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Introduction



Ways of expressing soundness of an axiomatic theory U

Suppose B is an axiomatic (r.e.) theory in a language extending
the language of arithmetic.

How to express that B is trustworthy?

Con ConB

Rfn(U) PrB(pφq)→ φ

RFN(U) ∀x
(
PrB(pφ(ẋ)q)→ φ(x)

)
.

Finally there is the most natural solution: introduce a primitive
truth predicate T (x) and say

∀φ
(
PrB(φ)→ T (φ)

)
(GR(B))
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Compositional truth

Our "truth package" will consist of the following axioms:

Definition
CT−[B] extends B with the following axioms for the T predicate.

1. ∀s0, . . .∀sn
(
T (Ṙ(s0, . . . , sn) ≡ R(s0

◦, . . . , sn
◦)
)
.

2. ∀φ
(
T (¬̇φ) ≡ ¬T (φ)

)
.

3. ∀φ, ψ
(
T (φ∨̇ψ) ≡ T (φ) ∨ T (ψ)

)
.

4. ∀φ(v)
(
T (∃̇vφ(v)) ≡ ∃xT (φ[x/v ])

)
.

Our basic B will be the elementary arithmetic EA (I∆0 + "exp is
total".) We assume that all B’s extends EA and are formulated in
the language L := {≤,+,×, 0, 1}.
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Familiarize yourself with CT−[EA]
Theorem (Enayat-Visser, Leigh)
For every B, CT−[B] is conservative over B.

Denote with INT the following sentence
∀φ(v)

[
T (φ(0)) ∧ ∀x

(
T (φ(ẋ))→ T (φ( ˙x + 1))

)
→ ∀xT (φ(ẋ))

]
.

Theorem (Kotlarski-Krajewski-Lachlan)
CT−[EA] + INT ` PA and CT−[EA] + INT is conservative over PA.

Theorem (Fischer)
CT−[PA] is relatively interpretable in PA.

Theorem (Enayat-Ł.-Wcisło)
There exists a PTIME function f such that if p is a proof of an
arithmetical sentence φ in CT−[PA], then f (p) is a proof of φ in
PA.
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Disjunctions that are too long for CT−.

For a natural number n and a sentence φ let∨
i≤n

φ := (. . . (φ ∨ φ) ∨ φ) ∨ . . . ∨ φ).

Theorem (Kotlarski-Krajewski-Lachlan)
If M |= PA is countable and recursively saturated and a ∈ M is
nonstandard, then there is T ⊆ M such that

(M,T ) |= CT−[PA] + T

∨
i≤a

0 = 1

 .



Equivalents of GR(PA)

Theorem (Cieśliński-Enayat-Pakhomov-Ł.)
Over CT−[EA] the following are equivalent:

I ∀φ
(
PrPA(φ)→ T (φ)

)
.

I ∆0-induction for the language with the truth predicate.
I ∀φ

(
Pr∅(φ)→ T (φ)

)
I ∀φ

(
PrTSent(φ)→ T (φ)

)
I ∀ψ̄

[
SentSeq(ψ̄)→

(
T (
∨
ψ̄) ≡ ∃i < |ψ̄|T (ψi )

)]
. (DC)

The above theory is called CT0.

Theorem (Kotlarski-Smoryński)
The arithmetical consequences of CT0 coincide with RFN<ω(PA).
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Main course: disjunctive correctness

For a sequence of sentences φ0, . . . , φn,
∨

i≤n φi denotes the
disjunction

(. . . (φ0 ∨ φ1) ∨ φ2) ∨ . . .) ∨ φn.

DC-out is the following sentence

∀φ̄
[
SentSeq(φ̄)→

(
T
(∨

φ̄
)
→ ∃i < |φ̄|T (φi )

)]
.

Theorem (Cieśliński-Wcisło-Ł.)
CT−[EA] + DC-out coincides with CT0.
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Main course: Σ1-reflection over UTB−

UTB− denote the following collection of LT sentences (extending
PA)

∀x
(
T (pφ(ẋ)q) ≡ φ(x)

)
.

Theorem (Ł.)
ΣLT

1 -RFN(UTB−) + CT− coincides with CT0.



The main result



Easy implications

The following are very easy:
I CT− + ΣLT

1 -RFN(UTB−) ` ∀φ
(
PrPA(φ)→ T (φ)

)

This follows since for φ ∈ L, T (pφq) ∈ ∆LT
0 and

PA ` φ⇒ UTB− ` T (φ).

I CT0 ` DC-out.
Assume ∀i < |ψ̄|T (¬ψi ) and use bounded induction for the
formula φ(x) := T (¬

∨
i<x ¬ψi ).
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The main result
DC-out implies CT0



The core argument: DC-out ⇒ Sind
Let Sind be the following statement(

T (s0) ∧ ∀j < |s| − 1
(
T (sj)→ T (sj+1)

)
→ ∀j < |s|T (sj)

)
.

Lemma (Cieśliński)
Over CT−[EA] DC-out implies Sind.

Fix a sequence of formulae φ̄ and assume that T (φ0) oraz
∀i < |φ̄|

(
T (φi )→ T (φi+1)

)
.

Consider the following sequence

ψ0 := φ0

ψi+1 := ¬φi+1 →
∨
j≤i
¬ψj

Claim For all i , T (ψi ).
So assume T (¬φi ). Then T (

∨
j≤i ¬ψj). By DC-out this

contradicts the Claim.
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We have (using DC) T (ψ0) and T (ψi )→ T (ψi+1). So T (ψa) and
DC yields the thesis.
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The main result

CT0 implies ΣLT
1 -RFN(UTB−).



Key lemmata

PrTTh(x) is the canonical LT formula expressing "There is a proof
of x from the axioms of Th and the true sentences."

Lemma (∆0-reflection+)
For every φ(x) ∈ ∆LT

0 ,

CT0 ` ∀x
[
PrTUTB(φ(ẋ))→ φ(x)

]
.

Lemma (Bounding lemma)
For every φ(x) ∈ ∆LT

0 ,

CT0 ` PrTUTB−(∃vφ(v))→ ∃yPrTUTB−(∃v < yφ(v)).



Key lemmata

PrTTh(x) is the canonical LT formula expressing "There is a proof
of x from the axioms of Th and the true sentences."

Lemma (∆0-reflection+)
For every φ(x) ∈ ∆LT

0 ,

CT0 ` ∀x
[
PrTUTB(φ(ẋ))→ φ(x)
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The most useful property of CT0

Suppose (M,T ) |= CT−[EA] and d ∈ M.

Put

T �d := {a ∈ M | T (a) ∧ a < d}
Td := {a ∈ M | T (a) ∧ dp(a) < d}

Obviously if (M,T ) |= CT−, then (M,Td ) |= CT−(d).

Theorem (Essentially Wcisło)
Suppose (M,T ) |= CT0. Then for every d , (M,Td ) |= Ind(LT ).
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∆0-reflection+

Fix ∆LT
0 formula φ(x).

Fix (M,T ) |= CT0, a ∈ M and assume
PrTUTB(φ(ẋ)). Since φ(x) is bounded there exists b ∈ M such that

(M,T ) |= φ(a) ⇐⇒ ∃(N ,T ′) ⊇e (M,T �b) (N ,T ′) |= φ(a).

Assume that b is greater than the chosen UTB-proof of φ(a).
Work in (M,Tb) |= Ind(LT ). Let Thb := PA ∪ {φ ∈ L | Tb(φ)}.
Then we have ConThb . So, ConUTB+Thb . Hence, by the ACT,
there exists (N ,T ′) |= UTB + Thb. So (N ,T ′) |= φ(a). Moreover
(M,T �b) ⊆ (N ,T ′).
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PrTUTB(φ(ẋ)). Since φ(x) is bounded there exists b ∈ M such that

(M,T ) |= φ(a) ⇐⇒ ∃(N ,T ′) ⊇e (M,T �b) (N ,T ′) |= φ(a).

Assume that b is greater than the chosen UTB-proof of φ(a).
Work in (M,Tb) |= Ind(LT ). Let Thb := PA ∪ {φ ∈ L | Tb(φ)}.
Then we have ConThb . So, ConUTB+Thb . Hence, by the ACT,
there exists (N ,T ′) |= UTB + Thb. So (N ,T ′) |= φ(a). Moreover
(M,T �b) ⊆ (N ,T ′).



∆0-reflection+

Fix ∆LT
0 formula φ(x). Fix (M,T ) |= CT0, a ∈ M and assume
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PrTUTB(φ(ẋ)). Since φ(x) is bounded there exists b ∈ M such that

(M,T ) |= φ(a) ⇐⇒ ∃(N ,T ′) ⊇e (M,T �b) (N ,T ′) |= φ(a).

Assume that b is greater than the chosen UTB-proof of φ(a).
Work in (M,Tb) |= Ind(LT ). Let Thb := PA ∪ {φ ∈ L | Tb(φ)}.
Then we have ConThb . So, ConUTB+Thb . Hence, by the ACT,
there exists (N ,T ′) |= UTB + Thb. So (N ,T ′) |= φ(a). Moreover
(M,T �b) ⊆ (N ,T ′).



Bounding

Fix φ(x) and (M,T ) |= CT0.

Assume that ¬PrTUTB(∃v < ẏφ(v)).
Fix F := Tc ∪ CT−(c)- a finite portion of T ∪ UTB−. By the
assumption the following theory is consistent

Th := F ∪ {∀v < a¬φ(v) | a ∈ M}.

Let (N ,T ′) |= Th be a model of Th (which exists by ACT).
Consider (M,T ′�M). Then

1. (M,T ′�M) |= ∀y¬φ(y).
2. (M,T ′�M) |= Ind(LT ).
3. (M,T ′�M) |= CT−(c).

So by induction, (M,T ′�M) |= ConF∪∀y¬φ(y). Since F was
arbitrary, we conclude that ¬PrTUTB−(∃yφ(y)).
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