Versions of Matiyasevich's Theorem in subsystems of Arithmetic

Ch. Cornaros¹ & Henri - Alex Esbelin²

¹University of the Aegean & ²Université Clermont Auvergne

40ème Journées sur les Arithmétiques Faibles 25 October 2021

Basic Induction schemes and axioms

 $I\Sigma_n$: induction for Σ_n formulas (plus base theory)

 $B\Sigma_n$: $I\Delta_0$ + collection for Σ_n formulas

 IE_n : induction for E_n formulas.

 $I\exists_n$: induction for E_n formulas.

IOpen: induction for open formulas.

exp: "exponentiation is total"

 Ω_1 : "the function $x^{|y|}$ is total"

 $\mathcal{L} = \{0, 1, +, \cdot, <\}.$

MT Theorem (Matiyasevich et. al, 1970)

For any Σ_1 formula $\theta(\vec{x})$ there exists a polynomial $p(\vec{x}, \vec{y}) \in \mathbb{Z}[\vec{x}, \vec{y}]$ such that $\mathbb{N} \models \forall \vec{x} [\theta(\vec{x}) \leftrightarrow \exists \vec{y} p(\vec{x}, \vec{y}) = 0]$.

Theorem (Gaifman-Dimitracopoulos, 1982)

 $I\Delta_0 + exp \vdash MT$

Problems

- 1. Is the MT for bounded formulas provable in $I\Delta_0$? That is: Is every bounded formula equivalent in $I\Delta_0$ to an existential formula?
- 2. Is MT provable in $I\Delta_0 + \Omega_1$?

Theorem (R. Kaye, 1990)

$$IE_1^- + E \vdash MT$$

where IE_1^- denotes the theory of parameter-free bounded existential induction and E denotes a specific $\forall \exists$ axiom expressing the existence of a function of exponential growth.

 $IE_1^- + E$ is equivalent to $I\Delta_0 + exp$.

Negative Results

- (R. Kaye, 1991) MT is not provable in *IOpen*, i.e., the theory of open induction.
- (C. Pollett, 2003) MT is not provable in I^5E_1 , i.e., in the theory of five-lengths induction on E_1 definable predicates.
 - A. J. Wilkie observed that, by a result due to L. M. Adleman and K. Manders, a positive solution to either Problem 1 or to Problem 2 would imply that NP=co-NP.

Rough sketch of a proof of MT from $I\Delta_0 + exp$.

Basic steps

1. For every Σ_1 formula $\theta(\vec{x})$ there exists $p(\vec{x}, \vec{y}) \in \mathbb{Z}(\vec{x}, \vec{y})$ such that

$$PA^- \vdash \forall \vec{x} [\theta(\vec{x}) \leftrightarrow Q_1 \dots Q_m p(\vec{x}, \vec{y}) = 0],$$

where each of the Q_i 's is of the form $\exists u$ or $\forall u < v$ (with u, v taken from \vec{x}, \vec{y}) and $p(\vec{x}, \vec{y}) = 0$ denotes an atomic formula.

2. Each unbounded existential quantifier Q_i : $\exists u$ after a block of bounded universal quantifiers $\forall v < y$ can be bounded.

$$B\Sigma_1 : \forall \vec{z} \forall t \left[\forall x < t \exists \vec{y} \phi(x, \vec{y}, \vec{z}) \rightarrow \exists s \forall x < t \exists \vec{y} < s \phi(x, \vec{y}, \vec{z}) \right].$$

Rough sketch of a proof of MT from $I\Delta_0 + exp$.

Basic steps

3. Use coding tools to eliminate all bounded universal quantifiers from the formula of Step 2.

Example
$$\exists v \forall z < y \exists x_1 < v \exists x_2 < v \ (p(y, z, x_1, x_2) = 0)$$

$$\updownarrow$$

$$\exists v \exists u_1 \exists u_2 \ \psi(y, z, x_1, x_2, u_1, u_2)$$

4. Replace the graph of exponentiation, of factorial and of binomial coefficients by \exists_1 formulas.

Question

How can we make it possible to mimic the above strategy to obtain a partial version of MT in $I\Delta_0+\Omega_1$?

D'Aquino considered an $E_1^{\#}$ formula defining the exponential function in $I\Delta_0+\Omega_1$, where # is an extra function symbol, but could not obtain a formula of the same complexity that could define the function $(k+1)\cdots(2k)$.

Quantifier Exchange Property

$$(\forall x \leq |s|)(\exists y \leq t)A(x,y) \leftrightarrow \\ (\exists w \leq (2s+1)\#(4(2t+1)^2))(\forall x \leq |s|)(A(x,\beta(x+1,w)) \land \beta(x+1,w) \leq t)$$

$\Sigma_{0,1}^b$ formulas

The class of $\Sigma_{0,1}^b$ formulas in \mathcal{L} is the standard Δ_0 , where all bounded universal quantifiers are "sharply bounded", i.e., their bounds will be replaced by "small" elements (in the sense of the specific model used).

Examples Given $M \models I\Delta_0$ and $a \in M$, we say a is "small" (in M), if $M \models ``b^{a^n}$ exists", for all $b \in M$ and $n \in \mathbb{N}$.

In $M \models I\Delta_0 + \Omega_1$ if a is logarithmic then a is small!

MAIN result

For any $\Sigma_{0,1}^b$ formula $\theta(\vec{x}, \vec{y}, \vec{w})$, where the bounds of universal quantifiers of θ are (exactly) \vec{y} , there exists a polynomial $p(\vec{x}, \vec{y}, \vec{z}, \vec{u}, \vec{w}) \in \mathbb{Z}[\vec{x}, \vec{y}, \vec{z}, \vec{u}, \vec{w}]$ such that

$$I\Delta_0 \vdash \forall \vec{x} \forall \vec{y} ["\vec{y} \text{ are small"} \rightarrow (\exists \vec{w} \theta(\vec{x}, \vec{y}, \vec{w}) \leftrightarrow \exists \vec{u} \, Q(\vec{z}) \, p(\vec{x}, \vec{y}, \vec{z}, \vec{u}, \vec{w}) = 0)],$$

where $Q(\vec{z})$ denotes a block of (normal) bounded universal quantifiers.

We should make use of a *low complexity definition of exponentiation* (for "small" exponents) and avoid of factorials and binomial coefficients!

Pell Equations (Julia Robinson 1971)

$$p_R(a, x, y) : x^2 - (a^2 - 1)y^2 - 1 = 0, \ a \ge 2$$

Example: Let a = 5. The solution of index 0 is the pair (x,y) = (1,0). The pairs of positive solutions of the equation have exponential rate of growth:

$$(x_1^R, y_1^R) = (5, 1), (x_2^R, y_2^R) = (49, 10), (x_3^R, y_3^R) = (485, 99),$$

 $(x_4^R, y_4^R) = (4801, 980), (x_5^R, y_5^R) = (47525, 9701), \dots$

The pairs of remainders by division modulo a - 1 = 4 are

$$(1, 1), (1, 2), (1, 3), (1, 0), (1, 1), \dots$$

so the index of (x_n^R, y_n^R) for $1 \le n \le a - 1$ can be easily found by dividing y_n^R by a - 1.

The solutions of $p_R(a, x, y) = 0$ correspond to powers of the $a + \sqrt{a^2 - 1}$: $(a + \sqrt{a^2 - 1})^2 = (5 + \sqrt{24})^2 = 49 + 10\sqrt{24}, (a + \sqrt{a^2 - 1})^3 = 485 + 99\sqrt{24}$, and generally $(a + \sqrt{a^2 - 1})^n = x_n^p + y_n^p \sqrt{a^2 - 1}$.

Definition

For any $a \ge 2$, $\psi_0(a, b, x, y)$ is the following formula, which is ∇_1 in IE_1 :

$$(p_R(a, x, y)=0 \land b > 0 \land a>b \land y>0 \land x>0 \land x\leq ay$$

$$\land y \equiv b \pmod{a-1} \land x \equiv 1 \pmod{a-1}) \lor (b = 0 \land y = 0 \land x = 1).$$

Lemma

Let $M\models I\Delta_0, a\geq 2, b\leq a-2$ and y>0 be the smallest element of M such that for some x, $\psi_0(a,b+1,x,y)$. Then $(2a)^b$ exists and $(2a-1)^b\leq y\leq (2a)^b$.

Lemma

Let $M \models IE_1$ and $a \ge 2$. If $b \le a-1$ and v is the smallest number such that $\exists u \le av+1 \ \psi_0(a,b,u,v)$, then

$$\forall c \leq b \forall v_1, v_2 \leq v \forall u_1 \leq av_1 + 1 \forall u_2 \leq av_2 + 1$$

$$[\psi_0(a, c, u_1, v_1) \land \psi_0(a, c, u_2, v_2) \rightarrow u_1 = u_2 \land v_1 = v_2]$$

$$\land$$

$$\forall c \leq b \exists v_1 \leq v \exists u_1 \leq av_1 + 1 \psi_0(a, c, u_1, v_1).$$

Definition

Let $a \ge 2$, $m \ge 0$, y > 0. We say y is an (m+1)-th a-power, if there is some x > 0 such that $\psi_0(a, m+1, x, y)$.

We denote this power with $y_{m+1}(a)$.

From the above Lemmas we have:

If $1 \le b \le a-1$ and there exists a number V (the smallest one) such that $\exists u \le aV\psi_0(a,b,u,V)$ then, for any m < b, there is only *one* $y_{m+1}(a) \le V$ such that

$$(2a-1)^m \le y_{m+1}(a) \le (2a)^m.$$

E_1 Parametric definition of exponation for models of IE_1

Theorem Let $M \models IE_1, a \geq 2$ and $b \leq 2a - 3$. Also suppose that b is small enough so that $A = y_{b+2}(2a)$ and $B = y_b(A)$ are defined in M. Then there is an E_1 formula $\phi_{A,B}(a,x,z)$ which satisfies all the basic properties of $z = a^x$ for all values $x \leq b$. Also, $z < 2ay_{x+2}(2a) - a^2 - 1$.

Lemma 5.5 p. 192 in the book Logical Number Theory I, An introduction

Corollary

Let $M\models I\Delta_0$ and $a\geq 2, b\leq 2a-3$. If $c'=a^{b^2}$ exists, then the elements A,B of the above Theorem also exist and the formula $\phi_{A,B}(a,x,z)$ is a good E_1 definition of exponentiation $a^x=z$, for all $x\leq b$ (with definable parameters A,B).

Quantifier Excange Property for models of $M \models I\Delta_0$

Lemma. Let $a \ge 2$ and $b \le 2a - 3$ such that a^{b^2} exists in M and let $\theta(x, y, a, b, d)$ be a Δ_0 formula such that $M \models \forall x \le b \exists y < a \, \theta(x, y, a, b, d)$. Then

$$M \models \exists c < a^{b+1} \forall x \leq b \,\theta(x, (c)_x, a, b, d),$$

where $(c)_x$ denotes the (x+1)-th coefficient of the expansion of c to the base a.

Proof of the main result.

- Repeat Steps 1 and 2. We will take a formula of the form $\exists \vec{u}Q_1 \dots Q_m [p(\vec{x}, \vec{y}, \vec{u}) = 0]$ where all blocks of existential quantifiers among $Q_1, \dots Q_m$ have the *same* bound and all blocks of "sharply" bounded universal quantifiers among $Q_1, \dots Q_m$ have also the same "small" bound.
- Don't go through step 3 or 4. Replace all existential quantifiers with their appropriate codes.

Note. All codes exists and $u = (c)_x$ can always replaced by a suitable ∇_1 formula using $\phi_{A,B}$:

$$(\exists z \leq c)(\exists s \leq c)(\exists z' \leq c)(\phi_{A,B}(a,x,z') \land z = \left[\frac{c}{z'}\right] \land s = \left[\frac{c}{az'}\right] \land u = z - as).$$

Proving MT Beyond $I\Delta_0 + \Omega_1$

 E_{log} denotes the axiom

$$\forall a, a' \geq 2 \forall b [\exists u, v \psi_0(a, b, u, v) \land b^2 < a' \rightarrow \exists u', v' \psi_0(a', b^2, u', v')].$$

 E_{log} can be considered as the analog of Ω_1 over $I\Delta_0$. In fact, it can be proved that, E_{log} is equivalent to Ω_1 over $I\Delta_0$.

 $I\Sigma_{0,1}^b$ is PA^- together with the schema of induction for all $\Sigma_{0,1}^b$ formulas of the form $\psi^{a,b}(x)$, in which any universally bounded quantified variable is bounded by a "logarithmic" b, i.e., the schema

$$\forall a \forall b [``b \text{ is logarithmic''} \land \psi^{a,b}(0) \land \forall x (\psi^{a,b}(x) \rightarrow \psi^{a,b}(x+1)) \rightarrow \forall x \psi^{a,b}(x)].$$

Proving MT Beyond $I\Delta_0 + \Omega_1$

"Smallness" in models of IE_1 :

Let $M\models IE_1$ and $b\in M$. We say "b is logarithmic" if

$$M \models \exists a \geq 2 \exists x \exists y \psi_0(a, b, x, y).$$

The system IE_1+E_{log} is a subsystem of $I\Sigma_{0,1}^b+E_{log}$ and strong enough to prove the expected properties of logarithmic elements: Let $M \models IE_1+E_{log}$. The sum and product of any logarithmic elements $b_1,b_2 \in M$ is also logarithmic.

Proving MT Beyond $I\Delta_0 + \Omega_1$

Theorem

For any $\Sigma_{0,1}^b$ formula θ with parameters a,b,d, where a is the (uniform) bound of existential quantifiers and b is the (uniform) bound of universal quantifiers, there exist an E_2 formula ψ with new definable parameters and an $\exists U_1$ formula χ without new parameters such that

$$\mathit{I}\Sigma^b_{0,1} + E_{\mathit{log}} \vdash \forall \mathit{a} \forall \mathit{b} [\text{``b is logarithmic''} \rightarrow (\theta \leftrightarrow \psi) \land (\theta \leftrightarrow \chi)].$$

Problems

Theorem

$$IE_2+E_{\log} \vdash I\Sigma_{0,1}^b$$
.

Open Problems

- Is IE_2+E_{log} equivalent with $I\Delta_0+\Omega_1$?
- Can we prove that every $\exists \Sigma_{0,1}^b$ formula (of \mathcal{L}) with "sharply bounded" universal quantifiers is equivalent, over $I\Delta_0+\Omega_1$, to a Diophantine formula?
- Can we prove that every $\exists \Sigma_{0,0}^b$ formula (of \mathcal{L}) with all of its quantifiers "sharply bounded" is equivalent, over $I\Delta_0+\Omega_1$, to a Diophantine formula?
- Is every \exists SR formula equivalent, over $I\Delta_0+\Omega_1$, to a Diophantine formula?

SR= strictly rudimentary class of formulae introduced by Wilkie and Paris in 1987.

Thanks for your attetion!