Logics for Polynomial Time

Tutorial Part 3: Logics with Rank Operators

Anuj Dawar
University of Cambridge

JAF, Fontainebleau, 19 June 2009
Recapitulation

By Fagin’s theorem, a class of finite structures is definable in *existential second-order logic* if, and only if, it is in *NP*.

It is an open question whether there is similarly a logic for *PTime*.

This is equivalent to the question of whether there is a problem in *PTime* that is complete under *first-order reductions*.
Recapitulation II

IFP extends first-order logic with *inflationary fixed-points*.

By the theorem of Immerman and Vardi, it captures PTime on *ordered structures*, but is too weak without order.

$\text{IFP} + C$, the extension of IFP with counting is also too weak by the (somewhat contrived) example of Cai et al.
Undefinability Results for IFP + C

Other undefinability results for IFP + C have been obtained:

- Isomorphism on *multipedes*—a class of structures defined by (Gurevich-Shelah 96) to exhibit a *first-order definable* class of *rigid* structures with no order definable in IFP + C.

- 3-colourability of graphs. (D. 1998)

Both proofs rely on a construction very similar to that of Cai-Fürer-Immerman.

Question: Is there a natural polynomial-time computable property that is not definable in IFP + C?
Solvability of Linear Equations

It has recently been shown that the problem of solving linear equations over the two element field \mathbb{Z}_2 is not definable in $\text{IFP} + C$. \textbf{(Atserias, Bulatov, D. 09)}

The question arose in the context of classification of \textit{Constraint Satisfaction Problems}.

The problem is clearly solvable in polynomial time by means of Gaussian elimination.

We see how to represent systems of linear equations as \textit{unordered} relational structures.
Systems of Linear Equations

Consider structures over the domain \(\{x_1, \ldots, x_n, e_1, \ldots, e_m\} \), (where \(e_1, \ldots, e_m \) are the equations) with relations:

- unary \(E_0 \) for those equations \(e \) whose r.h.s. is 0.
- unary \(E_1 \) for those equations \(e \) whose r.h.s. is 1.
- binary \(M \) with \(M(x, e) \) if \(x \) occurs on the l.h.s. of \(e \).

\(\text{Solv}(\mathbb{Z}_2) \) is the class of structures representing solvable systems.
Undefinability in IFP + C

Take G a 3-regular, connected graph with treewidth $> k$.

Define equations E_G with two variables x^e_0, x^e_1 for each edge e.

For each vertex v with edges e_1, e_2, e_3 incident on it, we have eight equations:

$$E_v : x^{e_1}_i + x^{e_2}_j + x^{e_3}_k \equiv i + j + k \pmod{2}$$

\tilde{E}_G is obtained from E_G by replacing, for exactly one vertex v, E_v by:

$$E'_v : x^{e_1}_i + x^{e_2}_j + x^{e_3}_k \equiv i + j + k + 1 \pmod{2}$$

We can show: E_G is satisfiable; \tilde{E}_G is unsatisfiable; $E_G \equiv^{C^k} \tilde{E}_G$
Computational Problems from Linear Algebra

Linear Algebra is a testing ground for exploring the boundary of the expressive power of IFP + C.

It may also be a possible source of new operators to extend the logic.

For a set I, and binary relation $A \subseteq I \times I$, take the matrix M over the two element field \mathbb{Z}_2:

$$M_{ij} = 1 \iff (i, j) \in A.$$

Most interesting properties of M are invariant under permutations of I.

Matrix Multiplication

We can write a formula $\text{prod}(x, y, A, B)$ that defines the *product* of two matrices:

$$(\exists \nu_2 < t)(t = 2 \cdot \nu_2 + 1) \text{ for } t = \#z(A(x, z) \land B(z, y))$$

A simple application of ifp then allows us to define $\text{upower}(x, y, \nu, A)$ which gives the matrix A^ν:

$$[\text{ifp}_{R, uv} \ (\nu = 0 \land u = v \lor \\
(\exists \mu < \nu) (\nu = \mu + 1 \land \text{prod}(u, v, B/R(\mu), A)))](x, y),$$

where $\text{prod}(u, v, B/R(\mu), A)$ is obtained from $\text{prod}(u, v, A, B)$ by replacing the occurrence of $B(z, v)$ by $R(z, v, \mu)$.
Matrix Exponentiation

We can, instead, represent numbers up to $2^{|A|}$ in *binary*.

That is, a unary relation Γ interpreted over the number domain (using numbers up to $|A|$) codes the number $\sum_{\gamma \in \Gamma} 2^{\gamma}$.

Repeated squaring then allows us to define $\text{power}(x, y, \Gamma, A)$ giving A^N where Γ codes a value N which may be exponential.
Non-Singularity

(Blass-Gurevich 04) show that non-singularity of a matrix over \mathbb{Z}_2 can be expressed in IFP + C.

$\text{GL}(n, \mathbb{Z}_2)$—the general linear group of degree n over \mathbb{Z}_2—is the group of non-singular $n \times n$ matrices over \mathbb{Z}_2.

The order of $\text{GL}(n, \mathbb{Z}_2)$ divides

$$N = \prod_{i=0}^{n-1} (2^n - 2^i).$$

Thus, A is non-singular if, and only if, $A^N = I$

Moreover, the inverse A^{-1} is given by A^{N-1}.
Computational Complexity

⊕L is the complexity class containing languages \(L \) for which there is a
\textit{nondeterministic, logspace} machine \(M \) such that

\[x \in L \] if, and only if, the number of accepting paths of \(M \) on input \(x \) is
\textit{odd}.

⊕L contains L and is (as far as we know) incomparable with NL.

⊕GAP is a natural ⊕L-complete problem under logspace reductions.

⊕GAP: given an \textit{acyclic, directed} graph \(G \) with vertices \(s, t \), is the
number of distinct paths from \(s \) to \(t \) odd?
Computational Complexity II

The following are all \(\oplus L \)-complete under logspace reductions:

- Non-singularity of matrices over \(\mathbb{Z}_2 \);
- Inverting a matrix over \(\mathbb{Z}_2 \);
- Determining the rank of a matrix over \(\mathbb{Z}_2 \).

(Buntrock, Damm, Hertrampf, Meinel 92)

Note: \(\oplus \text{GAP} \) is definable in IFP + C as it amounts to checking \((A^G_G)^{st}\), where \(A^G_G \) is the adjacency matrix of \(G \).
IFP + C over Finite Fields

Over \mathbb{F}_q, *matrix multiplication*; *non-singularity* of matrices; the *inverse* of a matrix; are all definable in IFP + C.

determinants and more generally, the coefficients of the *characteristic polynomial* can be expressed IFP + C.

(D., Grohe, Holm, Laubner, 2009)

solvability of systems of equations is *undefinable*.

the *rank* of a matrix is *undefinable*.
Rank Operators

We introduce an operator for *matrix rank* into the logic.

We have, as with IFP + C, terms of *element sort* and *numeric sort*.

We interpret $\eta(x, y)$—a *term* of numeric sort—in A as defining a *matrix* with rows and columns indexed by elements of A with entries $\eta[a, b]$.

$rk_{x, y}\eta$ is a *term* denoting the number that is the rank of the matrix defined by $\eta(x, y)$.

To be precise, we have, for each finite field \mathbb{F}_q, an operator rk^q which defines the rank of the matrix with entries $\eta[a, b](\mod q)$.

(D., Grohe, Holm, Laubner, 2009)
IFP + rk vs. IFP + C

Adding rank operators to IFP, we obtain a proper extension of IFP + C.

\[
\#x \varphi = \text{rk}_{x,y}[x = y \land \varphi(x)]
\]

In IFP + rk we can express the solvability of linear systems of equations, as well as the Cai-Fürer-Immerman graphs and the order on multipedes.
More generally, for each prime p and each arity k, we have an operator r^p_k which binds $2k$ variables and defines the rank of the $n^k \times n^k$ matrix defined by a formula $\varphi(x, y)$.

$\text{FO} + \text{rk}$, the extension of first-order logic with the rank operators is already quite powerful.

- it can express *deterministic transitive closure*;
- it can express *symmetric transitive closure*;
- it can express solvability of linear equations.
Symmetric Transitive Closure

Let \(G = (V, E) \) be an undirected graph and let \(s \) and \(t \) be vertices in \(V \).

Define the system of equations \(E_{G,s,t} \) over \(\mathbb{F}_2 \) with variables \(x_v \) for each \(v \in V \), and equations

- for each edge \(e = u, v \in E: \quad x_u - x_v = 0; \)
- \(x_s = 1 \quad x_t = 0. \)

\(E_{G,s,t} \) is solvable if, and only if, there is no path from \(s \) to \(t \) in \(G \).
Capturing $\text{Mod}_p L$

For each number p, the complexity class $\text{Mod}_p L$ is defined like $\bigoplus L$ but with acceptance condition:

$$x \in L \text{ if, and only if, the number of accepting paths of } M \text{ on input } x \text{ is not } 0(\text{mod } p).$$

For prime p, let $\text{FO} + \text{rk}^p$, be the logic extending first-order logic with the rk^p operator of all arities.

On ordered structures, $\text{FO} + \text{rk}^p$ captures $\text{Mod}_p L$.
Arity Hierarchy

In the case of IFP + C, adding counting operators of arities higher than 1 does not increase expressive power. These can all already be defined in IFP + C with \textit{unary} counting.

This is not the case with IFP + rk.

We prove

For each k, there is a property definable in FO + rk$_{k+1}$ that is not definable in IFP + rk$_k$.

The proof is based on a construction due to Hella, and requires vocabularies of increasing arity.

It is conceivable that over graphs, the arity hierarchy collapses.
Games for Logics with Rank

What might a pebble game for $\text{IFP} + \text{rk}$ look like?

We could, as in the Immerman-Lander game, let Spoiler pick a relation and have Duplicator respond with one of equal rank.

This works if we restrict the players to playing definable relations. A rather unsatisfactory solution.

Is there a game to be obtained by modifying the Hella game, replacing bijections with invertible linear maps?
Research Directions

• Find a game (like the bijection game) for proving inexpressibility results in FO + rk and IFP + rk.

• Are there any problems in PTime that are not definable in IFP + rk?

• Show for some problem definable in IFP + rk that it is not definable in FO + rk.

• Show for any concrete problem (say an NP-complete one) that it is not definable in IFP + rk.

• Are rk^p and rk^q interdefinable for p ≠ q?
Research Directions II

- Could IFP + rk be sufficient to capture \textit{PTime} on bounded-degree graphs?
- How does the expressive power of IFP + rk compare with ĩ\textit{CPT(Card)} or SSC-IFP?
- Is \textit{general graph matching} definable in IFP + C?

 Bipartite graph matching is, by (Blass, Gurevich, Shelah 02).