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Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending
the language of arithmetic. How to express that B is trustworthy?

Con Cong

Rfn(U) Prg("¢") = ¢

REN(U) Vx(Pra("¢(x)7) = ¢(x)).
Finally there is the most natural solution: introduce a primitive
truth predicate T(x) and say
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Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending
the language of arithmetic. How to express that B is trustworthy?

Con Cong

Rfn(U) Prg("¢") = ¢

REN(U) Vx(Pra("¢(x)7) = ¢(x)).
Finally there is the most natural solution: introduce a primitive
truth predicate T(x) and say

Vo (Pra(é) — T(¢)) (GR(B))




Compositional truth

Our "truth package" will consist of the following axioms:

CT[B] extends B with the following axioms for the T predicate.
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Compositional truth

Our "truth package" will consist of the following axioms:

Definition
CT[B] extends B with the following axioms for the T predicate.
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Compositional truth

Our "truth package" will consist of the following axioms:

Definition

CT[B] extends B with the following axioms for the T predicate.
1. Vs, ... Vsn(T(R(S0,---,50) = R(50°%, - -,5.°)).
2. Vo (T (-¢) = -T(9)).
3. Vo, %(T(sVy) = T(¢) vV T(¥)).

4. 9(v)(T(Fvo(v)) = KT (3[x/])).

—_— =

Our basic B will be the elementary arithmetic EA (IAg + "exp is
total".) We assume that all B's extends EA and are formulated in

the language £ := {<,+, x,0, 1}.




Familiarize yourself with CT™[EA]
Theorem (Enayat-Visser, Leigh)

For every B, CT™[B] is conservative over B.
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Familiarize yourself with CT™[EA]
Theorem (Enayat-Visser, Leigh)

For every B, CT™[B] is conservative over B.

Denote with INT the following sentence

Yo(v)[T(6(0)) AVx(T(d(x)) = T((x +1))) = VxT(¢(x))].
Theorem (Kotlarski-Krajewski-Lachlan)
CT [EA] + INT - PA and CT~[EA] + INT is conservative over PA.
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Familiarize yourself with CT™[EA]
Theorem (Enayat-Visser, Leigh)

For every B, CT~[B] is conservative over B.

Denote with INT the following sentence

Yo (v)[T((0)) AVx(T(6(x)) = T(d(x +1))) = ¥xT (4(x))].
Theorem (Kotlarski-Krajewski-Lachlan)
CT[EA] + INT F PA and CT[EA] + INT is conservative over PA.

Theorem (Fischer)
CT[PA] is relatively interpretable in PA.

Theorem (Enayat-t.-Wcisto)

There exists a PTIME function f such that if p is a proof of an
arithmetical sentence ¢ in CT~[PA], then f(p) is a proof of ¢ in
PA.




Disjunctions that are too long for CT~

For a natural number n and a sentence ¢ let

Vo=(..(evo)Vve)V...Ve).

i<n

Theorem (Kotlarski-Krajewski-Lachlan)

If M = PA is countable and recursively saturated and a € M is
nonstandard, then there is T C M such that

(M, T)=CT [PA]+ T (\/ 0= 1) .

i<a
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Equivalents of GR(PA)

Theorem (Cieslinski-Enayat-Pakhomov-t..)

Over CT™[EA] the following are equivalent:

> V¢(PFPA(¢) — T(¢))
» Ag-induction for the language with the truth predicate.

> Vo (Prg(¢) — T(¢))
> Vo (Pri:(0) — T(9))

> vi[SentSea(d)  (T(V9) =3 < |7IT(@)]. (0C)

The above theory is called CTy.

Theorem (Kotlarski-Smoryriski)

The arithmetical consequences of CTg coincide with RFN<“(PA).




Main course: disjunctive correctness

For a sequence of sentences ¢o, ..., ¢n, Vi<, @i denotes the
disjunction

(.. (o V1)V ) V...)V oy
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Main course: disjunctive correctness

For a sequence of sentences ¢o, ..., Pn, V<, @i denotes the
disjunction

(.. (o V1)V ) V...)V oy

DC-out is the following sentence

v¢[sentseq(¢ ( (\/<;5>—>3/<\¢|T(¢,))].

Theorem (Cieslinski-Wecisto-t..)

CT~[EA] + DC-out coincides with CT.




Main course: > i-reflection over UTB™

UTB™ denote the following collection of L1 sentences (extending
PA)
Vx(T("6(%)7) = 6(x)).
Theorem (t.)
YET_RFN(UTB™) + CT~ coincides with CTy.




The main result
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Easy implications

The following are very easy:
» CT™ + ZfT—RFN(UTB_) FVo(Prea(¢) — T(9))
This follows since for ¢ € £, T("¢7) € AOLT and
PAF ¢ = UTB™ F T(g).
> CTo+ DC—OUt._
Assume Vi < |1| T(—);) and use bounded induction for the
formula ¢(x) == T (= Vjex ~%i).




The main result

DC-out implies CTg
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The core argument: DC-out = Sind

Let Sind be the following statement

(T(s0) AVJ < Is| = L(T(s5) = T(sj11)) = Vi < s|T(s7))-

Lemma (Cieslinski)
Over CT~[EA] DC-out implies Sind.

Fix a sequence of formulae ¢ and assume that T(¢) oraz
Vi < |¢|(T(¢i) = T(di+1)). Consider the following sequence

Yo = ¢o
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Claim For all i, T(v).
So assume T(=¢;). Then T(V;<; —¢;).




The core argument: DC-out = Sind

Let Sind be the following statement

(T(s0) AVJ < Is| = L(T(s5) = T(sj11)) = Vi < s|T(s7))-

Lemma (Cieslinski)
Over CT~[EA] DC-out implies Sind.

Fix a sequence of formulae ¢ and assume that T(¢) oraz
Vi < |¢|(T(¢i) = T(di+1)). Consider the following sequence

Yo = ¢o
Yig1 = "¢ — \

J<i

Claim For all i, T(¢;).
So assume T(—¢;). Then T(V;<;—¢;). By DC-out this
contradicts the Claim.




Sind = DC-in

Lemma
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Lemma

Over CT™[EA], Sind implies DC-in.

Fix a sequence ¢, ..., ¢, and assume that we have T(¢;). Define
a sequence s by putting

Is|:=a—j—1

si=\/ ¢

k<j+i
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Sind = DC-in

Lemma

Over CT™[EA], Sind implies DC-in.

Fix a sequence ¢, ..., ¢, and assume that we have T(¢;). Define
a sequence s by putting

Is|:=a—j—1

si=\/ ¢

k<j+i
By our assumption we have T (sp).
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Sind = DC-in

Lemma

Over CT™[EA], Sind implies DC-in.

Fix a sequence ¢, ..., ¢, and assume that we have T(¢;). Define
a sequence s by putting

Is|:=a—j—1

si=\/ ¢

k<j+i

By our assumption we have T (sp). By the compositional axioms
for binary disjunctions we have

Vi < |S‘(T(S,‘) — T(Si+1)).
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Sind = DC-in

Lemma

Over CT™[EA], Sind implies DC-in.

Fix a sequence ¢, ..., ¢, and assume that we have T(¢;). Define
a sequence s by putting

Is|:=a—j—1

si=\/ ¢

k<j+i

By our assumption we have T (sp). By the compositional axioms
for binary disjunctions we have

Vi < |S‘(T(S,‘) — T(Si+1)).

An application of Sind yields the thesis.




(DC + Sind) = CT,.

Lemma

CT~[EA] + DC + Sind implies CTy.

Working in CT~[EA] + DC + Sind we show that T is coded, i.e.
for every a there is a ¢ such that

Vx < a(T(x)=x € c).
Fix a and consider the following sequence:

vi=3c N(o=de€c)
o<i
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(DC + Sind) = CT,.

Lemma

CT~[EA] + DC + Sind implies CTy.

Working in CT~[EA] + DC + Sind we show that T is coded, i.e.
for every a there is a ¢ such that

Vx < a(T(x)=x € c).
Fix a and consider the following sequence:

vi=3c N(o=de€c)

o<i

We have (using DC) T(Z/Jo) and T(I/J,) — T(¢i+1).




(DC + Sind) = CT,.

Lemma

CT~[EA] + DC + Sind implies CTy.

Working in CT~[EA] + DC + Sind we show that T is coded, i.e.
for every a there is a ¢ such that

Vx < a(T(x)=x € c).
Fix a and consider the following sequence:

vi=3c N(o=de€c)

o<i

We have (using DC) T (o) and T(¢;) — T(%i+1). So T(va) and
DC vyields the thesis.




The main result

CTo implies Z¥7-RFN(UTB ™).
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Key lemmata

Prl, (x) is the canonical £ formula expressing "There is a proof
of x from the axioms of Th and the true sentences."

Lemma (Aq-reflection™)

For every ¢(x) € A5,

CTo - Vx[Prrg(6(X)) = ¢(x)].
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Key lemmata

Prl, (x) is the canonical £ formula expressing "There is a proof
of x from the axioms of Th and the true sentences."

Lemma (Aq-reflection™)

For every ¢(x) € AgT,

CTo - Vx[Prrg(6(X)) = ¢(x)].

Lemma (Bounding lemma)

For every ¢(x) € AST,

CTo F Prlrg-Bve(v)) = JyPr/5-Bv < ys(v)).
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The most useful property of CT,

Suppose (M, T) = CT"[EA] and d € M. Put

Tlg:={aeM | T(a)ANa<d}
Tg:={aeM | T(a)Adp(a) <d}

Obviously if (M, T) = CT™, then (M, T4) = CT(d).

Theorem (Essentially Wecisto)
Suppose (M, T) |= CTo. Then for every d, (M, Ty) E Ind(L7T).
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Prlre(¢(x)). Since ¢(x) is bounded there exists b € M such that
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Fix AgT formula ¢(x). Fix (M, T) = CTy, a € M and assume
Prlre(¢(x)). Since ¢(x) is bounded there exists b € M such that
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Ao-reflection™

Fix AgT formula ¢(x). Fix (M, T) = CTy, a € M and assume
Prlre(¢(x)). Since ¢(x) is bounded there exists b € M such that

(M, T) | ¢(a) <= N, T') 2e (M, Tlp) N, T')  o(a).

Assume that b is greater than the chosen UTB-proof of ¢(a).
Work in (M, Tp) = Ind(L7). Let Thy :=PAU{p € L | Tp(¢)}.
Then we have Conty,,. So, Conytg4Th,. Hence, by the ACT,
there exists (N, T') = UTB + Thy. So (N, T') = ¢(a). Moreover
(M7 be) C (N7 T/)'
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Bounding

Fix ¢(x) and (M, T) = CTo.
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Fix ¢(x) and (M, T) |= CTy. Assume that —Prl1g(3v < yo(v)).
Fix F := T, U CT(c)- a finite portion of TUUTB™. By the
assumption the following theory is consistent

Th:= FU{Vv <a¢(v) | a€ M}

Let (N, T') = Th be a model of Th (which exists by ACT).
Consider (M, T'[p). Then

L (M, T'Im) | Vy—é(y).

2. (M, T'Iwm) E Ind(L7).

3. (M, T'm) ECT (c).
So by induction, (M, T'[u) = Conpyyy-g(y)- Since F was

arbitrary, we conclude that ﬂPrJTB,(Hygb(y)).
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