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This talk:
▶ Focus on cofinal extensions for models of strong fragments of

arithmetic, especially the elementarity of extensions.
▶ Motivating Question: What ‘controls’ the elementarity of a

cofinal extension?
Answer: Second-order theory of a definable cut。

Plan:
▶ Introduction.
▶ Non-elementary cofinal extension for countable model.
▶ A systematic way to ‘compress’ truth.
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First-order Arithmetic
▶ The language of First-order Arithmetic

L1 = {+,×, <,=, 0, 1}.
▶ A formula is ∆0 if all its quantifiers are bounded

i.e., in the form of ∃x < t(y) ϕ(x, y) or ∀x < t(y) ϕ(x, y).
▶ Σn = {∃x1 ∀x2 . . . Qxn θ(x1, . . . xn, a) | θ ∈ ∆0},

Πn = {∀x1 ∃x2 . . . Qxn θ(x1, . . . xn, a) | θ ∈ ∆0}.
▶ A formula is ∆n if it is equivalent to both a Σn and a Πn

formula(over some model or theory).
▶ IΣn consists of PA− and the Induction for all Σn formula ϕ:

ϕ(0, c) ∧ (∀x(ϕ(x, c) → ϕ(x+ 1, c)) → ∀xϕ(x, c).

▶ BΣn consists of IΣ0 and the Collection for all Σn formula ϕ:

∀x < a ∃yϕ(x, y, c) → ∃b∀x < a ∃y < b ϕ(x, y, c).

▶ exp asserts the totality of exponential function.
▶ PA=

⋃
n∈ω IΣn.
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First-order Arithmetic

Theorem (Paris–Kirby 1978)

I∆0 + exp ⊣ BΣ1 + exp ⊣ IΣ1 ⊣ BΣ2 ⊣ IΣ2 ⊣ BΣ3 . . .

and none of the converses holds.

Definition
We call models of BΣn + ¬IΣn B-Models, and models of
IΣn + ¬BΣn+1 I-Models.
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Cofinal Extensions vs Elementarity

Definition
Let M,K |= PA−, M ⊆ K

▶ K is a cofinal extension of M (M ⊆cf K) if

∀x ∈ K ∃y ∈ M K |= x < y.

The extension is proper if K ̸= M .
▶ For each n ∈ ω, K is a n-elementary extension of M

(M ≼n K) if for every ϕ ∈ Σn, a ∈ M ,

M |= ϕ(a) ⇐⇒ K |= ϕ(a).

Convention: We assume all models mentioned satisfy I∆0 + exp.
Since I∆0 + exp ⊢ MRDP, we have 0-elementarity for any
extension.
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Cofinal Extensions vs Elementarity

Theorem (Gaifman–Dimitracopoulos 1980)
Let n ∈ ω, M,K |= PA−, M ⊆cf K, if M |= BΣn+1, then
M ≼n+2 K. In particular, if M |= PA, then M ≼ K.

Theorem (Kaye 1991)
▶ For each n ∈ ω, every countable model of

BΣn+1 + exp + ¬IΣn+1 admits a proper elementary cofinal
extension.

▶ (Informally) Every sufficiently saturated countable model
admits a proper elementary cofinal extension.

Question: How much non-elementarity can we get for cofinal
extensions?
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Non-elementary Cofinal Extension
Theorem
For every countable model M |= I∆0 + exp, if M ̸|= PA then M
admits a non-elementary cofinal extension.

▶ (Paris 1981, Friedman independently.) Every countable model
M |= IΣn + exp + ¬BΣn+1 admits a cofinal extension
K |= BΣn+1. So we only need to consider B-models.
(M |= BΣn+1 + ¬IΣn+1.)

▶ We can further require that there is M ≼ L such that
M ⊆cf K ⊆e L and M ̸≼ K. This answers a question
negatively in Kaye’s paper ‘On Cofinal Extensions of Models
of Fragments of Arithmetic’(1991).

Corollary
A countable model of I∆0 + exp satisfy PA if and only if all of its
cofinal extensions are fully elementary.
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What Does ¬IΣn+1 Provide Us?
Fact
If M |= ¬IΣn+1, then:
▶ There is a Σn+1-definable proper cut I ⊆e M .
▶ There is a Σn ∧Πn-definable non-decreasing total function

G : I → M , whose range is cofinal in M .

Suppose M |= BΣn+1. Let ϕ(x, y) ∈ Σn ∧Πn defines the graph of
G, then for any K ⊇cf M , ∃y ϕ(x, y) defines a cut J ⊇cf I.
In particular, if ω is Σn+1-definable in M then it is still
Σn+1-definable in any cofinal extension.
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Non-elementary Cofinal Extension for B-Model

Fix n ∈ ω, M |= BΣn+1 + exp + ¬IΣn+1.
SSyI(M) = {A ⊆ I | A coded in M}, SSy(M) = SSyω(M).
Observation
If ω is Σn+1-definable in M , then we may describe the second-order
property of (ω, SSy(M)) using first-order formula in M .
e.g: 0′ ∈ SSy(M) can be described as

∃a ∀i ∈ ω (i ∈ a ↔ ∃s ∈ ω (Mi(i) halts with computation s)).

Here Mi(i) means the i-th Turing Machine with input i.

Cofinally extend M to K such that SSy(M) and SSy(K) satisfy
different second-order properties.
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Non-elementary Cofinal Extension for B-Model
Lemma
Every countable M |= ¬IΣn+1 admits a cofinal extension in which
ω is Σn+1-definable.
Proof Sketch: If ω is not Σn+1-definable in M , add a coded
non-decreasing function into K ⊇cf M :

f : ω → I

where I is a Σn+1-definable cut in M , and Range(f) ⊆cf I.
Now ω is Σn+1-definable in K, and I becomes non-semiregular.
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Non-elementary Cofinal Extension for B-Model

Here SSy(M) is a β1-model means (ω, SSy(M)) ≼Σ1
1
(ω,P(ω)).

Question: Are the non-elementarities here optimal?
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Non-elementary Cofinal Extension for B-Model

Theorem
For each n ∈ ω:
▶ There is a countable M |= BΣn+1 + exp + ¬IΣn+1, such that

for any cofinal extension K ⊇cf M , M ≼n+3 K.
▶ There is a uncountable M |= BΣn+1 + exp + ¬IΣn+1, such

that for any cofinal extension K ⊇cf M , M ≼ K.
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Compressing the Truth

We just mentioned that we can describe the second-order property
of (I, SSyI(M)) in M if I is definable.
Actually, the converse is also true: For fixed parameter, we can
describe the first-order truth of M in (I, SSyI(M)) if I is
Σn+1-definable.

Two ingredients for compressing
▶ ¬IΣn+1: Cofinal function G : I → M .
▶ BΣn+1: Encoding ∆n+1 formulas.
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Encoding ∆n+1 over a Cut

Definition (∆n+1 over a Cut)
We say that α(x, i) is ∆n+1 over i ∈ I, if α ∈ Σn+1 and there is
some β ∈ Πn+1 such that

M |= ∀x∀i ∈ I(α(x, i) ↔ β(x, i)).

Theorem (Chong–Mourad Coding Lemma 1990)
If M |= BΣn+1 + exp and I is a Σn+1-definable cut of M , α(x, i)
is ∆n+1 over i ∈ I, then for all b ∈ M

M |= ∃c (∀x < b ∀i ∈ I(⟨x, i⟩ ∈ c ↔ α(x, i)).
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Encoding ∆n+1 over a Cut

We also have BΣn+1 over a Σn+1 definable cut.
Theorem (Belanger–Chong–Li–Wong–Yang)
If M |= BΣn+1 + exp and I is a Σn+1-definable cut of M , α(x, i)
is ∆n+1 over i ∈ I, then for all a ∈ M

M |= ∀x < a ∃i ∈ I α(x, i) → ∃b ∈ I ∀x < a ∃i < bα(x, i).
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Rewriting System
For simplicity, we assume that n = 0 and I = ω. We fix some
M |= BΣ1 + exp + ¬IΣ1, so G : ω → M is ∆0-definable.
Observation 1
For any Π2 formula ∀a ∃b θ(a, b) where θ ∈ ∆0:

∀a ∃b θ(a, b)

⇔ ∀x ∈ ω∃y ∈ ω ∀a < G(x)∃b < G(y)θ(a, b)︸ ︷︷ ︸
α(x,y)∈∆1 over x,y∈ω

G is Cofinal

⇔ ∃f : ω → ω ∀x ∈ ω α(x, f(x)) Coding Lemma

f : ω → ω means f codes the graph of a total function from ω to
ω.
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Rewriting System
Temporarily let ∃f abbreviates ∃f : ω → ω.
Observation 2
For any Σ3 formula, it is equivalent to:

∃c ∀a ∃b θ(a, b, c)
⇔ ∃c ∃f∀x ∈ ω α(x, f(x), c) Observation 1
⇔ ∃z ∈ ω∃f ∃c < G(z)∀x ∈ ω α(x, f(x), c) G is Cofinal

⇔ ∃z ∈ ω∃f ∀x′ ∈ ω ∃c < G(z)∀x < x′ α(x, f(x), c)︸ ︷︷ ︸
β(z,x′,f↾x′ )∈∆1 over z,x′,f↾x′∈ω

BΣ1 over ω

Here fixing z ∈ ω, those x, f↾x ∈ ω satisfy β(z, x, f↾x) provides us
an ω-branching tree.
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Normal Form

With similar rewriting procedure(although more tedious!), we can
show the following:
Theorem (Normal Form Theorem)
Let m ∈ ω, M |= BΣ1 + exp + ¬IΣ1 and ω is Σ1-definable in M .
Then any Σm+3 formula ϕ(c) in M is equivalent to the form:

∃f1 ∀f2 . . . QfmQx ∈ ω α(f↾x, x, c)

for some α ∈ ∆1 over f↾x, x ∈ ω effectively decided by ϕ, and
such equivalence is provable in BΣ1 + exp + ¬IΣ1.
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A Bit Second-order Arithmetic

Definition
A second-order formula is rΣ1

m if it has the form

∃f1 ∀f2 . . . QfmQxS(x, f↾x)

where S ∈ ∆0
0 and ∃f abbreviates ∃f : ω → ω.

▶ rΣ1
m and Σ1

m coincide over ACA0.
▶ For extensions of second-order structure, we write

(ω,A) ≼rΣ1
m
(ω,B) if rΣ1

m formulas are absolute.
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Correspondence Theorem

Lemma (Belanger–Wong)
Let M |= BΣ1 + exp, M ⊆cf K, then K |= BΣ1 + exp.

So the same normal form applied in M and K.
Theorem (First-order Second-order Correspondence)
For M |= BΣ1 + exp + ¬IΣ1, M ⊆cf K, ω is Σ1-definable in M ,
let m ∈ ω,

M ≼m+3 K ⇐⇒ (ω, SSy(M)) ≼rΣ1
m+1

(ω, SSy(K)).

The correspondence helps us to convert a problem of first-order
arithmetic into a problem of second-order arithmetic.
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βm-model

Definition (βm-model)
For m > 0, a second-order structure (ω,A) is called a βm-model if

(ω,A) ≼Σ1
m
(ω,P(ω)).

Theorem (Mummert–Simpson 2004)
For each m > 0, there is a countable βm-model which is not a
βm+1-model.
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Constructions of Cofinal Extension

For models of BΣ1 + exp + ¬IΣ1 in which ω is Σ1 definable:
▶ If M ⊆cf K and SSy(M) = SSy(K), then M ≼ K.
▶ For each m ∈ ω, there is a countable M ⊆cf K such that

M ≼m+2 K but M ̸≼m+3 K.
((ω, SSy(M)) is a βm-model but not a βm+1-model.)
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Constructions of Cofinal Extension
For models of BΣ1 + exp + ¬IΣ1:
▶ Every model M0 admits an uncountable cofinal extension

M0 ⊆cf M , such that every cofinal extension of M is fully
elementary. (SSy(M) = P(ω).)

▶ Every countable M0 admits a countable cofinal extension
M0 ⊆cf M , such that any cofinal extension of M is
3-elementary. ((ω, SSy(M)) is a β1-model.)

23/27



Constructions of Cofinal Extension
There is a countable M , such that for any extension M ⊆ K,
there is a further elementary extension K ≼ L such that
M ≼cf L ⊆e L. ((ω, SSy(M)) ≼ (ω,P(ω).))

This answers a main question positively in Kaye’s another paper
‘Model-theoretic properties characterizing Peano arithmetic’(1991).
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Answering Kaye’s Questions
In the same paper, Kaye considers various model-theoretic
conditions, and asks whether they characterize arithmetic theories
extending PA. Here we can show that most of them fail to rule out
the case of extending BΣn+1 + ¬IΣn+1.
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Generalized Correspondence

Theorem (First-order Second-order Correspondence,
Generalized)
For n ∈ ω, suppose M |= BΣn+1 + exp + ¬IΣn+1 with a
Σn+1-definable cut I which is closed under exponentiation in M .
M ⊆ K is a (n+ 2)-elementary extension and K |= BΣn+1. Let J
be the Σn+1-definable cut in K with the same definition as M ,
then (I, SSyI(M)) naturally embed into (J, SSyJ(K)), and for all
m ∈ ω:

M ≼n+m+3 K ⇐⇒ (I, SSyI(M)) ≼rΣ1
m+n+1

(J, SSyJ(K)).
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Summary

▶ Any countable model of I∆0 + exp fail to satisfy PA admits a
non-elementary cofinal extension.

▶ A systematic way to ‘compress’ truth in
M |= BΣn+1 + ¬IΣn+1 in the second-order theory of its
Σn+1-definable cut.

▶ For the case ω is Σn+1-definable, we construct models with
various cofinal extension properties by considering its standard
system.

Thank You!

27/27


	Introduction
	Non-elementary cofinal extension for countable model
	A systematic way to `compress' truth

