Non-elementary cofinal extensions of models of fragments of Peano arithmetic

Sun Mengzhou

National University of Singapore

September 26, 2023

Ongoing joint work with Wong Tin Lok

This talk:

- ► Focus on cofinal extensions for models of strong fragments of arithmetic, especially the elementarity of extensions.
- Motivating Question: What 'controls' the elementarity of a cofinal extension?

Answer: Second-order theory of a definable cut.

Plan:

- Introduction.
- Non-elementary cofinal extension for countable model.
- A systematic way to 'compress' truth.

First-order Arithmetic

- ► The language of First-order Arithmetic $\mathcal{L}_1 = \{+, \times, <, =, 0, 1\}.$
- ▶ A formula is Δ_0 if all its quantifiers are bounded i.e., in the form of $\exists x < t(\overline{y}) \ \phi(x, \overline{y})$ or $\forall x < t(\overline{y}) \ \phi(x, \overline{y})$.
- $\Sigma_n = \{ \exists \overline{x_1} \, \forall \overline{x_2} \, \dots \, Q \overline{x_n} \, \theta(\overline{x_1}, \dots \overline{x_n}, \overline{a}) \mid \theta \in \Delta_0 \}, \\ \Pi_n = \{ \forall \overline{x_1} \, \exists \overline{x_2} \, \dots \, Q \overline{x_n} \, \theta(\overline{x_1}, \dots \overline{x_n}, \overline{a}) \mid \theta \in \Delta_0 \}.$
- A formula is Δ_n if it is equivalent to both a Σ_n and a Π_n formula(over some model or theory).
- ▶ $I\Sigma_n$ consists of PA⁻ and the **Induction** for all Σ_n formula ϕ :

$$\phi(0,\overline{c}) \wedge (\forall x(\phi(x,\overline{c}) \to \phi(x+1,\overline{c})) \to \forall x\phi(x,\overline{c}).$$

▶ $B\Sigma_n$ consists of $I\Sigma_0$ and the **Collection** for all Σ_n formula ϕ :

$$\forall x < a \ \exists y \phi(x, y, \overline{c}) \to \exists b \forall x < a \ \exists y < b \ \phi(x, y, \overline{c}).$$

- exp asserts the totality of exponential function.
- \triangleright PA= $\bigcup_{n\in\omega}$ I Σ_n .

First-order Arithmetic

Theorem (Paris-Kirby 1978)

$$I\Delta_0 + \exp \dashv B\Sigma_1 + \exp \dashv I\Sigma_1 \dashv B\Sigma_2 \dashv I\Sigma_2 \dashv B\Sigma_3 \dots$$

and none of the converses holds.

Definition

We call models of $\mathrm{B}\Sigma_n + \neg \mathrm{I}\Sigma_n$ **B-Models**, and models of $\mathrm{I}\Sigma_n + \neg \mathrm{B}\Sigma_{n+1}$ **I-Models**.

Cofinal Extensions vs Elementarity

Definition

Let $M, K \models PA^-$, $M \subseteq K$

▶ K is a **cofinal extension** of M ($M \subseteq_{cf} K$) if

$$\forall x \in K \quad \exists y \in M \quad K \models x < y.$$

The extension is proper if $K \neq M$.

For each $n \in \omega$, K is a n-elementary extension of M $(M \preccurlyeq_n K)$ if for every $\phi \in \Sigma_n$, $\overline{a} \in M$,

$$M \models \phi(\overline{a}) \iff K \models \phi(\overline{a}).$$

Convention: We assume all models mentioned satisfy $I\Delta_0 + \exp$. Since $I\Delta_0 + \exp \vdash MRDP$, we have 0-elementarity for any extension.

Cofinal Extensions vs Elementarity

Theorem (Gaifman-Dimitracopoulos 1980)

Let $n \in \omega$, $M, K \models PA^-$, $M \subseteq_{cf} K$, if $M \models B\Sigma_{n+1}$, then $M \preccurlyeq_{n+2} K$. In particular, if $M \models PA$, then $M \preccurlyeq K$.

Theorem (Kaye 1991)

- ▶ For each $n \in \omega$, every countable model of $\mathrm{B}\Sigma_{n+1} + \exp + \neg \mathrm{I}\Sigma_{n+1}$ admits a proper elementary cofinal extension.
- (Informally) Every sufficiently saturated countable model admits a proper elementary cofinal extension.

Question: How much non-elementarity can we get for cofinal extensions?

Non-elementary Cofinal Extension

Theorem

For every countable model $M \models I\Delta_0 + \exp$, if $M \not\models PA$ then M admits a non-elementary cofinal extension.

- ▶ (Paris 1981, Friedman independently.) Every countable model $M \models \mathrm{I}\Sigma_n + \exp + \neg \mathrm{B}\Sigma_{n+1}$ admits a cofinal extension $K \models \mathrm{B}\Sigma_{n+1}$. So we only need to consider B-models. $(M \models \mathrm{B}\Sigma_{n+1} + \neg \mathrm{I}\Sigma_{n+1}.)$
- ▶ We can further require that there is $M \leq L$ such that $M \subseteq_{\mathrm{cf}} K \subseteq_{\mathrm{e}} L$ and $M \not\preccurlyeq K$. This answers a question negatively in Kaye's paper 'On Cofinal Extensions of Models of Fragments of Arithmetic'(1991).

Corollary

A countable model of $I\Delta_0 + \exp$ satisfy PA if and only if all of its cofinal extensions are fully elementary.

What Does $\neg I\Sigma_{n+1}$ Provide Us?

Fact

If $M \models \neg I\Sigma_{n+1}$, then:

- ▶ There is a Σ_{n+1} -definable proper cut $I \subseteq_e M$.
- ► There is a $\Sigma_n \wedge \Pi_n$ -definable non-decreasing total function $G \colon I \to M$, whose range is cofinal in M.

Suppose $M \models \mathrm{B}\Sigma_{n+1}$. Let $\phi(x,y) \in \Sigma_n \wedge \Pi_n$ defines the graph of G, then for any $K \supseteq_{\mathrm{cf}} M$, $\exists y \, \phi(x,y)$ defines a cut $J \supseteq_{\mathrm{cf}} I$. In particular, if ω is Σ_{n+1} -definable in M then it is still Σ_{n+1} -definable in any cofinal extension.

Fix
$$n \in \omega$$
, $M \models \mathrm{B}\Sigma_{n+1} + \exp + \neg \mathrm{I}\Sigma_{n+1}$.
 $\mathrm{SSy}_I(M) = \{A \subseteq I \mid A \text{ coded in } M\}, \, \mathrm{SSy}(M) = \mathrm{SSy}_\omega(M)$.

Observation

If ω is Σ_{n+1} -definable in M, then we may describe the second-order property of $(\omega, \mathrm{SSy}(M))$ using first-order formula in M. e.g. $0' \in \mathrm{SSy}(M)$ can be described as

$$\exists a \, \forall i \in \omega \, (i \in a \leftrightarrow \exists s \in \omega \, (M_i(i) \text{ halts with computation } s)).$$

Here $M_i(i)$ means the i-th Turing Machine with input i.

Cofinally extend M to K such that $\mathrm{SSy}(M)$ and $\mathrm{SSy}(K)$ satisfy different second-order properties.

Lemma

Every countable $M \models \neg I\Sigma_{n+1}$ admits a cofinal extension in which ω is Σ_{n+1} -definable.

Proof Sketch: If ω is not Σ_{n+1} -definable in M, add a coded non-decreasing function into $K \supseteq_{\mathrm{cf}} M$:

$$f \colon \omega \to I$$

where I is a Σ_{n+1} -definable cut in M, and $\mathrm{Range}(f) \subseteq_{\mathrm{cf}} I$. Now ω is Σ_{n+1} -definable in K, and I becomes non-semiregular.

Here $\mathrm{SSy}(M)$ is a β_1 -model means $(\omega, \mathrm{SSy}(M)) \preccurlyeq_{\Sigma_1^1} (\omega, \mathcal{P}(\omega))$. Question: Are the non-elementarities here optimal?

Theorem

For each $n \in \omega$:

- ► There is a countable $M \models B\Sigma_{n+1} + \exp + \neg I\Sigma_{n+1}$, such that for any cofinal extension $K \supseteq_{cf} M$, $M \preccurlyeq_{n+3} K$.
- ► There is a uncountable $M \models \mathrm{B}\Sigma_{n+1} + \exp + \neg \mathrm{I}\Sigma_{n+1}$, such that for any cofinal extension $K \supseteq_{\mathrm{cf}} M$, $M \preccurlyeq K$.

Compressing the Truth

We just mentioned that we can describe the second-order property of $(I,\mathrm{SSy}_I(M))$ in M if I is definable.

Actually, the converse is also true: For fixed parameter, we can describe the first-order truth of M in $(I,\mathrm{SSy}_I(M))$ if I is Σ_{n+1} -definable.

Two ingredients for compressing

- ▶ $\neg I\Sigma_{n+1}$: Cofinal function $G: I \to M$.
- ▶ $B\Sigma_{n+1}$: Encoding Δ_{n+1} formulas.

Encoding Δ_{n+1} over a Cut

Definition (Δ_{n+1} over a Cut)

We say that $\alpha(\overline{x},\overline{i})$ is Δ_{n+1} over $\overline{i}\in I$, if $\alpha\in\Sigma_{n+1}$ and there is some $\beta\in\Pi_{n+1}$ such that

$$M \models \forall x \forall \overline{i} \in I(\alpha(\overline{x}, \overline{i}) \leftrightarrow \beta(\overline{x}, \overline{i})).$$

Theorem (Chong-Mourad Coding Lemma 1990)

If $M \models \mathrm{B}\Sigma_{n+1} + \mathrm{exp}$ and I is a Σ_{n+1} -definable cut of M, $\alpha(\overline{x},\overline{i})$ is Δ_{n+1} over $\overline{i} \in I$, then for all $b \in M$

$$M \models \exists c \, (\forall x < b \, \forall \overline{i} \in I(\langle \overline{x}, \overline{i} \rangle \in c \leftrightarrow \alpha(\overline{x}, \overline{i})).$$

Encoding Δ_{n+1} over a Cut

We also have $B\Sigma_{n+1}$ over a Σ_{n+1} definable cut.

Theorem (Belanger-Chong-Li-Wong-Yang)

If $M \models \mathrm{B}\Sigma_{n+1} + \mathrm{exp}$ and I is a Σ_{n+1} -definable cut of M, $\alpha(x,i)$ is Δ_{n+1} over $i \in I$, then for all $a \in M$

$$M \models \forall x < a \,\exists i \in I \,\alpha(x,i) \to \exists b \in I \,\forall x < a \,\exists i < b \,\alpha(x,i).$$

Rewriting System

For simplicity, we assume that n=0 and $I=\omega$. We fix some $M\models \mathrm{B}\Sigma_1+\exp+\neg\mathrm{I}\Sigma_1$, so $G\colon\omega\to M$ is Δ_0 -definable.

Observation 1

For any Π_2 formula $\forall a \, \exists b \, \theta(a,b)$ where $\theta \in \Delta_0$:

$$\forall a \, \exists b \, \theta(a,b)$$
 $\Leftrightarrow \quad \forall x \in \omega \exists y \in \omega \underbrace{ \forall a < G(x) \exists b < G(y) \theta(a,b) }_{\alpha(x,y) \in \Delta_1 \text{ over } x,y \in \omega}$ G is Cofinal
$$\Leftrightarrow \quad \exists f \colon \omega \to \omega \, \forall x \in \omega \, \alpha(x,f(x))$$
 Coding Lemma

 $f\colon \omega \to \omega$ means f codes the graph of a total function from ω to $\omega.$

Rewriting System

Temporarily let $\exists f \text{ abbreviates } \exists f \colon \omega \to \omega.$

Observation 2

For any Σ_3 formula, it is equivalent to:

$$\exists c \, \forall a \, \exists b \, \theta(a,b,c)$$
 $\Leftrightarrow \exists c \, \exists f \, \forall x \in \omega \, \alpha(x,f(x),c)$ Observation 1
$$\Leftrightarrow \exists z \in \omega \exists f \, \exists c < G(z) \, \forall x \in \omega \, \alpha(x,f(x),c)$$
 G is Cofinal
$$\Leftrightarrow \exists z \in \omega \exists f \, \forall x' \in \omega \underbrace{\exists c < G(z) \, \forall x < x' \, \alpha(x,f(x),c)}_{\beta(z,x',f \restriction_{x'}) \in \Delta_1 \text{ over } z,x',f \restriction_{x'} \in \omega}$$
 B\$\Sigma_1\$ over \$\omega\$

Here fixing $z\in\omega$, those $x,f\!\upharpoonright_x\in\omega$ satisfy $\beta(z,x,f\!\upharpoonright_x)$ provides us an ω -branching tree.

Normal Form

With similar rewriting procedure(although more tedious!), we can show the following:

Theorem (Normal Form Theorem)

Let $m \in \omega$, $M \models \mathrm{B}\Sigma_1 + \exp + \neg \mathrm{I}\Sigma_1$ and ω is Σ_1 -definable in M. Then any Σ_{m+3} formula $\phi(\overline{c})$ in M is equivalent to the form:

$$\exists f_1 \, \forall f_2 \dots Q f_m \, \overline{Q} x \in \omega \, \alpha(\overline{f} \upharpoonright_x, x, \overline{c})$$

for some $\alpha \in \Delta_1$ over $\overline{f} \upharpoonright_x, x \in \omega$ effectively decided by ϕ , and such equivalence is provable in $\mathrm{B}\Sigma_1 + \exp + \neg \mathrm{I}\Sigma_1$.

A Bit Second-order Arithmetic

Definition

A second-order formula is $\mathbf{r}\Sigma_m^1$ if it has the form

$$\exists f_1 \,\forall f_2 \, \dots \, Q f_m \, \overline{Q} x \, S(x, \overline{f} \upharpoonright_x)$$

where $S \in \Delta_0^0$ and $\exists f$ abbreviates $\exists f \colon \omega \to \omega$.

- $ightharpoonup r\Sigma_m^1$ and Σ_m^1 coincide over ACA_0 .
- For extensions of second-order structure, we write $(\omega, \mathcal{A}) \preccurlyeq_{\mathbf{r}\Sigma_m^1} (\omega, \mathcal{B})$ if $\mathbf{r}\Sigma_m^1$ formulas are absolute.

Correspondence Theorem

Lemma (Belanger-Wong)

Let
$$M \models B\Sigma_1 + \exp$$
, $M \subseteq_{cf} K$, then $K \models B\Sigma_1 + \exp$.

So the same normal form applied in M and K.

Theorem (First-order Second-order Correspondence)

For $M \models \mathrm{B}\Sigma_1 + \exp + \neg \mathrm{I}\Sigma_1$, $M \subseteq_{\mathrm{cf}} K$, ω is Σ_1 -definable in M, let $m \in \omega$,

$$M \preccurlyeq_{m+3} K \iff (\omega, \operatorname{SSy}(M)) \preccurlyeq_{r\Sigma_{m+1}^1} (\omega, \operatorname{SSy}(K)).$$

The correspondence helps us to convert a problem of first-order arithmetic into a problem of second-order arithmetic.

β_m -model

Definition (β_m -model)

For m>0, a second-order structure (ω,\mathcal{A}) is called a β_m -model if

$$(\omega, \mathcal{A}) \preccurlyeq_{\Sigma_m^1} (\omega, \mathcal{P}(\omega)).$$

Theorem (Mummert-Simpson 2004)

For each m>0, there is a countable β_m -model which is not a β_{m+1} -model.

Constructions of Cofinal Extension

For models of $B\Sigma_1 + \exp + \neg I\Sigma_1$ in which ω is Σ_1 definable:

- ▶ If $M \subseteq_{\mathrm{cf}} K$ and $\mathrm{SSy}(M) = \mathrm{SSy}(K)$, then $M \preccurlyeq K$.
- For each $m \in \omega$, there is a countable $M \subseteq_{\operatorname{cf}} K$ such that $M \preccurlyeq_{m+2} K$ but $M \not\preccurlyeq_{m+3} K$. $((\omega,\operatorname{SSy}(M)))$ is a β_m -model but not a β_{m+1} -model.)

Constructions of Cofinal Extension

For models of $B\Sigma_1 + \exp + \neg I\Sigma_1$:

- Every model M_0 admits an uncountable cofinal extension $M_0 \subseteq_{\mathrm{cf}} M$, such that every cofinal extension of M is fully elementary. $(\mathrm{SSy}(M) = \mathcal{P}(\omega).)$
- Every countable M_0 admits a countable cofinal extension $M_0 \subseteq_{\mathrm{cf}} M$, such that any cofinal extension of M is 3-elementary. $((\omega, \mathrm{SSy}(M))$ is a β_1 -model.)

Constructions of Cofinal Extension

There is a countable M, such that for any extension $M\subseteq K$, there is a further elementary extension $K\preccurlyeq L$ such that $M\preccurlyeq_{\operatorname{cf}}\overline{L}\subseteq_{\operatorname{e}}L.$ $\left((\omega,\operatorname{SSy}(M))\preccurlyeq(\omega,\mathcal{P}(\omega).)\right)$

This answers a main question positively in Kaye's another paper 'Model-theoretic properties characterizing Peano arithmetic'(1991). One of the most annoying failures of this paper is the absence of a result similar to 3.7 showing (ii) to be insufficient to characterize PA over $I\Delta_0$ + exp on its own. PROBLEM 4.2. For all $n \ge 1$, is there a countable model $I_n \models I\Delta_0 + \exp + B\Sigma_n + \neg I\Sigma_n$ such that whenever $L > I_n$ is countable there is $\bar{L} > L$ and $\bar{K} \subseteq_{\mathbf{c}} \bar{L}$ such that $I_n <_{\mathrm{of}} \bar{K}$?

Answering Kaye's Questions

In the same paper, Kaye considers various model-theoretic conditions, and asks whether they characterize arithmetic theories extending PA. Here we can show that most of them fail to rule out the case of extending $\mathrm{B}\Sigma_{n+1} + \neg \mathrm{I}\Sigma_{n+1}$.

There are various natural variations on property (ii) of a theory T extending $I\Delta_0$ + exp that have been considered in preliminary drafts of this paper. These include:

- (iii) For each complete consistent $S \supseteq T$ there is a model $K \models S$ such that whenever $L \succ K$ there is $M \subseteq_{\mathbf{c}} L$ with $K \prec_{\mathbf{cf}} M$.
- (iv) For each complete consistent $S \supseteq T$ there is $K \models S$ such that whenever L > K (no restriction on card(L)) there is $\bar{L} > L$ and $\bar{K} \subseteq_e \bar{L}$ with $K <_{ef} \bar{K}$.
- (v) For each consistent $S \supseteq T$ there are models K, L, M of S such that $K \prec_{cf} M \subseteq_{c} L$ with $M \neq L$ and $K \prec L$.
- (vi) For each consistent $S \supseteq T$ there is a consistent $S^* \supseteq S$ such that whenever $K \subseteq_{cf} L$ are both models of S^* , then $K \prec L$.

Each of these properties is true of the theory T = PA; moreover, if T has any one of (iii), (iv) or (v), then $T \vdash I\Sigma_n \Rightarrow T \vdash B\Sigma_{n+1}$ for each $n \in \mathbb{N}$.

PROBLEM 4.3. If T extends $I\Sigma_n + \exp$ and satisfies (vi), does $T \vdash B\Sigma_{n+1}$? Indeed, what theories $T \supseteq I\Delta_0 + \exp$ (other than extensions of PA) have property (vi)?

PROBLEM 4.4. Are there theories T extending $B\Sigma_{n+1} + \exp + \neg I\Sigma_{n+1}$ for some $n \in \mathbb{N}$ satisfying (iii), (iv), (v) or (vi)?

Generalized Correspondence

Theorem (First-order Second-order Correspondence, Generalized)

For $n \in \omega$, suppose $M \models \mathrm{B}\Sigma_{n+1} + \exp + \neg \mathrm{I}\Sigma_{n+1}$ with a Σ_{n+1} -definable cut I which is closed under exponentiation in M. $M \subseteq K$ is a (n+2)-elementary extension and $K \models \mathrm{B}\Sigma_{n+1}$. Let J be the Σ_{n+1} -definable cut in K with the same definition as M, then $(I, \mathrm{SSy}_I(M))$ naturally embed into $(J, \mathrm{SSy}_J(K))$, and for all $m \in \omega$:

$$M \preccurlyeq_{n+m+3} K \iff (I, \operatorname{SSy}_I(M)) \preccurlyeq_{r\Sigma^1_{m+n+1}} (J, \operatorname{SSy}_J(K)).$$

Summary

- Any countable model of $I\Delta_0 + \exp$ fail to satisfy PA admits a non-elementary cofinal extension.
- ▶ A systematic way to 'compress' truth in $M \models \mathrm{B}\Sigma_{n+1} + \neg \mathrm{I}\Sigma_{n+1}$ in the second-order theory of its Σ_{n+1} -definable cut.
- ▶ For the case ω is Σ_{n+1} -definable, we construct models with various cofinal extension properties by considering its standard system.

Thank You!