

SUCCESSOR-INVARIANCE

A single abstract graph

has different representations in memory:

Vertices of the graph are ordered via a successor relation *S***.** Undesirable first-order sentence:

> $\forall x, y, \min(x) \land \max(y) \rightarrow$:==

The truth value of φ in a graph depends on the representation \rightsquigarrow it's not a graph property.

Definition. Succ-inv FO is the set of FO-sentences using S, whose truth value is independent of the successor.

Just like programs don't depend on the adjacency matrix, but only on the underlying graph.

EXPRESSIVE POWER

What kind of graph properties are definable in Succ-inv FO?

- $FO \subseteq Succ-inv FO$
- Succ-inv FO $\not\subseteq$ FO [Ros03]
- Succ-inv FO can only express *local properties* (e.g. Reach ∉ Succ-inv FO) [GS00]
- Succ-inv FO = FO on trees [BS05]

MOTIVATION

Successor-invariance is a central notion in **database theory** and **descriptive complexity**.

Richness of the descriptive language	Descriptiv complexity
Succ-inv PFP	
Succ-inv LFP	capture
Succ-inv TC	capture
Succ-inv DTC	

SUCCESSOR-INVARIANT FIRST-ORDER LOGIC **ON CLASSES OF BOUNDED DEGREE**

Time/space resources on a Turing Machine

Université de Rennes 1, France

MAIN RESULT

Theorem. When the degree is bounded,

Succ-inv FO = FO.

In other words: when the degree is bounded, a property FO-definable (invariantly) using S is already definable without S.

FOLLOW-UP QUESTIONS

- What happens...
 - ...on other sparse classes of graphs?
 - ... if we replace *S* with the full linear order?

PROOF TECHNIQUE

- Starting point :
- Goal:

This is enough, because FO is local. The successors S and S' are constructed so that almost all neighborhoods in (\mathcal{G}, S) and (\mathcal{G}', S') are fractal.

FRACTAL NEIGHBORHOOD

Properties:

- v and S(v) have the same neighborhood type in \mathcal{G} .
- No overlap between the neighrboods of \mathcal{G} appearing in the fractal neighborhood.

This is the **most regular** way to extend a neighborhood of \mathcal{G} with a successor relation.

REFERENCES

- Michael Benedikt and Luc Segoufin. Towards a characterization of order-invariant queries over tame struc-[BS05] tures. In *CSL*, 2005.
- Martin Grohe and Thomas Schwentick. Locality of order-invariant first-order formulas. ACM Trans. Com-[GS00] put. Log., 2000.
- [Ros03] Benjamin Rossman. Successor-invariance in the finite. In *LICS*, 2003.

• \mathcal{G} and \mathcal{G}' of degree $\leq d$ in which occur the same number of neighborhood types up to some threshold.

• construct successor relations S and S', s.t.

• (\mathcal{G}, S) and (\mathcal{G}', S') have the same number of **neighborhood types** up to some threshold.