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This talk:

» Focus on cofinal extensions for models of strong fragments of
arithmetic, especially the elementarity of extensions.

» Motivating Question: What ‘controls’ the elementarity of a
cofinal extension?
Answer: Second-order theory of a definable cut,

Plan:
> Introduction.
» Non-elementary cofinal extension for countable model.

P> A systematic way to ‘compress’ truth.
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First-order Arithmetic

| 2

>

The language of First-order Arithmetic

Ly = {+, x,<,=,0, 1}.

A formula is Ay if all its quantifiers are bounded

i.e., in the form of 3z < t(y) ¢(x,y) or Vz < t(y) ¢(x,7).
Yo ={IT1VT2 ... QTn 0(T1,...Tp,a) | 0 € Ao},

I, = {Vz1 373 ... QZ, 0(Z71,... Ty, a) | 6 € Ag}.

A formula is A, if it is equivalent to both a ¥,, and a II,,
formula(over some model or theory).

I¥,, consists of PA™ and the Induction for all X,, formula ¢:

#(0,2) A (Vz(9(z,¢) = d(z + 1,0)) = Vod(z, ).
B3, consists of 13y and the Collection for all X,, formula ¢:
Vo < a Jyo(z,y,¢) — Ve < a Jy < b ¢(z,y,7c).

exp asserts the totality of exponential function.
PA={, c., I2n.
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First-order Arithmetic

Theorem (Paris—Kirby 1978)

IAg +exp 4BX; +exp 413 4BXy 413, 4 BX5. ..

and none of the converses holds.

Definition

We call models of BX,, + —1,, B-Models, and models of
¥, + -BX,+1 I-Models.

4/27



Cofinal Extensions vs Elementarity

Definition
Let M,K =EPA~, M C K
» K is a cofinal extension of M (M C K) if

Vee K JyeM KEz<uy.

The extension is proper if K # M.

» For each n € w, K is a n-elementary extension of M
(M =, K) if for every p € ,,, a € M,

ME (@) — K F é(a).

Convention: We assume all models mentioned satisfy 1A + exp.

Since IAg + exp F MRDP, we have 0-elementarity for any
extension.
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Cofinal Extensions vs Elementarity

Theorem (Gaifman—Dimitracopoulos 1980)

Letn€w, M,K =PA~, M Ct K, if M |= BE,11, then
M <n42 K. In particular, if M = PA, then M < K.

Theorem (Kaye 1991)

» For each n € w, every countable model of
B 11 + exp + —13,11 admits a proper elementary cofinal
extension.

» (Informally) Every sufficiently saturated countable model
admits a proper elementary cofinal extension.

Question: How much non-elementarity can we get for cofinal
extensions?
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Non-elementary Cofinal Extension

Theorem
For every countable model M = 1A + exp, if M = PA then M
admits a non-elementary cofinal extension.

» (Paris 1981, Friedman independently.) Every countable model
M 1%, + exp + "BX,, 11 admits a cofinal extension
K [=BX,11. So we only need to consider B-models.
(M = BEp41 + I¥041.)

> We can further require that there is M < L such that
M Co K Ce L and M £ K. This answers a question
negatively in Kaye's paper ‘On Cofinal Extensions of Models
of Fragments of Arithmetic'(1991).

Corollary
A countable model of 1Ag + exp satisfy PA if and only if all of its
cofinal extensions are fully elementary.
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What Does —I>.,, .1 Provide Us?
Fact
If M = —1%,41, then:
» There is a 3,4 1-definable proper cut I C, M.

» There is a ¥, A II,,-definable non-decreasing total function
G: I — M, whose range is cofinal in M.

Suppose M = BX, 1. Let ¢(x,y) € ¥, A1L, defines the graph of
G, then for any K D¢ M, Jy ¢(x,y) defines a cut J D¢ I.

In particular, if w is ¥,41-definable in M then it is still

Y n+1-definable in any cofinal extension.

K M K M
N T T

I
Tl ,K\ 1
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Non-elementary Cofinal Extension for B-Model

Fixnew MEBY, 11 +exp+ 1¥,41.
SSy;(M)={AC1I|Acodedin M}, SSy(M) =SSy, (M).

Observation

If wis ¥y 1-definable in M, then we may describe the second-order
property of (w,SSy(M)) using first-order formula in M.

e.g: 0' € SSy(M) can be described as

JaVi € w(i € a <> Js € w (M;(i) halts with computation s)).

Here M;(i) means the i-th Turing Machine with input i.

Cofinally extend M to K such that SSy(M) and SSy(K) satisfy
different second-order properties.
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Non-elementary Cofinal Extension for B-Model

Lemma
Every countable M = =13, 11 admits a cofinal extension in which
w is ¥, 41-definable.

Proof Sketch: If w is not X,,41-definable in M, add a coded
non-decreasing function into K D¢ M:

frw—1
where I is a ¥, 1-definable cut in M, and Range(f) C.¢ I.

Now w is 3,1 1-definable in K, and [ becomes non-semiregular.

K M/K M

AT~ AT~ T~

1/%
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Non-elementary Cofinal Extension for B-Model

M%n+4K

Add coded f:w — I
I arbitrary X, , 1-cut

Here SSy(M) is a $1-model means (w, SSy(M)) <x1 (w, P(w)).
Question: Are the non-elementarities here optimal?

M%n+4K
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Non-elementary Cofinal Extension for B-Model

Theorem
For eachn € w:
» There is a countable M |= BX,,+1 + exp + —1X, 41, such that
for any cofinal extension K D¢ M, M <p+3 K.

» There is a uncountable M |= BX,, 11 + exp + —1%,,41, such
that for any cofinal extension K Do M, M < K.
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Compressing the Truth

We just mentioned that we can describe the second-order property
of (I,SSy;(M)) in M if I is definable.

Actually, the converse is also true: For fixed parameter, we can
describe the first-order truth of M in (I,SSy;(M)) if I is
Yn+1-definable.

Two ingredients for compressing

» —I3,.1: Cofinal function G: I — M.
» BY,11: Encoding A,,11 formulas.
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Encoding A, .1 over a Cut

Definition (A, over a Cut)
We say that (T, 1) is A,y1 over i € I, if a € ¥,,.1 and there is
some 3 € II,,4+1 such that

M = Va¥i € I(a(Z,7) < B(T,7)).

Theorem (Chong—Mourad Coding Lemma 1990)

If M |=BX,+1 + exp and I is a 3,,11-definable cut of M, o(Z,1)
is A1 overi €I, then for allb € M

M = 3Jc (Ve < bVi € [((Z,i) € ¢ +> a(T,1)).
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Encoding A, .1 over a Cut

We also have BY,, 1 over a 3,11 definable cut.

Theorem (Belanger—-Chong-Li—-Wong—Yang)

If M |=BX, 41 +exp and I is a ¥,,41-definable cut of M, a(z,1)
is Ap4q overi € I, then for alla € M

MEVr<adiela(x,i)—3belVr <adi<ba(z,i).

15/27



Rewriting System

For simplicity, we assume that n = 0 and I = w. We fix some
M = BY1 +exp+ —1¥q, so G: w — M is Ag-definable.

Observation 1
For any IIy formula Ya 3b6(a, b) where 6 € Ag:

Va 3b6(a,b)
& Ve ewdy €w Va< G(x)db < G(y)b(a,b) G is Cofinal

a(z,y)EAL over z,ycw
& Jfrw—owVr ewalz, f(z)) Coding Lemma

f:w — w means f codes the graph of a total function from w to
w.
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Rewriting System

Temporarily let 3f abbreviates 3f: w — w.

Observation 2

For any X3 formula, it is equivalent to:

JeVaIbb(a,b, c)

JedfVe € walx, f(x),c) Observation 1
Jz € widfJe < G(2)Vr € wa(z, f(x),c) G is Cofinal

& FzewdfVe ew Je< G(2)Vr < 2’ a(z, f(z),c) BX; over w

t ¢

B(z,a! fl)ENL over z,a!, f[,1Ew

Here fixing z € w, those z, f[, € w satisfy 5(z,z, f[;) provides us
an w-branching tree.
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Normal Form

With similar rewriting procedure(although more tedious!), we can
show the following:

Theorem (Normal Form Theorem)

Let m € w, M = BX; + exp + 1%, and w is ¥1-definable in M.
Then any ¥,,,+3 formula ¢(¢) in M is equivalent to the form:

3fiVfe ... Qfm Qxr € wa(fls, ,0)

for some ov € Ay over fl,,x € w effectively decided by ¢, and
such equivalence is provable in BX1 + exp + —131.

18/27



A Bit Second-order Arithmetic

Definition
A second-order formula is r} if it has the form

fiVfa ... Qfm QuS(z, fla)

where S € A and 3f abbreviates 3f: w — w.

» 121 and XL coincide over ACA,.

» For extensions of second-order structure, we write
(w, A) <y (w, B) if r¥), formulas are absolute.
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Correspondence Theorem

Lemma (Belanger-Wong)
Let M = BY; +exp, M Cit K, then K = BX; + exp.

So the same normal form applied in M and K.

Theorem (First-order Second-order Correspondence)

For M = BYX, +exp + —1¥1, M C¢ K, w is ¥.1-definable in M,
let m € w,

M Smes K = (,88y(M)) < | (w.5Sy(K)).

The correspondence helps us to convert a problem of first-order
arithmetic into a problem of second-order arithmetic.
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Bm-model

Definition (/3,,-model)

For m > 0, a second-order structure (w, .A) is called a §,,-model if

(w, A) 51 (w, P(w)).

m

Theorem (Mummert-Simpson 2004)
For each m > 0, there is a countable (3,,-model which is not a
Bm1-model.
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Constructions of Cofinal Extension

For models of B¥1 + exp 4+ =131 in which w is X1 definable:
» If M Cp K and SSy(M) = SSy(K), then M < K.
» For each m € w, there is a countable M C.; K such that
M Zmy2 K but M '7\<m+3 K.
((w,SSy(M)) is a Bp-model but not a S3,,+1-model.)
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Constructions of Cofinal Extension
For models of BX1 + exp + —1X:

» Every model My admits an uncountable cofinal extension
My Cer M, such that every cofinal extension of M is fully
elementary. (SSy(M) = P(w).)

» Every countable My admits a countable cofinal extension
My Cer M, such that any cofinal extension of M is
3-elementary. ((w,SSy(M)) is a S1-model.)

(@, P(w))

N

ot (@, SSy(K))

X%

(@, SSy(M)

23/27



Constructions of Cofinal Extension

There is a countable M, such that for any extension M C K,
there is a further elementary extension K < L such that
M<fLCeL  ((w,SSy(M)) X (w, P(w).))

L

This answers a main question positively in Kaye's another paper

‘Model-theoretic properties characterizing Peano arithmetic’(1991).
One of the most annoying failures of this paper is the absence of a result similar
to 3.7 showing (ii) to be insufficient to characterize PA over 1A, + exp on its own.
PROBLEM 4.2. Foralln > L, is there a countable model [, = 1A, + exp + BX, +
—1Z, such that whenever L > I, is countable there is L > L and K =, L such
that [, < K? -
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Answering Kaye's Questions
In the same paper, Kaye considers various model-theoretic
conditions, and asks whether they characterize arithmetic theories
extending PA. Here we can show that most of them fail to rule out
the case of extending BX, 11 + —1X,41.

There are various natural variations on property (ii) of a theory T extending
IA, + exp that have been considered in preliminary drafts of this paper. These
include:

(iii) For each complete consistent S 2 T there is a model K = S such that
whenever L > K thereis M =, L with K < M.

(iv) For each complete consistent S 2 T there is K = S such that whenever
L > K (no restriction on card(L)) there is L > L and K <, L with K < K.

(v) For each consistent S = T there are models K, L, M of S such that K <
Mc, L withM #Land K<L.

(vi) For each consistent § 2 T there is a consistent S* = S such that whenever
K < L are both models of S*, then K < L.

Each of these properties is true of the theory T = PA; moreover, if T has any
one of (i), (iv) or (v), then THIE = T+ BE, ,, foreachne N.

ProBLEM 4.3. If T extends IZ, + exp and satisfies (vi), does TH BZ, ; ;? Indeed,
what theories T 2 1A, + exp (other than extensions of PA) have property (vi)?

PrROBLEM 4.4. Are there theories T extending BZ,, ; + exp + —1IZ, ;| for some
n = N satisfying (iii), (iv), (v) or (vi)?
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Generalized Correspondence

Theorem (First-order Second-order Correspondence,
Generalized)

Forn € w, suppose M |=BX, 11 + exp + —1¥,, 11 with a
Ynt1-definable cut I which is closed under exponentiation in M.
M C K is a (n + 2)-elementary extension and K |=BX, 1. Let J
be the X, +1-definable cut in K with the same definition as M,

then (1,SSy;(M)) naturally embed into (J,SSy ;(K)), and for all
m e w:

M Snimss K <= (I,S8y;/(M)) <;s1  (J,SSy,(K)).
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Summary

» Any countable model of IAg + exp fail to satisfy PA admits a
non-elementary cofinal extension.

P> A systematic way to ‘compress’ truth in
M = BX, 41 + —IX,41 in the second-order theory of its
Ynt1-definable cut.

» For the case w is ¥,11-definable, we construct models with
various cofinal extension properties by considering its standard
system.

Thank You!
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