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This paper presents the work I have done under the supervision of Profes-
sor Katrin Tent, of the Miinster University, as part of my 4-month research
internship at the M2-MPRI.

The general context

In their article [1], André Nies and Katrin Tent present a logarithmic description
of every simple finite group in first order logic, and a description of every finite
group in log®.

The research problem

Our aim is to give another logarithmic description of finite simple groups, using
a different method, namely describing finite groups by their order.

My contribution

I haven’t quite reached my first goal. Precisely, I was able to state in logarithmic
length that a finite group is a simple group of a given order, but not which one
it is (there may be two different finite simple groups of same order).
As explained in the conclusion, from there it should not be too difficult to
describe each finite simple group. I couldn’t investigate further, for lack of time.
T also gave a (actually, two) logarithmic description of every cyclic group.

Future work

The logical follow-up would be to study the classification of finite simple groups,
in order to distinguish the ones that have the same order, in logarithmic length.
That way, we could give a short description of every finite simple group.

Also, the logarithmic descriptions of finite groups by their order, and of
cyclic groups, could be useful tools to concisely describe other families of finite
groups.

1 Introduction and definitions

1.1 Context and goal

We work in the language £ = (o, ¢), where o is a binary function symbol, and e
is a constant symbol.

For each finite simple group GG, we’re hoping to give a L-description of G up
to isomorphism among the finite groups, that is a L-sentence ®¢ such that for
every finite group H, H |= ®¢ if and only if H = G.

We would like the length of the sentences (P¢)g to be in O(log |G|).

1.2 Caveat

In order not to waste too much time, we won’t be totally rigourous, and allow
ourselves some shortcuts, such as identifying variables in a formula and the
elements they refer to in the model.



For instance, if we define the formula

pe) = Fy, yoy==
we will later allow ourselves to say that (M beeing a L-structure and = an
element of M) M = ¢(x). Of course, here one should read, for instance,
p(z) = Ty, yoy=1

and M,z — x = o(&).

Furthermore, we may say something like “Let y be a witness for ¢(z) in
M?”. This means that we non-constructively pick any element y of M such that
M =y oy =z (with our previous abuse of notation).

Also, will we use “0” both as a logic symbol and as the composition law in
the groups we consider (although we will write the law “+” in abelian groups).

In any case, what we mean should be clear from the context.

1.3 Definitions
Let’s define the logarithm on the integers the same way Nies and Tent do:
Definition 1.1. For n < w, logn denotes the least r such that 2" > n

In their paper [1], Nies and Tent define several formulas that we will be using
throughout this text. Let us recall them here.
1.3.1 Exponentiation: 0,(g,x)

First, we want to be able to express concisely that an element of a monoid is a
given power of another element. We will do that by quick exponentiation.

Definition 1.2. Let n < w, and n = ay---a,° be the binary expansion of n.

Let us define the formula 0,,(g,x) as follows:

k—1

Jy ok =2 A ye=g A\ v =wioyioa
i=1

where x€ s to be substituted with x if e =1 and with e otherwise.
Remark. The formulas (0,(g,2))n<w have a length in O(logn).

Proposition 1.1. Let M be a monoid, and g,z € M.
M = 0,(g,z) iff g = ™ holds in M.

Proof. Suppose that M |= 0,,(g,n), with witnesses y1,- -, yx. One easily proves

by induction on i that y; = 27 % . Thus, g = 2. )
Conversly, if g = x", the elements y; = z1 "%

are suitable witnesses for

O



1.3.2 Exponentiation: xx(g,n)

We now want to be able to express that an element is a power of another element,
for some power less than 2.

Definition 1.3. Let k < w. Let us define the formula x(g, ) as follows:

k—1

o, sy, Yo=€ N yp=g /\/\(yi+1:yioyi V Yiy1 =Yi0Y;i0T)
i=0

Remark. The formulas (x(g,))k<w have a length in O(k).

Proposition 1.2. Let M be a monoid, and g,z € M.
M = xr(g, ) iff g = 2" for some 0 < r < 2F.

Proof. Suppose that M = xi(g,x), with witnesses yo,- - ,yr. An easy induc-
tion on ¢ shows that y; = =" for some 0 < r < 2¢. Hence the relation between
g =1y and x.

Conversly, suppose g = z” for some 0 < r < 2¢ and let r = a; - ay>
(here, we don’t necessarily have a1 = 1). One can show by induction on 4 that

y; = %% are suitable witnesses for 0y (g, x), thus M | 0,(g, x).
O

1.3.3 Generated subgroup: o (g,z1, -, )

Now, we want to be able to state that an element belongs to the subgroup
generated by some other elements.

Definition 1.4. Let m < w. By induction on k, we define the formulas
ak (g,21,- ,Tm) as follows:

m
a?n(g,mla"'vxm) = g=e V ngl'z
j=1
Olic,j_l(g7l'1,"',$m) = El'U;,’U, g=uov
A Yw, (w=u V w=2v)—=ak (w,z1, )
Remark. The formulas (af (9,21, ,Tm))m k<w have a length in O(m + k).

A straightforward induction on k gives us the following lemma:

Lemma 1.1. Let M be a monoid, and g,x1,- -+ ,Tm € M
M = ok (9,21, - ,2m) iff g can be written as a product of at most 2¥ of
the x;’s.

Lemma 1.2. Let G be a finite group, and x1, -+ , T, € G.
Every g € (x1, -+ ,xy) (the subgroup generated by the xz;’s) can be written
as a product of less than |G| of the z}s.

Proof. Let g € (x1,-++ , T )-

By definition, g can be written as a product of the z;’s and their inverse.
o(z;)—1

Since G is finite, we have that z; ' =



Thus, g can be written as a product of the x;’s.

l
Let g = ][ a; be such a product (that is, every a; is one of the x;’s), among
j=1
those of minimal length. We claim that [ < |G|.

Otherwise, by the pigeonhole principle, there would be some indexes 0 < k <
k K k l
k' <lsuch that [[ aj = [[a;. Sog= [[ajo [] a;, which is impossible
j=1 j=1 j=1 j=k/+1
by minimality.
O

Those two lemmas now give us the next proposition:

Proposition 1.3. Let G be a finite group, g, x1,- - ,Tm € G, and k = log|G]|.
G ': aﬁz(gvl'lv"' a‘rm) iﬁg € <'T17"' a$m>'

Remark. Thus, it is possible to express that in a group G, g € (X1, ,&pm) in
O(m +log|G]).

2 Baby case: cyclic groups

In a first place, let’s take a look at a basic familiy of finite groups: the cyclic
groups.

We want to describe each cyclic group in a logarithmic length. That is, we
are looking for a family of £-sentence (T'},)n~0 of length in O(logn) such that a
group G is a model of T',, iff G is cyclic of order n.

2.1 First solution

In O(logn), we don’t (yet - we will later introduce a sentence that will make this
problem trivial) have the granularity needed to express that g = a” for some
0 <r < n,if n isn’t some power of 2.

But asserting that " # e for any 0 < r < 2'°8"~! (which we can do in
O(logn)) will be enough. We will use the fact that all the proper divisors of n
are less or equal than 29871,

Definition 2.1. Let k < w.
We define the formula (i (g,x) as follows:
Yy, xwly,®) A g=you
The following is a direct consequence of the proposition 1.2:

Proposition 2.1. Let M be a monoid, and g,z € M.
M = (g, x) iff g = a" for some 0 < r < 2F.

Definition 2.2. Let n > 2 and k = logn.
We define the sentence I'), as follows:

31', vf]? Xk(gvm)
A On(e )

AN = Ge—ile, o)



Remark. The sentences (I'y,)n>2 have a length in O(logn).

Proposition 2.2. Let G be a group and n > 2.
G ET, iff G is cyclic of order n.

Proof. (=) Let G ET,,, with a witness z.
G = Vg, xr(g,2) implies that G = (). Let’s now prove that o(x) = n.
G E 0,,(e,z) implies that o(z) divides n. Suppose that o(z) < n. Let d

be the divisor of n such that o(z) = % (under our assumption, d > 2). We

claim that 2 < 2¥!: otherwise, we would have n > d2F~1 > 2%, which is
absurd, since k = logn.

Hence 0 < o(z) < 2F~1, which contradicts = (j_1(e, ). Thus, o(z) = n,
and G is cyclic of order n.

(+) Let G = (z) be a cyclic group of order n. We claim that z is a suitable
witness for I',,.
o(z) = n, thus G = 0, (e, x).
Since x generates G, every g € G is equal to " for some 0 < r < n, and
a fortiori for some 0 < r < 2%. Hence G |= Vg, xx(g,z).
o(x) = n > 281 thus for every 0 < r < 2871 2" # e. Hence G |

- Ckfl(ea .’E)
O]

2.2 A cleaner description

The first description we gave of cyclic groups, though correct, wasn’t really
elegant. We give here another family of sentences (I';)n>o that fits the same
purpose as the precedent, but is more pleasing.

Furthurmore, it allows us to introduce Sylow p-subgroups, which will be
useful when we describe finite groups by their order.

k
Definition 2.3. Consider n > 0, whose prime decomposition is [] pj.
i=1

For 1 <i <k, we define the formulas:
oi(r) = Opai(e,r) A — ngrl(e,x)

Lemma 2.1. Let G be a group, and x € G.
G oi(x) iff o(x) = pi*

Definition 2.4. Let us define 'y, as follows:

vV, y, Toy=youw
k
A 31'17' Tk, /\ O—’L(ml)
i=1

k
A vy: Elgla"' 5 9k g=4gi1°---0gk A ,/\1 Xlog(P?i)(gi’xi)
=



k
Remark. The family of sentences (I'y)n>0 have length in O()" log(p;)) =

i=1
O(logn).
Theorem 2.1. Let G be a group.
G ET, iff G is cyclic of order n.
In order to prove this theorem, we will need the following lemma:

Lemma 2.2. Let k > 0, and (S;)i1<i<k be a family of cyclic subgroups of a
abelian group (G,+), whose orders (n;)1<i<k are two-by-two coprime.

k k k
Then > S; = @ S; = S1 x -+ X Sy is cyclic, of order [ n;

i=1 i=1 i=1
Proof. We prove that by induction on k (the case k = 1 being trivial).
k k
First, let’s show that )" S; = € S,, that is S; N > S; = {0}, for any

i=1 i=1 J#i
1<i<k.
By the induction hypothesis, we have that >~ S; is cyclic, of order [] n;.
J#i J#i
Let x be a generator of ) S;, and y be a generator of S;.
J#i
Let a € S;N Y S;: there exist r, s < w such that a = rz = sy.

J#i
n;a = n;re = n;sy = s(n;y) =0
Thus o(x) | n;r, thatis [[ n; | nyr. Since n; and [[ nj are coprime, [] n; |7,
J#i J#i J#i
anda=rz =0
k k k
We have shown that Y S; = @ S;. Now, it is a general fact that @ S; =
i=1 i=1 i=1

S1 X +-+ x Sy (the external product).

Now, let’s prove that Sy x --- x Sy is cyclic. Let (z;)1<i<x be a family of

k k
generators of (S;)1<i<k, and let g = (z1,--- ,zx). o(g) = V n; = [] n, thus
i=1 i=1
o(g) =151 x --- x Sg| and g is a generator of Sy X -+ X Sg.
k k
Hence ) S; is cyclic, of order ng.
i=1 i=1
O

We now can prove the theorem 2.1:

Proof. (—) Let (G,+) be a group satisfying I';,. Let z1, -+ ,2x € G be wit-
nesses for T',,.

For 1 < i < k, let S; be the subgroup of G generated by z;. We have
k
|Si| =pi, and G = S;.
i=1
E E
The lemma 2.2 gives us that G = > S, is cyclic, of order [] |S;| = n.

i=1 i=1
(+) Let (G,+) be a cyclic group of order n. Obviously, G is abelian.

For the witness x1, - - - , 2k, we choose respective generators of the p;-Sylow
subgroups S; of G (which are cyclic too). Then G = o;(x;) for each i.



k k
By the lemma 2.2, | 3~ S;| = n, thus Y S; = G. Hence we can decompose
i=1 i=1
each g € G as a sum of g;, with each g; being in S;, that is such that
G ': Xlog(p?i)(giﬂxi)'
O

3 Describing groups by their size

3.1 Frattini subgroup of a p-group
We here recall the definition of the Frattini subgroup:

Definition 3.1. Let G be a group.

We define the Frattini subgroup of G, noted ®(G), as the intersection of the
maximal proper subgroups of G.

By convention, if G doesn’t admit any maximal proper subgroup, we set

(G) =G.
The theorem 3.1 is a known result.

Theorem 3.1. Let G be a finite p-group.
®(GQ) < G (this is true in every group), and there exists d < w such that

G/2(G) = (2/pL)*

Remark. If G is a finite p-group other than (e), there exists at least one maz-
imal subgroup.
Thus, ®(G) S G, and d > 0.

We will prove the theorem 3.1, for the sake of completeness, and because it
is not easy to find a concise proof of it (at least, I couldn’t find one). For that,
we will use the lemmas 3.2 and 3.3.

Lemma 3.1. Let G be a p-group of order p™ (n > 1) and M < G a mazimal
proper subgroup.
Then M < G and [G : M] = p.

Proof. We prove the lemma by induction on n. If n = 1, then G is cyclic of
order p, and M = (e) is normal, of index p. Now, the inductive case:

It is a well-known fact that since G is a p-group, the center Z(G) isn’t trivial.
Cauchy’s theorem then gives us the existence of a z € Z(G) of order p.

e if z € M, then it is easy to show that M /(z) is a maximal proper subgroup
of G/(z).

By induction hypothesis (since G/(z) is a p-group of order p"~1), M/(z)
is a normal subgroup of G/(z), of order p"~2 (since it is of index p).

From there, it is easy to show that M is normal in G. And |M| = p"~!

implies [G : M] = p.

o if z ¢ M, we claim that M (z) = G. This amounts to proving that M (z) is
a subgroup, by maximality of M. We get that because z commutes with
every m € M.



We now claim that M <1 G: let z € M and mz* € G = M (z).

(mzM)z(mz®)"t =mam™t e M

Hence M < G.
Now, since G/M = {zk : 0 < k < p}, [G : M] = p.

Lemma 3.2. Let G be a finite p-group.
G/®(G) is abelian.

Proof. We will use the well-known fact that for any H < G, G/H is abelian iff
D(G) < H.

Let M a maximal proper subgroup of G. The lemma 3.1 gives us that G/M
is an abelian group (since it is cyclic), thus D(G) < M.

Hence, D(G) < ®(G) and G/®(G) is an abelian group. O

Lemma 3.3. Let G be a p-group of order p™.
Every h € G/®(G) is such that h? = e.
Proof. e First of all, we claim that for every g € G, g* € ®(G).
Let M be a maximal proper subgoup of G. From lemma 3.1, we get that
|G/M| = p.
Let us consider the canonical surjective morphism my; : G — G/M: for
every g € G, mar(g?) = (dar(g))? = e, thus g? € M.
Hence, Vg € G, g* € ®(G).

e Now, consider the canonical surjective morphism 7 : G — G/®(G).
Let h € G/®(G): there exists some g € G such that h = 7(g).
From there, h? = w(gP) = e, because gP € ®(G).

We now have the tools to prove the theorem 3.1:

Proof. e First, let’s prove that ®(G) <1 G. We will prove a stronger result:
that G is characteristic, that is stable under every automorphism of G
(thus a fortiori under every interior automorphism).

It is easy to see that every automorphism on G induces a permutation on
the set of maximal proper subgroups. Hence ®(G) is stable under every
automorphism.

e By lemma 3.2, we know that G/®(G) is an abelian finite group. The
structure theorem for abelian finite groups gives us that

G/®(G) = (Z/p1'Z) x -+ x (L]pg"ZL)

for some primes p;, and some a; > 0.

Now, by lemma 3.3, we know that every non-neutral element has order p.
This means that for every 1 <i <d, p; =p and a; = 1.

Hence G/®(G) = (Z/pZ)?.



From there, we get the following theorem:

Theorem 3.2. Let G be a finite p-group, of order p™.
There exists x1,- -,y such that every g € G can be written

g:xllllo...o‘xg;n ; O§a1<p

Such a decomposition is unique (once we’ve fized the x;’s).
We’ll say that x1,--- ,z, p-generate G.

Proof. First, notice that if such a decomposition exists for every g € G, it is
unique, since there are p™ possible decompositions, and |G| = p™.

Let’s prove the existence of p-generators xy,--- ,x, by induction on n (the
case n = 0 beeing trivial).

Let 7 : G — G/®(G) be the natural surjective projection.

We know that since G is a finite p-group, G/®(G) is isomorphic to (Z/pZ)?,
for some 0 < d < n. Let’s pick some z1,---,24 in G such that n(z;) =
(0,---, 1 ,---,0).

~
3
®(G) is a finite p-group of size p"~? and n — d < n, thus, by our induction
hypothesis, we can find x441, -+ , 2, in ®(G) that p-generate &(G).

Now, let’s prove that x1,--- ,x, p-generate G. Let g € G.
d
n(g) € G/®(G) = (Z/pZ)?, so w(g) = [] m(x:)%, for some (0 < a; <

i=1
p)1§i§d~

)
=

Since 7 is an homomorphism, 7(g) = m( [] z}*), hence there exists h € ®(G)

d
such that g = [] =" h.
i=1
n
Since h € ®(G), h = [] «i, for some (0 < a; < p)ati<i<n, and thus
i=d+1

s

g = .Z‘?i, where (0 <a; < p)1§i§n~

-
Il

1
ence r1,--- ,x, p-generate G.

3.2 Describing p-groups

For p prime and n < w, we want to find a £-sentence ¥, ,, such that a group G
is a model of ¥, ,, iff G is a p-group of order p".
We would our family of sentences (¥, ,)p.» to be of length in O(log(p™)).

The paper from Nies and Tent provides us (definition 1.3) with a formula
Xx(g,2) in O(k) such that if M is a monoid and g,z are two elements of M,
M = xx(g,7) iff g = 2" for some 0 < r < 2F.

If we want to describe groups of size p" in O(log(p™)), we need to be able
to be more precise, and to state concisely (in O(logq)) that g = ' for some
0 < r < g, not only when ¢ is some 2% — 1.

10



Definition 3.2. Let g <w and q = a1 aRl.
We define ¢4(g,x) as follows:

Ely()?"'ayk’ 3207"‘72167 Yo = ¢€ A 20 =€ A Y = 9

A [Yiri =%ioyi N (ziq1=esrzi=e)
A 0<i<k, a;4+1=0

Vo oziFe AN yipi=yioyioxr N ziyFe]

[yir1=Yioyi AN ziq1Fe
A 0<i<k, aipr=1

Vo ogiri=yioyioxr A (zp1=esrzi=e)]
Remark. The formulas (¢4(g,%))q<w have a length in O(logq).

Proposition 3.1. Let M be a moinoid, and g,x € M.
M |:¢q(97$) iff g=1x" for some 0 <r <gq

Remark. The z; can be thought of as witnesses. Intuitively, z; = e holds iff
until the i-th step, we have stayed on the edge (that is we’ve applied the rule
“Yir1 = y;0y;” when a;y1 = 0, and the rule “y;v1 = y;oy;ox” when a;41 =1).

If at the i-th step we have a;+1 = 1 but we set y;+1 = y; 0y;, that is we loose
the power, then we set z;11 # e, and from there, for j > i, we set z; # e, and
we can have Yj11 = Y; 0 Y; OT Yj+1 = Y;j © Y; © T, no matter what a; is, for we
know that we’ll end up with a power smaller that q.

Let’s now formally prove the proposition 3.1:

Proof. (—) Let M = ¢,(g,x), with witnesses yo, - , Yk, 20, - - ; Zk-
We show by induction on ¢ that:

ar—a;°

2 =€ — Yi =T

ziAte — I <arail, y=a"

For i =0, zp = e, and yy = 2°

Let i < k. We distinguish two cases, depending on the value of a;11:

— if Aij4+1 = 0
x if z; = e, then necessarily z;41 = e.
By induction hypothesis, y; = x‘“""“z, thus

—_—=2
~ai0

Yiyl = Yioyi = x" = gttt

x if z; # e, then necessarily z;41 # e.
By induction hypothesis, there exists r; < @y---a;> such that
Yy, =’
Either y;41 = y; o y; or y;4+1 = y; o y; o xz. We respectively set
ri+1 = 2r; and ;41 = 2r; + 1.
Obviously, ;41 = x"+', and 7; < @1~ a;> — 1 implies that,
in both cases, riy1 < 2r; +1 < ag- -~ai02 — 1, that is rjy1 <

11



- lf Ajpr1 = 1
% if z = e, by induction hypothesis, we have that y; = 2%
- If z;41 = e, then necessarily y; 11 = y; 0 y; o .

- If z;4+1 # e, then necessarily y;+1 = y; o y;.

2
--a;0

Thus, y;+1 = z™ ,and 741 = ag - --aiO2 is such that
Tip1 < a1 G and Y = 2Tt
* if 2 # e, then by induction hypothesis, there exists r; < ay - a;2
such that y; = 2.
Necessarily, we have that 2,11 # e, and either y;41 = y; oy; or
Yi+1 = yioy;ox. We set respectively r;11 = 2r; and r; 11 = 2r;+1.
Either way, 7; < @y -~ a;> implies that

S EE—]
it <2r;i+1<ay---a;l

thus Tivr1 < ap--- aiai_;_lg.
In both cases, y;41 = x"i+?

Thus, for i = k, we have that g =y, = 2@ or that g =yr = z"* for
some 71, < aj - ~ak2.

Either way, g = 2" for some 0 < r <gq.

(+) Suppose that g = 2" for some 0 < r < g.

— if g = 29, then we set, for every 0 <i <k, z; = e and y; = 2
On easily checks that these are suitable witnesses for ¢4(g, z).
— otherwise, there is a 0 < r < ¢ such that g = z".

Let z € M be such that z # e (since g # x%, M is not the trivial

monoid, and such a z exists).
R
Let r = by --- b (here, by isn’t necessarily equal to 1).

Since r < g, there exists an 1 < iy < k such that,

Vi<i0, b; = a;

Qi = 1
big - 0
T2
We set, for 0 < i < ig, z; = e and y; = 210",
2
by-b;

and for ig <i<k,z;=zandy;, =z
One checks that these are suitable witnesses (by a case analysis).

O

Remark. Now that we’ve got ¢,(g,n), it is trivial to describe the cyclic group
of order n. For n > 2, we define I'y, as follows:

Jz, Onle,x) A~ [Ty, dn2(y, @) AN yox=e] A Vg, dn1(g, )

Let G be a group. G |E Ty, iff there exists a © € G that generates G, such
that o(x) = n (o(z) divides n, and for all0 <r <n—1, 2" #e).
Hence T',, describes in a logarithmic length the cyclic group of order n.

12



Definition 3.3. Let us define the sentence ¥y, , as follows:

n

HJ;la"' y Ty \V’y, /\ - [(bp—Q(yaxi) A yol‘i:e]
=1

A an Elgl,"'agna
n
[ A\ ¢p—1(9ii) N g=g10---0g,
i=1

7\ Vhla Ty h’n7
(A bp-1(hiyzi) N g=hio---ohy) — N hi=g;]
i=1 i=1
Remark. The sentences (Vp..,)pn have a length in O(log(p™)).
Proposition 3.2. Let G be a group.
GEY,, iff G is a p-group of order p™.
Proof. (—) Let G be a group such that g = U, ,, with witnesses z1,--- ,zp.
The application f defined as:
fo Ilo,p=-1] — G
i=1
(ala"'van) = Hx;l7
i=1
is bijective. Hence, |G| = p™.
(+) Let G be a p-group of order p™.
The theorem 3.2 gives us the existence of p-generators zi,--- ,z, of G.

These p-generators are suitable witnesses for ¥,, .

O

3.3 General case

We're looking for a family of L-sentence (€2,,),>0 with a length in O(logn) such
that a finite group G is a model of €, iff G has order n.

Definition 3.4. For k,m < w, and g,x1, - 2, € G, we say that g can be
written as a (xi)ii—pmduct of length at most k iff there are 0 < I < k and

l
ai, -+ ,a; € G such that g = [] a; and for all 1 < j < I, there exists a
j=1
1 <i<m such that a; = x; orajzasi_l.
Definition 3.5. Let us define the formulas (82,(g, 21, ,Tm))j<w by induction
on j as follows:

<3

(g=xz; Vg=e V gox;=ce)
1

Bgn(gvxla"' axm) =
i

E’U/,’U, Vw,[(wzu v UJ:U) - Bgn(wa'rlf" axm)]
N g=uov

Bgrj_l(gvxla' o ,.’L‘m)
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Definition 3.6. For m,j < w, we define the formulas
Va(gaxla"'vxm) = Elhvaa g:hoa A ﬁgﬁ(hvmla"'axm)
m
ANV (a=z; Va=eVaox,=e)
i=1
Remark. The formulas (/Bgn(gv Ty 7$m))m,j<w and (757;(97 Ty, acm))m,j<w
have a length in O(m + j).

One can easily prove the following by an induction on j:

Proposition 3.3. Let G be a group, m,j < w, and g,x1, -+ ,xym € G. We have
the following:

1. GE=Bi(g,21, - ,xm) iff g can be written as a (z;)F -product of length at
most 27

2. G=l(g, %1, ,xm) iff g can be written as a (x;)F-product of length at
most 27 + 1

Definition 3.7. For p prime and m < w, let ¢ = log(m(p — 1)) let us define
the sentence Oy, as follows:

Jzy, o xm, Yy, N [ Gp—2(y,2i) A yox;=e]

i=1
A Vglv"' 7977’L7h17"' 7hmv
m m m
(Y, '/\1 [(v=giVv="hi) = dp1(v,2) ] A .ngizl :
1= 1= 1=

m
- N gi=h
i=1

A v.ga ’yjln(g,xl,~-- 7xM) — ( ?n(gaxlv'” 7xM) A opm(eag))

Remark. The sentences (Opm)pm have a lenght in O(log(p™) + m) (since
q <log(p™)), that is O(log(p™)).

Proposition 3.4. Let G be a finite group, p a prime and m < w.
G = Opm iff p™ divides |G|.

Proof. (+) : suppose that p™ divides |G|. Then, by Sylow’s theorem, there
exists a subgroup S < G of order p™.
Since S is a p-group, we have shown that there exist x1,---,z,, € S such
m
that every g € S can be written [] z7*, with 0 < a; < p.
i=1
Such a decomposition is unique (since |S| = p™), thus the first part of ©,,,
holds in G.
As for the second part, let g € G such that G = v4,(g, %1, ,®m). Since
m

x; € S and S is a subgroup, that implies that g € S, and g = [] z}*, for some
i=1

0 < a; < p. Thus g can be written as a product of length at most m(p — 1) of
the z;’s, and a fortiori as a (zi)f—product of length at most 2!°g(m(@—1)) — 94,

Hence G ': ﬁgn(gvxla e axm)’
Lagrange gives us that G = 0,m (e, g).
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(=) : assume G |= O, ,,, with witnesses x1,- -+, Zp,.

Let H = {(x1, -+ ,&m). We will prove that p™ divides |H|. From there,
Lagrange’s theorem implies that p™ divides |G|.

First, let’s show that H is a p-group. Every g € H can be written as a
(xi);t—product of some length k. Let’s show by induction on k that ¢ can be
written as a (z;)F-product of length at most 29:

o if k£ < 29 there’s nothing to prove

o if k=K +1>29 let g = hoa where h can be written as a (z;)F-product

of length %', and a is either a z; or a xi_l.

By induction, h can be written as a (xi)ii—product of length at most 29,
thus g can be writtent as a (z;)E-product of lenght at most 29 4 1.

Thus G = v4,(9, %1, - , %), and from the second part of O, ,, we get
that G = %,(g, 21, -+, Tm), that is g can be written as a (xi)ii—product
of lenght at most 29.

So every g € H can be written as a (xi)ii—product of length at most 2%, and a
fortiori as such a product of length at most 2¢4+1. Hence G = 2 (g, 21, , Tm)
for every g € H, and we get from the second part of O, ,, that G |= 0,m (e, g).

Thus, by Cauchy’s theorem, |H| = p' for some [ < w. All we have left to
prove is that [ > m: we get that by considering the application

fliop-1 » o
(ala"' 7am) — H ‘T?i
i=1

which is an injection, because of the first part of © .
|H| > p™, so p™ divides |H|, and |G|.

k
Definition 3.8. Let n = [] p;'". Let us define the sentence (2, as follows:
i=1

Vg, On(e, g)

k
A /\ (Gpiam A _‘@Pi,nr‘rl)
=1

k

Remark. The sentences (2,)n>0 have a length in O(logn + Y log(p!?)) =
i=1

O(logn).

Theorem 3.3. Let G be a finite group, and n > 0.
G E Q, iff |G =n.

Proof. (—) : suppose that G | €,,. From the first part of €, and Cauchy’s
theorem, we get that the only prime numbers dividing |G| are the p;’s, that is

k
|G| = T] pi™*, for some m; < w.
i=1

The second part gives us that for every 1 < ¢ <k, p"* divides |G| but p;”"’l
doesn’t. That means that m; = n;, and eventually that |G| = n.
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(+) : this is an immediate consequence of the previous proposition, and of

Lagrange’s theorem.
O

4 Describing finite simple groups

Definition 4.1. Let n > 0, and k = log(n).
We define the sentence A, as follows:

v$1,"' y Lk

[(Elhv h%e A O‘Z(hazla"'axk)) A (Elga _'aﬁ(gvxlf"axk))]
— [3h, 9,9, gog =e A af(h,a1, - ,xk) A =af(gohog  x1, -, x1) ]
Remark. The sentences (Ay)n>o have a length in O(logn).

Theorem 4.1. Let G be a finite group of order (less than) n.
G E A, iff G is simple.

We need the following lemma in order to prove this theorem:

Lemma 4.1. Let G be a finite group of order n.
There exists a generating set of G of size at most logn.

Proof. Let {z1,--- , 21} be a generating set for G, among those of minimal size
(finite generating sets exist, since G itself is finite). Let’s prove that k < logn.

We prove by induction on i that |[{x1,--- ,x;)| > 2%, the case i = 0 beeing
trivial.
For the inductive case, suppose that |(xy,--- ,x;)| > 2! for some i < k.
Zit1 ¢ {x1,- - ,x;), by minimality. This means that
(1, -, xi) N @i (@, 2 =0
Since both these sets are included in (x4, - -+ ,2;11), by induction hypothesis,
we get that |(zy, -, x5 1)| > 201
We now have that |(zy,--- ,zx)| > 2%, but since (zy,--- ,z1) C G, necessarily

2% < n, hence k < logn.
O

We’re now able to prove the theorem 4.1:

Proof. First, note that since we’re considering a group G of size at most 2¥, the

formula af (g, z1,- -+ ,zx) holds exactly when g € (z1,--- ,2x). (see prop. 1.3)

(—) Suppose that G = A,,, and that there exists a proper non-trivial H <1 G.
Then, by lemma 4.1, there exists a generating set of H of size at most k.

This set gives us the witnesses x1, -+, x; we need to contradict A,, (if its
size is stricly less that k, then we complete with e’s).

Indeed, since H is a proper non-trivial subgroup, A,,’s premise holds, but
its conclusion doesn’t, because of H’s normality.

Hence such an proper non-trivial normal subgroup H doesn’t exist, and
G is a simple group.
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(+<-) Suppose that G is simple. We want to show that G = A,,.

Let 21, -+ , 21 € G.

If the premise of A, holds in G wrt z1, -+, g, then it means that
(21, ,x) is a proper non-trivial subgroup of G.

By simplicity, (x1,---,2;) cannot be normal, thus A’s conclusion holds

in G wrt 21, , 2, and G = A,,.
L]

Recall the definitions 3.8 and 4.1.
Definition 4.2. Let n > 0. We define the sentence ®,, as follows:

P, = Q. N A,
Remark. The sentences (Pp)n>0 have a length in O(logn).
Now comes our ultimate result:

Theorem 4.2. Let G be a finite group.
G @, iff G is a simple group of order n.

Proof. This follows directly from the theorems 3.3 and 4.1 O

We must ask of G to be finite.

Indeed, for p a big enough prime, there exists a Tarski monster group for p,
that is an infinite group such that every non-trivial proper subgroup is cyclic of
order p. Let T, be such a group. (we set k = logp)

Proposition 4.1. T, = ¢,
This results from the following lemmas:
Lemma 4.2. T, =Vyg, 6,(e,9)

Proof. Let g # e be an element of T,.

We claim that g must be of finite order. Otherwise, (g?) would be an infinite
proper subgroup of 7,.

Now, o(g) = p, for otherwise (g) would be a finite subgroup of order other
than p. O

Lemma 4.3. T, = Q,

Proof. We already know that T}, |= Vg, 0,(e, g).

It is fairly obvious that T}, = ©,1 (take as witness any z # e: we know that
it will be of order p).

We have left to prove that T}, = = ©, 2. Let’s assume that T), = O, 2, with
witnesses x, y.

First of all, we know that x ¢ (y) (for otherwise 2! o ¢ = 2% o y* for some
0<k<p)andy#e.

Thus, (z,y) = T,. Hence every g € T, can be written as a (z, y)™-product.
We show by induction, as in the proof of the proposition 3.4, that it can thus
be written as such a product of length at most 2¥. That is absurd, since there
are only finitely many values possible for these products, and T, is infinite.

):I:

O
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Lemma 4.4. T, = A,
Proof. Let z1,--- 2 € Tp, and G = (z1,- -+, T).
e if G = (e), then A,’s premise doesn’t hold.

e if |G| = p, then we claim that G isn’t normal. Indeed, if it were, then for
any z € T, \ G, (z)G would be a group of order p*.

Thus A,’s conclusion holds (by virtue of proposition 1.3, since |G| < 2F).

o clse, G =1T,.

There are only finitely many g € T}, such that T, = af(g,z1,--- ,x1). Let
h # e be such an element.

Consider the group action of 7, on itself by conjugation: we claim that
the orbit , is infinite (which will give us a g such that T, = = af(goho
g—17x17. . ,xk))

Indeed, |©2;| = [T}, : Staby], and since Stab;, is a proper subgroup of T,
(for otherwise h € Z(T}), and for any = € T, \ (h), (h)(z) would be a
subgroup of order p?), its index in T}, is infinite.

O

We have proved that there are arbitrarily large values of n < w such that
there exists a model of ®,, with is infinite, hence the restriction to finite groups.

5 Conclusion

We have found a family of sentences, namely (®,),>0, of length in O(logn),
such that among the finite groups, ®,, describes the simple ones of order n.

We’ve not quite reached our initial goal, which was to describe in a logarith-
mic length each finite simple group.

However, finite simple groups are determined up to isomorphism by their
order, except for two infinite families that conflict, containing non-isomorphic
simple groups of same order. If we’re able to differentiate these families in a
logarithmic length, then we get a logarithmic description of every finite simple
group, among all the finite groups.

References

[1] André Nies and Katrin Tent. Describing finite groups by short first-order
sentences. Israel Journal of Mathematics, 221:85-115, 2017.

18



