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General Setting:

Let S1,S2,S3, . . . be a family of integer sequences.

Suppose there is an algorithm A that takes two inputs n and k , such
that

1 A(n, k) = T if k ∈ Sn.
2 A(n, k) = F if k /∈ Sn.

Question

What if instead we have an algorithm A so that it can accept as inputs
non-standard integers n and k; what information does this give us about
the family Sn?
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Specifics:

Obviously, if we have an algorithm for standard inputs, we can always
use an ultra-filter to get a semi-algorithm A that runs over the
non-standard integers.

However, we want to avoid infinite loops.

Bad Good

Thus, we shall insist that the algorithm halt in finite time.
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First Example:

Definition (Hofstader, “Gödel, Escher, Bach”)

The Hofstader Q-sequence is defined by
Q(n) = Q(n − Q(n − 1)) + Q(n − Q(n − 2)) and initial conditions
Q(1) = 1 and Q(2) = 1.

The first few terms are
1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11 . . .

Open question whether this sequence is infinite or not.

Definition (Fox 2018)

Define the sequence Qr by the recurrence relation
Qr (n) = Qr (n − Qr (n − 1)) + Qr (n − Qr (n − 2)) and initial conditions
Qr (1) = 1,Qr (2) = 2, . . .Qr (r) = r .

Arseniy (Senia) Sheydvasser Applications of Model Theory to Families of Integer Sequences May 29, 2019 5 / 22



First Example:

Definition (Hofstader, “Gödel, Escher, Bach”)
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Non-standard Q-Hofstader Sequences:

If N is non-standard, what does QN look like?

Recall that QN(n) = QN(n − QN(n − 1)) + QN(n − QN(n − 2)).

We can keep computing in this way until we hit the (N + 29)-nd term.

QN(N + 29) = QN(N + 29− QN(N + 28)) + QN(N + 29− QN(N + 27))

= QN(N + 29− 2N − 8) + QN(N + 29− 20)

= QN(21− N) + QN(N + 9) /
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Non-standard Algorithm:

We can now write down what A(N, k) does if N is non-standard:
1 If k < 1, return F.
2 If k ≤ N, return T.
3 Otherwise, compute the 28 terms on the previous slide.
4 If k is one of the terms, return T. Otherwise, return F.
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Logical Consequences:

What we have therefore proved over the hyper-naturals is that for all
N sufficiently large, the sequence QN has N + 28 terms.

This can be phrased in a first-order way, and so we conclude that for
all naturals N sufficiently large, the sequence QN has N + 28 terms!

The bad news is that this isn’t exciting: there is a completely
elementary proof of an even stronger result in A New Approach to the
Hofstadter Q-Recurrence, Fox 2018.
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Second Example:

Definition

A Sidon set is a set S ⊂ N such that ∀w , x , y , z ∈ S , w + x = y + z if and
only if {w , x} = {y , z}.

An (A,B)-form Sidon set is a set S ⊂ N such ∀w , x , y , z ∈ S ,
Aw + Bx = Ay + Bz if and only if {w , x} = {y , z}.

The greedy (A,B)-form Sidon sequence SA,B is the sequence starting with
0, such that each subsequent term is the next smallest term such that the
sequence is an (A,B)-form Sidon set.

S1,1 = 0, 1, 2, 4, 8, 13, 21, 31, 45, 66, 81, 97 . . .

S1,2 = 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69 . . .

S1,3 = 0, 1, 2, 9, 10, 11, 18, 19, 20, 81, 82, 83 . . .
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Non-standard Extension:

We shall consider S1,N , where N is again a non-standard natural. I
claim we can again extend to non-standard inputs.

Because the extension to hyper-naturals preserves first-order
statements, each term t in S1,N is the smallest such that for all
w , x , y , z ∈ S1,N ∩ [1, t], w + xN = y + zN if and only if
{w , x} = {y , z}.
Thus, at each step, we need to check if t = x + (y − z)N or
t = x + (y − z)/N for x , y , z ∈ S1,N ∩ [1, t − 1]. This can be done
recursively.
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Non-standard Algorithm:

In this recursive fashion, we can prove that

x ∈ S1,N ⇔ ∃T ∈ ∗N s.t. x =
T∑
l=0

alN
2l , 0 ≤ al < N.

Thus, we again can form an algorithm expressing S1,N even if N is
non-standard, and using the transfer principle, we can conclude that
for all sufficiently large integers N,

x ∈ S1,N ⇔ ∃T ∈ N s.t. x =
T∑
l=0

alN
2l , 0 ≤ al < N.

Unfortunately, it is a theorem in the folklore (due to Kevin O’Bryant)
that this is true for all N ≥ 2, and this is again proved by elementary
means.
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Third Example:

Definition

An Ulam sequence is an increasing sequence U(a, b) of integers defined by

u0 = a, u1 = b, and

uk (for k > 1) is the smallest integer that can be written as the sum
of two distinct smaller terms um, un in exactly one way.

Examples:

U(1, 2) : 1, 2, 3, 4, 6, 8, 11, 13, 16, 18 . . .

U(1, 3) : 1, 3, 4, 5, 6, 8, 10, 12, 17, 21 . . .

U(2, 3) : 2, 3, 5, 7, 8, 9, 13, 14, 18, 19 . . .

Introduced in 1964 by Ulam, who wanted to understand their growth
properties.

Despite their apparent simplicity, almost nothing is known about
Ulam sequences.
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Rigidity of the U(1, n) Sequences:

Rigidity

The family of sequences U(1, n) seems to have a rather surprising pattern.
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Rigidity

The family of sequences U(1, n) seems to have a rather surprising pattern.

U(1, 2) : 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28 . . .
U(1, 3) : 1, 3, 4, 5, 6, 8, 10, 12, 17, 21, 23, 28 . . .
U(1, 4) : 1, 4, 5, 6, 7, 8, 10, 16, 18, 19, 21, 31 . . .
U(1, 5) : 1, 5, 6, 7, 8, 9, 10, 12, 20, 22, 23, 24 . . .
U(1, 6) : 1, 6, 7, 8, 9, 10, 11, 12, 14, 24, 26, 27 . . .
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Rigidity of the U(1, n) Sequences:

Rigidity

The family of sequences U(1, n) seems to have a rather surprising pattern.

U(1, 2) : 1 , 2, . . . 4 , 6 , 8, 11, 13 . . .

U(1, 3) : 1 , 3, . . . 6 , 8 , 10, 12, 17 . . .

U(1, 4) : 1 , 4, . . . 8 , 10 , 16 , 18, 19 , 21 . . .

U(1, 5) : 1 , 5, . . . 10 , 12 , 20 , 22, . . . 24 , 26 . . .

U(1, 6) : 1 , 6, . . . 12 , 14 , 24 , 26, . . . 29 , 31 . . .

U(1, n) : 1 , n, . . . 2n , 2n + 2 , 4n , 4n + 2, . . . 5n − 1 , 5n + 1 . . .
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The Rigidity Conjecture:

Conjecture

There exists a positive integer N and integer coefficients mi , pi , ki , ri such
that for all n ≥ N,

U(1, n) =
⊔
i∈N

[min + pi , kin + ri ].

In fact, we conjecture that we can take N = 4.

This is very well supported numerically (more on that later).

Note that the coefficients don’t depend on n, and can be calculated
using any two consecutive Ulam sequences.

Effectively, the conjecture says that once you have seen two
(sufficiently large) Ulam sequences U(1, n), you have seen them all.
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Next Best Result:

Theorem (Weak Rigidity Theorem)

There exist integer coefficients mi , pi , ki , ri such that for every C > 0,
there exists a positive integer N such that for all n ≥ N,

U(1, n) ∩ [1,Cn] =
⊔
i∈N

[min + pi , kin + ri ] ∩ [1,Cn].

We shall prove this by making use of the machinery we have
developed.
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Passing to the Hyper-Naturals:

Fix a standard natural C > 0.

Consider the set U(1,N) ∩ [1,CN], where N is non-standard.

It must go

1,N,N + 1,N + 2, . . . 2N − 1, 2N,����2N + 1 , 2N + 2, 4N, . . .

To make this formal, argue by induction on C and i .

We thus construct mi , pi , ki , ri such that

U(1,N) ∩ [1,CN] =
⊔
i∈N

[miN + pi , kiN + ri ] ∩ [1,CN].

In fact, we produce an algorithm capable of constructing these
coefficients up to C !
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Consequences:

We have therefore proved over the hyper-naturals that for all
sufficiently large N,

U(1,N) ∩ [1,CN] =
⊔
i∈N

[miN + pi , kiN + ri ] ∩ [1,CN].

It follows that the same is true over the naturals, proving the theorem.

This is the first example of an algorithm where we needed to restrict
the domain.

Also the first example where the theorem is not known independently.

The proof is vaguely non-constructive, but we can make the result
completely constructive.
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Growth Rate of Coefficients:

What is the growth rate of the coefficients mi , pi , ki , ri?
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Growth Rate of Coefficients:

In particular, for all i such that ki ≤ 50000, we find that

|pi − 0.139mi | , |ri − 0.139ki | < 2.5

This is useful, because we can use this statement about the growth
rate to make the weak rigidity theorem effective.
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Effective Estimates:

Theorem

Suppose that for some positive integer M,

U(1,N0) ∩ [1, kMN0 + rM + 1] =
M⊔
i=1

[miN0 + pi , kiN0 + ri ]

where for some B, ε > 0, |pi −miB| , |ri − kiB| < ε, and
N0 > 4(1 + ε)− B. Then for all N > N0,

U(1,N) ∩ [1, kMN + rM + 1] =
M⊔
i=1

[miN + pi , kiN + ri ] .

The proof proceeds by induction over M and N.
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Effective Estimates:

This yields an algorithm for computing a bound N0 that works in the
statement of the weak rigidity theorem.

1 Calculate coefficients mi , pi , ki , ri .
2 Do a linear regression to fit the best value of B to the computed

coefficients. Calculate the corresponding maximum error ε.
3 Compute N ′

0 = d4(1 + ε)− Be.
4 Use the coefficients mi , pi , ki , ri to predict the first CN terms of

U(1,N ′
0),U(1,N ′

0 ± 1) . . ..
5 Halt once you find the smallest N0 such that U(1, n) matches the

prediction for all N0 ≤ n ≤ max{N0,N
′
0}.

Using this, we prove that for all n ≥ 4,

U(1, n) ∩ [1, 50000n] =
⊔
i∈N

[min + pi , kin + ri ] ∩ [1, 50000n].
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Next Steps:

What other families of integer sequences can we find that fit this
general paradigm? (Known examples are variations on the listed
ones.)

Are there any general theorems that we can prove about integer
sequences coming from an algorithm extendable to non-standard
inputs?

If we can prove some restrictions on the growth rate of the sequences,
does this tells us something, like it does for the Ulam sequence?

Does there exist any ε > 0 such that there are integer coefficients
mi , pi , ki , ri so that for any C > 0, there is an N > 0 such that for all
n ≥ N,

U(1, n) ∩ [1,Cn1+ε] =
⊔
i∈N

[min + pi , kin + ri ] ∩ [1,Cn1+ε]?
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