable? undecidab|e> undecidable
FO?[~, <, +1] decidable? undecidable undecidable?

1: [Bojanczyk et al. '06]
2: [Bérard et al. '20]

?this amounts to the satisfiability problem

Julien Grange & Mathieu Lehaut FO synthesis on data words 7/11

|
Synthesis problem for FO?[~, <] with partitioned agents

Two-counter Minksy machine:

@ a finite set of states Q with qg,q, € Q

Julien Grange & Mathieu Lehaut FO synthesis on data words 8/11

|
Synthesis problem for FO?[~, <] with partitioned agents

Two-counter Minksy machine:
@ a finite set of states Q with qo, gn € Q

@ two non-negative counters ¢y and ¢;

Julien Grange & Mathieu Lehaut FO synthesis on data words 8/11

|
Synthesis problem for FOz[N, <] with partitioned agents

Two-counter Minksy machine:
@ a finite set of states Q with qo, gn € Q
@ two non-negative counters ¢y and ¢;

@ a set T of transitions between two states either

@ increasing a counter
e decreasing a counter
e zero-testing a counter

Julien Grange & Mathieu Lehaut FO synthesis on data words 8/11

|
Synthesis problem for FOz[N, <] with partitioned agents

Two-counter Minksy machine:
@ a finite set of states Q with qo, gn € Q

@ two non-negative counters ¢y and ¢;
@ a set T of transitions between two states either

@ increasing a counter
e decreasing a counter
e zero-testing a counter

Run: sequence of states linked by transitions that do not
@ decrease a counter below zero

@ use a zero-testing transition on a non-zero counter

Julien Grange & Mathieu Lehaut FO synthesis on data words 8/11

|
Synthesis problem for FOz[N, <] with partitioned agents

Two-counter Minksy machine:
@ a finite set of states Q with qo, gn € Q

@ two non-negative counters ¢y and ¢;
@ a set T of transitions between two states either

@ increasing a counter
e decreasing a counter
e zero-testing a counter

Run: sequence of states linked by transitions that do not
@ decrease a counter below zero

@ use a zero-testing transition on a non-zero counter
Halting run: run starting in go with zero counters, and ending in g,

Julien Grange & Mathieu Lehaut FO synthesis on data words 8/11

|
Synthesis problem for FOz[N, <] with partitioned agents

Halting problem for two-counter Minsky machines:

Input: a two-counter Minsky machine M

Question: does M have a halting run?

This problem is undecidable: we reduce it to the Synthesis problem for
FO?[~, <] with partitioned agents

Julien Grange & Mathieu Lehaut FO synthesis on data words 9/11

|
Synthesis problem for FO?[~, <] with partitioned agents

. co++
to:qgo —— qo

Q = {qo, q1, 42, Gn} and T := {to, 11, tp, ts}, where ¢ * "% =

Julien Grange & Mathieu Lehaut FO synthesis on data words 10/11

|
Synthesis problem for FO?[~, <] with partitioned agents

. co++
to:qgo —— qo

Q := {qo,q1, 42, gn} and T := {to, t1, to, t3}, where { **© "

C(
t2:q1 — Qg2

co==0
t3:q2 — qx

qo c:0 c:0

(o, Oks)(o, OkE)(O7 qO)

Julien Grange & Mathieu Lehaut FO synthesis on data words 10/11

|
Synthesis problem for FO?[~, <] with partitioned agents

to : qo Lott, do
tiiqo 2" g
Q :={qo,91,q2,qn} and T := {to, t1, ta, t3}, where { * P !

co——
t2:q1 — Qg2

cg==0
t3:q2 — qx

qoﬂ)%qo Co:l C1:0

(o, 0ks)(o,0kg) (o, go)(o, to)(m,incg)(o, oks)(o, okg)
(O? qO)

()=

Julien Grange & Mathieu Lehaut FO synthesis on data words 10/11

|
Synthesis problem for FO?[~, <] with partitioned agents

to : qo Lott, do
tiiqo 2" g
Q :={qo,91,q2,qn} and T := {to, t1, ta, t3}, where { * P !

co——
t2:q1 — Qg2

cg==0
t3:q2 — qx

i 1
do — do — qo co: 2 c:0

(o, 0ks)(o,0kg) (o, go)(o, to)(m,incg)(o, oks)(o, okg)
(o, go)(o, to)(e,inco) (o, oks)(o, okg)
(O? qo)

Julien Grange & Mathieu Lehaut FO synthesis on data words 10/11

|
Synthesis problem for FO?[~, <] with partitioned agents

co++
to: 90 — qo

Q= {qo, q1, 92, qn} and T := {to, t1, t», t3}, where { ** P 7

o —

t2iqr —— q2
cg==0

t3:q2 — qn

T T iz
do — go — qo — q1 o:l ¢:0

(0, 0ks) (o, 0kg)(o, go)(o, to)(m, inco)(o, oks) (o, okg) = incotdec
(o, go)(o, to)(e,inco) (o, oks)(o, okg) ginco
(O? qo)(o, tl)(') deco)(o, Oks)(O, OkE)
(o q1)

Julien Grange & Mathieu Lehaut FO synthesis on data words 10/11

|
Synthesis problem for FO?[~, <] with partitioned agents

co++
to: 90 — qo

Q= {qo, q1, 92, qn} and T := {to, t1, t», t3}, where { ** P 7

o —

t2iqr —— q2
cg==0

t3:q2 — qn

to to t1 t2
go —qo —>qo — q1 — Qg2 c:0 c:0

(o, 0ks)(o,0kg) (o, go)(o, to)(m,incg)(o, oks)(o, okg) ® incot-deco
(O? qo)(o, to)(O, InCo)(O, Oks)(O, OkE) o egriece
(O? qo)(o, tl)(') deco)(o, Oks)(O, OkE)
(o, q1)(o, t2)(e, deco)(o, oks)(o, okg)
(o)

Julien Grange & Mathieu Lehaut FO synthesis on data words 10/11

Synthesis problem for FO?[~, <] with partitioned agents

Co++
to: 90 — qo

Q :={q0,91,92,qn} and T := {to, t1, to, t3}, where Zl B “

to to t1] t3
Go —> qo —> qo —> q1 —> g2 —> gh c:0 ca:0

(o, 0ks) (o, 0kg) (o, go)(o, to)(m, inco)()(o, okg)
(o,qo (Oa to)(O,InCo)()(OkaE)
((o, t1)(w,decg)(o, 0ks)(o, okg)
(o, q1) (o, t2)(e, deco)(o, oks) (e, okg) @Pe
(o, g2)(o, t3)(o, noop)(o, oks) (o, okg) (o, gn)

Julien Grange & Mathieu Lehaut FO synthesis on data words

o,0ks B inco+deco
® incotdeco

@)

O7Ok5

10/11

Conclusion
Logic\Agents System only Partitioned Shared
FO?[~] decidable decidable undecidable
FO[~] decidable decidable undecidable
FO?[~, <] decidable undecidable undecidable
FO?[~, +1] decidable undecidable undecidable
FO?[~, <, +1] decidable undecidable undecidable

Julien Grange & Mathieu Lehaut FO synthesis on data words 11/11

Conclusion
Logic\Agents System only Partitioned Shared
FO?[~] decidable decidable undecidable
FO[~] decidable decidable undecidable
FO?[~, <] decidable undecidable undecidable
FO?[~, +1] decidable undecidable undecidable
FO?[~, <, +1] decidable undecidable undecidable

Consider the intersection < of < and ~

What about FO?[<] when agents are partitioned?

Julien Grange & Mathieu Lehaut FO synthesis on data words 11/11

