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Introduction

Typically “mathematical” independence in PA is attributed to
“fast-growing functions”. The heuristic being that such functions cannot
be proved total by PA since they “run away” from any function PA knows
how to prove is total.
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Introduction

Typically “mathematical” independence in PA is attributed to
“fast-growing functions”. The heuristic being that such functions cannot
be proved total by PA since they “run away” from any function PA knows
how to prove is total.

Such statements are usually Π0
2 since they state that a certain fast growing

functions are total. Paris-Harrington for instance is of this form.
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Introduction

Typically “mathematical” independence in PA is attributed to
“fast-growing functions”. The heuristic being that such functions cannot
be proved total by PA since they “run away” from any function PA knows
how to prove is total.

Such statements are usually Π0
2 since they state that a certain fast growing

functions are total. Paris-Harrington for instance is of this form.

The purpose of this talk is to introduce the concept (L, n)-models which
provide a flexible framework for proving independence from PA of true
“mathematical” Π0

1 statements. In particular, statements not concerning
fast growing functions. This idea was originally due to Shelah ([1]) and,
independently in a slightly different form, Kripke (unpublished). We
mostly follow Shelah, though with some modifications and strengthenings
of his original set up.
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Partial Structures

Let’s fix a finite first order language L. A partial L structure is a set with
interpretations for constants, relations and function symbols from L
defined on it in the usual way except that functions can be partial.

For example,
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Partial Structures

Let’s fix a finite first order language L. A partial L structure is a set with
interpretations for constants, relations and function symbols from L
defined on it in the usual way except that functions can be partial.

For example,

Example (Key Example)

Let L be the language of PA, potentially enriched with some extra relation
symbols. Let n ∈ ω (possibly non standard) the structure Mn is the
structure whose universe is n = {0, 1, ..., n − 1} with +, × etc defined in
the natural way.
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Partial Structures

Let’s fix a finite first order language L. A partial L structure is a set with
interpretations for constants, relations and function symbols from L
defined on it in the usual way except that functions can be partial.

For example,

Example (Key Example)

Let L be the language of PA, potentially enriched with some extra relation
symbols. Let n ∈ ω (possibly non standard) the structure Mn is the
structure whose universe is n = {0, 1, ..., n − 1} with +, × etc defined in
the natural way.

For instance, M6 |= 1 + 1 = 2 but M6 cannot say anything about the
term 5 + 3. We treat such terms as being syntactically incorrect.
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(L, n)-Models

Given two partial L structures A and B, we write A ⊆ B if A is a
substructure of B in the normal sense and for each function symbol f in L
or arity k (say), f B � [A]k is total. In other words, B closes functions
under A.
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(L, n)-Models

Given two partial L structures A and B, we write A ⊆ B if A is a
substructure of B in the normal sense and for each function symbol f in L
or arity k (say), f B � [A]k is total. In other words, B closes functions
under A.

Example (Key Example Continued)

Let L be as before and let n > m2. Then Mm ⊆Mn since for all
k , l < m, kl < n.
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(L, n)-Models

Fix a natural number n. The following definition is the main character of
the talk.

Definition ((L, n)-Model)

An (L, n)-model ~A = 〈A0, ...,An−1〉 is a sequence of partial L-structures
of length n so that for all i < n − 1 Ai ⊆ Ai+1.
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(L, n)-Models

Fix a natural number n. The following definition is the main character of
the talk.

Definition ((L, n)-Model)

An (L, n)-model ~A = 〈A0, ...,An−1〉 is a sequence of partial L-structures
of length n so that for all i < n − 1 Ai ⊆ Ai+1.

Example (Key Example Continued Again)

Let ~m = m0 < m1 < ... < mn−1 be a sequence of natural numbers so that
for all i < n − 1, m2

i < mi+1. The associated (L, n)-model is
~M ~m = 〈Mm0 , ...,Mmn−1〉. We call such a model square increasing.
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Fulfillment, Part I

Definition (Fulfillment)

Let ϕ(~x) be an L formula, A an (L, n)-model and ~a a tuple of elements of
the same arity as ~x , all belonging to some Ai for i + dp(ϕ) < n − 1 with i
least with every term t(~x) appearing in ϕ is so that t(~a) is defined in
Ai+1. We define recursively A |=∗ ϕ(~a) (read as A fulfills ϕ(~a)).
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Fulfillment, Part I

Definition (Fulfillment)

Let ϕ(~x) be an L formula, A an (L, n)-model and ~a a tuple of elements of
the same arity as ~x , all belonging to some Ai for i + dp(ϕ) < n − 1 with i
least with every term t(~x) appearing in ϕ is so that t(~a) is defined in
Ai+1. We define recursively A |=∗ ϕ(~a) (read as A fulfills ϕ(~a)).
1. If ϕ is atomic, then A |=∗ ϕ(~a) if and only if An−1 |= ϕ(~a).
2. If ϕ := ψ1 ∧ ψ2, then A |=∗ ϕ(~a) if and only if A |=∗ ψ1(~a) and
A |=∗ ψ2(~a) and the same for ∨ and ¬.
3. If ϕ := ∃yψ(y , ~x), then A |=∗ ϕ(~a) if and only if there is a b ∈ Ai+1

and A |=∗ ψ(b, ~a)
4. If ϕ := ∀yψ(y , ~x), then A |=∗ ϕ(~a) if and only if for all
j ∈ [0, n − dp(ψ)], and all b ∈ Aj we have that A |=∗ ψ(b, ~a).
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Fulfillment, Part II

Roughly speaking, we think of ~A as some approximation to a bigger (non
partial) structure we are trying to build. If ~A |=∗ ϕ(ā) represents our “best
guess” at the nth stage of the construction of what will be true in the limit.
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Fulfillment, Part II

Roughly speaking, we think of ~A as some approximation to a bigger (non
partial) structure we are trying to build. If ~A |=∗ ϕ(ā) represents our “best
guess” at the nth stage of the construction of what will be true in the limit.

Example (Key Example Continued Once More)

Let ~M ~m be a square increasing model. Then ~M ~m fulfills PA minus
induction, plus “< is a linear order with no greatest element”.
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Fulfillment, Part III

Even though |=∗ doesn’t seem exactly like a satisfaction relation, it comes
with a completeness theorem.

Theorem (The Completeness Theorem for (L, n)-models)

(PA) For any L-sentence ϕ, ` ϕ if and only if for all sufficiently large n
and all (L, n)-models ~A, ~A |=∗ ϕ.
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Fulfillment, Part IV

Proving the completeness theorem primarily boils down to induction on
formulae, working through the definitions. However, there is one catch.
Since PA can only quantify over finite objects, we need to find a way to
“finitize” the theory of (L, n)-models. This justifies the following lemma
which turns out to be the key ingredient for both the completeness
theorem and, later we’ll see, eliminating fast growth of functions in
independence.
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Fulfillment, Part IV

Proving the completeness theorem primarily boils down to induction on
formulae, working through the definitions. However, there is one catch.
Since PA can only quantify over finite objects, we need to find a way to
“finitize” the theory of (L, n)-models. This justifies the following lemma
which turns out to be the key ingredient for both the completeness
theorem and, later we’ll see, eliminating fast growth of functions in
independence.

Lemma (The Finite Model Lemma)

There is a primitive recursive function f (i , k ,L) so that for any L-sentence
ϕ and any (L, n)-model ~A there is an (L, n)-model ~B so that any
subformula ψ of ϕ B |=∗ ψ if and only if ~A |=∗ ψ and B0 has cardinality
|L| = f (0, |ϕ|,L) and Bi+1 has cardinality at most f (i + 1, |ϕ|,L) and
Bi ⊆ Ai (as a subset, not a substructure) for each i < n. Moreover, given
ϕ, L and ~A, the procedure for producing B is computable.
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Fulfillment, Part V

In the contrapositive the completeness theorem states that a sentence ϕ is
consistent if and only if for all sufficiently large n there is an (L, n)-model
which fulfills it. Consequently we obtain in PA a new characterization of
con(PA) which is the main tool in applications of PA.

Corollary

(PA) For any model M |= PA, M |= “ PA is consistent” if and only if
M |=“For all finite Φ ⊆ PA, and all sufficiently large n there is a (finite)
(L, n)-model which fulfills Φ”.
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An Application: Bounded Colorings

Using these tools we can now present our example of a true but
unprovable Π0

1 sentence. The idea is to use a Paris-Harrington type
statement about colorings on (L, n)-models and use the finite model
lemma to bound the existential quantifier.
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An Application: Bounded Colorings

Definition (Bounded Colorings)

Let r be a natural number. A bounded coloring in r colors is a function F
with domain a set of (L, n)-models (n fixed) and range r = {0, ..., r − 1}
so that
1. F is invariant under isomorphism: if ~A0

∼= ~A1 then F ( ~A0) = F ( ~A1) and
2. F is weakly hereditary: given any linearly-ordered collection of partial L
structures of length k > n ~A = A0 ⊆ A1 ⊆ A2 ⊆ ... ⊆ Ak−1 so that F is
defined on all n-length subtuples of ~A, there is a sentence ϕ of syntactic
length at most n so that ~A |=∗ ϕ and if ~B is the procedure from the finite
model lemma for A and ϕ then F applied to any subtuple of the A’s of
length n is already determined by F applied to the corresponding B’s.

We say that a bounded coloring is on some finite number N if the domain
of the coloring is the set of codes of (L, n)-models of size less than N for
some fixed coding.

Corey Switzer (CUNY) (L, n)-Models JAF 21 / 28



An Application: Bounded Colorings

The Bounded Coloring Principle (BCP) states that for all n, r , L and k if
F is a bounded coloring on N = kf (k, n,L) + 1 then there is a ⊆-linearly
ordered set of partial L-structures of size k H = {A0 ⊆ A1 ⊆ ... ⊆ Ak−1}
so that |A0| ≤ k and F is homogeneous on H: for any n-tuple of elements
from H, ~A, F ( ~A) is defined and F assigns all such tuples the same color.
Note that this is Π0

1.

Requiring A0 to have cardinality less than or equal to k plays the exact
same role as requiring homogeneous sets to be relatively large plays in the
original Paris-Harrington statement.
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An Application: Bounded Colorings

Theorem

(S.) The bounded coloring principle is true in N but over PA it implies
con(PA). In particular, it is independent of PA.
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An Application: Bounded Colorings

Theorem

(S.) The bounded coloring principle is true in N but over PA it implies
con(PA). In particular, it is independent of PA.

The proof of this theorem boils down to three lemmas. The first states
that BCP is equivalent over PA to its Π0

2 version, where the primitive
recursive bound is removed. The second states that this statement is true
in N and the third states that using BCP suffices to find, for any
sufficiently large n < ω (L, n)-models of any finite fragment of PA desired.
By the corollary to the completeness theorem, this implies con(PA).
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An Application: Bounded Colorings

Lemma

(PA) BCP is equivalent to the seemingly weaker statement BCP′: for all n,
r , L and k there is an N so that if F is a bounded coloring on N then
there is a ⊆-linearly ordered set of partial L-structures of size k on which
F is homogeneous and the least such model has cardinality at most k.

Lemma

N |= BCP′ and hence BCP is true.

Lemma

(PA) Assume BCP, let ϕ(x̄) be a formula in the language L of PA. Then
for any sufficiently large n there is a square-increasing (L, n) model
~M ~m |=∗ LNP(ϕ), where LNP(ϕ) is the least number principle for ϕ.
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An Application: Bounded Colorings

Lemma

(PA) BCP is equivalent to the seemingly weaker statement BCP′: for all n,
r , L and k there is an N so that if F is a bounded coloring on N then
there is a ⊆-linearly ordered set of partial L-structures of size k on which
F is homogeneous and the least such model has cardinality at most k.

Proof.

Fix n, r , L and k suppose we have a bounded coloring F on some N which
witnesses BCP′. Let H = A0 ⊆ A1 ⊆ ...Ak−1 be homogeneous. This is a
linearly ordered set of models so by the definition of bounded coloring we
can apply the finite model lemma to find a collection of “small” models
H ′ = A0 ⊆ ... ⊆ Bk−1 which are also homogenous for the coloring.
Pushing forward isomorphically these structures onto an initial segment of
the natural numbers and using isomorphism invariance then allows one to
find such a homogenous set of codes all less than kf (k , n,L) + 1.
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Thank You!
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