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» General Question: To obtain 'nice’ characterizations of the
class Thr(T) of the [—consequences of an arithmetical theory.
T = ¥ ,—induction 1X,, ¥ ,—collection BY,
" = class of formulas in the arithmetic hierarchy
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Introduction

» General Question: To obtain 'nice’ characterizations of the
class Thr(T) of the [—consequences of an arithmetical theory.

T = ¥ ,—induction 1X,, ¥ ,—collection BY,

" = class of formulas in the arithmetic hierarchy

o v, v,
Ao C (- C C
My I JE!

» Equivalently, to find a 'nice’ theory T’ C T satisfying
» T’ is —axiomatizable, and
» T is [—conservative over T'.
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But, what does it mean to be a 'nice characterization'?
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Introduction
But, what does it mean to be a 'nice characterization'?

» R. Kaye, Using Herbrand—type Theorems to Separate Strong
Fragments, in Oxford Logic Guides 23 (1993):
“... the most interesting fragments of arithmetics are the
natural fragments (...) which are typically interesting because
of their elegant axiomatizations and because of their
combinatorial and number—theorteic consequences.”
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Introduction

Introduction
But, what does it mean to be a 'nice characterization'?

» R. Kaye, Using Herbrand—type Theorems to Separate Strong
Fragments, in Oxford Logic Guides 23 (1993):
“... the most interesting fragments of arithmetics are the
natural fragments (...) which are typically interesting because
of their elegant axiomatizations and because of their
combinatorial and number—theorteic consequences.”

» Kaye—Paris—Dimitracopoulos, On Parameter Free Induction
Schemas, JSL,53 (1988):
“Theorems 2.1 and 2.2 give natural axiomatizations of the
Y 12 and X1 consequences of IX,. These axiomatizations
are especially nice in that they themselves have the form of
induction axioms.”
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1>, and BX, are given by axiom schemes:

» 1Y, is P~ together with
Vv (p(0,7) AVx (p(x, V) — p(x+1,V)) — Vx p(x,V))
where ¢ runs over X,

» BY, is 1Ag together with
Vv (Vx3y o(x,y,v) = Vz3u¥x < z3y < up(x,y, 7))
where ¢ runs over ¥,

» Parameters v are allowed to occur in ¢
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General Question: To find natural restrictions on an axiom
scheme to obtain axiomatizations of its X4 /[1,—consequences.
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Introduction

Introduction

General Question: To find natural restrictions on an axiom
scheme to obtain axiomatizations of its X4 /[1,—consequences.

’ Axiom Scheme ‘ r ‘ Restriction
1>,,BY, M,+1 | Inference rule version
1~,,BY, Y 42 | Parameter free version
1~,,BY, Y1 7

(*): Kaye—Paris—Dimitracopoulos [JSL'88] and Beklemishev—Visser
[APAL'05] obtained axiomatizations of the ¥ ,,j—consequences of I,
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Outline

Part I: We develop a model-theoretic framework for obtaining
conservation results, based on an arithmetic version of the
notion of an existentially closed model.

This method allows for characterizing the I1,,1 and

¥ ,+o—consequences of each axiom scheme enjoying certain
logical /syntactical properties.
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Introduction

Outline

Part I: We develop a model-theoretic framework for obtaining
conservation results, based on an arithmetic version of the
notion of an existentially closed model.

This method allows for characterizing the I1,,1 and
¥ ,+o—consequences of each axiom scheme enjoying certain
logical /syntactical properties.

Part Il: We introduce axiom schemes restricted “up to” definable
elements and show that this restriction captures the
¥ ,+1—consequences of 1X, and BX,,.
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Motivation

Closed Models and Conservation Results e
General Definitions

A general conservation result

Part |: Two inspiring works

Beklemishev's work ([APAL'97],[AML'98],[JSL'03])

» To reduce induction/collection schemes to a version of
induction/collection rule, typically by cut—elimination.

» To derive conservation results for parameter free schemes.

Avigad's work ([APAL'02])

» To use the so—called Herbrand saturated models as a uniform
method for proving conservation results.

» Such models do exist for universal theories

» “Skolemization”
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Motivation

Closed Models and Conservation Results -
General Definitions

A general conservation result

A general definition

Fix a first—order language L and a new k—ary predicate symbol P.

» A k-scheme E is a sentence of L U {P} of the foom A — B.
» E, denotes the [-formula obtained by substituting

o(t1, ..., ty, v) for each atomic subformula of E of the form
P(t1,...,tk), where t; are L-terms.
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Closed Models and Conservation Results -
General Definitions

A general conservation result

A general definition

Fix a first—order language L and a new k—ary predicate symbol P.

» A k-scheme E is a sentence of L U {P} of the foom A — B.
» E, denotes the [-formula obtained by substituting

o(t1, ..., ty, v) for each atomic subformula of E of the form
P(t1,...,tk), where t; are L-terms.

Examples
» Induction is a 1-scheme for:
» A= P(0) AVx(P(x) — P(x +1))
» B =VxP(x)
» Collection is a 2—scheme for:

» A=Vx3dy P(x,y)
» B=Vz3uVx < z3y < uP(x,y)
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Motivation

Closed Models and Conservation Results -
General Definitions

A general conservation result

Theories associated to a k—scheme
» Parametric version:

EM = {Vv (Ay(v) = By(v)) : (X, v) €T}
» Uniform or separated parameter version:
UET = {VvA,(v) = VvB,(v) : p(x,v) €T}
» Parameter free version:
Er-={A, —>B, : ¢o(x)el}

» Inference rule version:
T 4+ T-ER is the closure of T under nested applications of the
E—rule restricted to '—formulas:
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Closed Models and Conservation Results Shiyatioy

General Definitions
A general conservation result

dlN—closed models

Fix M C Form(L) containing all atomic formulas, closed under A, V, term
substitution and subformulas, and satisfying —I1 C dI1.

Definition
Let A be an L—structure. We say that 2l is dlN—closed for T if,
1. AT, and

2. foreachB=T, A=<nB — A=<3nB.
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Motivation

Closed Models and Conservation Results -
General Definitions

A general conservation result

dlN—closed models
Fix M C Form(L) containing all atomic formulas, closed under A, V, term
substitution and subformulas, and satisfying —I1 C dI1.
Definition
Let A be an L—structure. We say that 2l is dlN—closed for T if,
1. AT, and
2. foreachB=T, A=<nB — A=<3nB.

> Existentially closed models of arithmetic theories were studied in the
early 70's: Hirschfeld-Wheeler('75).

» Applications: Dimitracopoulos('89), Adamowicz—Bigorajska('01),
Beckmann('04), Adamowicz—Kotodziejczyk('07)

» Used to prove conservativity: Zambella-Visser('96), Avigad('02).
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Motivation

Closed Models and Conservation Results -
General Definitions

A general conservation result

dlMN—closed models. Properties

Lemma (Existence)

Suppose T C VAMN. Each A = T has a N—elementary extension
which is AlM—closed for T.

Lemma (Niceness)
Suppose A is Al—closed for T. Then

T + Dn(2) = Dy-n(2)

where Dr(2l) denotes the I'—diagram of .
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Closed Models and Conservation Results -
General Definitions

A general conservation result

Monotonic schemes
E = A — B is T-monotonic over I1 and T if, for each ¢(x,v) €T
and O(w) € IN:
» Syntactical conditions
(S1) 6(w) — p(x,v) el
(S2) A, € vl
(S3) T + I'-ER is V3dlM-axiomatizable
» Logical conditions
(L1) T (@ — Ay,) — Ag—y
(L2) TFBg—, — (6 — B,)

Remark: Induction and collection are 1Ag—monotonic over I1,,%,.
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Motivation

Closed Models and Conservation Results -
General Definitions

A general conservation result

Axiom scheme vs Inference rule

Lemma
Suppose E is T—monotonic over I and I and 2 is Al—closed
model for T. Then

A=T+T-ER — A E=El
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Closed Models and Conservation Results -
General Definitions

A general conservation result

Axiom scheme vs Inference rule

Lemma
Suppose E is T—monotonic over I and I and 2 is Al—closed

model for T. Then
A=T+T-ER — A E=El

Proof: Assume 2 = A,(a). By (S2) and “niceness”, it follows that

T+ Dn(A) - A,(a)
There is O(v, w) € I such that 2 = 6(a, b) and

TEO(v,w) — A,(v)
By (L1), T F Ag_,, and so, by (S1),(L2)

(T +T-ER) F 0(v,w) — By(v)

Hence, 2 |= B, (a) since 2 = 6(a, b). O
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A general conservation result
Theorem
Suppose T C VAl and E is a T—monotonic scheme over I1 and T.
1. T + ET is V=[1—conservative over T + -ER.
2. T + ET is AV=ll-conservative over T + UET.

3. If T + El— C V3l and its extensions are closed under —ER,
then T + EI is 3V—=ll—conservative over T + EI ~.

A Model-theoretic Framework for Conservation Results
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A general conservation result

Theorem
Suppose T C VAl and E is a T—monotonic scheme over I1 and T.

1. T + El is V=[ll—conservative over T + -ER.
2. T + El is 3V—=ll—conservative over T + UET .

3. If T + El— C V3l and its extensions are closed under —ER,
then T + EI is 3V—=ll—conservative over T + EI ~.

Proof: (1): Assume 2l = (T + '-ER) + —¢, where ¢ € V=I1. By (S3)
and “existence”, there is A <p B such that B is dlM—closed for
T +T-ER. Hence, B = T + El + —¢.

(2,3): Similar O
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Closed Models and Conservation Results e
General Definitions

A general conservation result

Applications (1)
Language: L ={0,S5,+,-,<} N=MN,T=%,
Schemes: ¥ ,—induction, X ,—collection
» Induction and collection are |Ag—monotonic over 1, and X,,.
» If THIX,, T is closed under ¥ ,~induction rule.
» If THBX,, T is closed under X ,—collection rule.
Then, V=IT = M,4+1 and 3V-I1 = X ,5 and so...
Theorem (n > 1)
1. Thn,, (IX,) =140+ ,~IR.
2. Thp, ,(BX,) =10+ X,~CR=1¥,_;1.
3. Thy, ,(IX,) = 1%, .
4. Thy, ,(BX,) =BYL,.

n+2
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Closed Models and Conservation Results e
General Definitions

A general conservation result

Applications (1)
Language: L ={0,5,+,-,<} N=MN,T=%,
Scheme: A,—induction
Theorem (n > 1)

1. Thn,.,(1A,) =100+ Ap—IR= 1%, 1.
2. Thy,,,(1A,) = UIA,.
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Closed Models and Conservation Results e
General Definitions

A general conservation result

Applications (1)
Language: L ={0,5,+,-,<} N=MN,T=%,
Scheme: A,—induction
Theorem (n > 1)

1. Thn,.,(1A,) =100+ Ap—IR= 1%, 1.
2. Thy,,,(1A,) = UIA,.

> Beklemishev[JSL'03] proved it for n =1 and posed as a
pending question to extend it to n > 1.
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Closed Models and Conservation Results e
General Definitions

A general conservation result

Applications (1)
Language: L ={0,5,+,-,<} N=MN,T=%,
Scheme: A,—induction
Theorem (n > 1)

1. Thn,.,(1A,) =100+ Ap—IR= 1%, 1.
2. Thy,,,(1A,) = UIA,.

> Beklemishev[JSL'03] proved it for n =1 and posed as a
pending question to extend it to n > 1.

» From Slaman’s theorem it immediately follows that

UIA, + exp <= BX, + exp
So, 1A, is strictly weaker than UIA,,.
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Closed Models and Conservation Results e
General Definitions

A general conservation result

Applications (111)
L = Buss's Bonded Arithmetic + {MSP, —}, N =02, T =3
Schemes: ¥ ’—induction T}, ¥b—polyinduction Sj.
» Both schemes are LIOpen—monotonic over ﬁf’ and flb
> If T+ 7—2:‘.— then T is closed under if’—induction rule.

> If T+ Sé’_ then T is closed under ff?—polyinduction rule.

Theorem (i > 1)

1. T} is AVEb—conservative over T, ™.

2. S} is IV P—conservative over Sy
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Closed Models and Conservation Results e
General Definitions

A general conservation result

Applications (111)

A

L = Buss's Bonded Arithmetic + {MSP,—}, M =M%, =5’

1 1

Schemes: ¥ ’—induction T}, ¥b—polyinduction Sj.

» Both schemes are LIOpen—monotonic over ﬁf’ and flb

> If T+ 7—2:‘.— then T is closed under if’—induction rule.

> If T+ Sé’_ then T is closed under ff?—polyinduction rule.
Theorem (i > 1)

1. T} is AVEb—conservative over T, ™.

2. S} is IV P—conservative over Sy

» This improves previous VZ;’—conservativity obtained by Bloch.
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

Part Il: Axiom scheme “up to" definable elements

| Axiom Scheme | T [ Restriction |
[ I5,.By, |toa] 77|

» Induction
YV (¢(0, V) AVx (p(x, V) = o(x +1,V)) — Vxp(x, V))
» Collection

Vv (Vx 3y o(x,y,v) = VzIuVx < z3Jy < up(x,y,V))
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

Part Il: Axiom scheme “up to" definable elements

| Axiom Scheme | T [ Restriction |
[ I5,.By, |toa] 77|

» Induction
YV (p(0, V) AVx (p(x, V) = o(x+1,v)) — Vxp(x,V))

» Collection

Vv (Vx 3y o(x,y,v) = VzIuVx < z3Jy < up(x,y,V))

Definition (“Up to" schemes)
1. E(T, A, B) denotes the E-scheme up to elements in A restricted
to —formulas with parameters in B.

2. E(I~, A) denotes the E-scheme up to elements in A restricted
to parameter free [—formulas.
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Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

Definable and minimal elements

» ais [—definable in 2 with parameters in X C 2 if there are
©(x,v) €T and b € X satisfying

A = ¢(a, b) A Ilx p(x, b)

» ais [—-minimal in 2 with parameters in X C 2l if there are
©(x,v) €T and b € X satisfying

A = a = (ux) (¢(x, b))
> KCn(A, X) = {acA: ais X,—definable with parameters in X}
> Zo(A, X) ={beU:3Jaec Ky, X) such that b < a}
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

Expressing "Vx € K, in the language of Aritmetic
» Suppose 2 = I1X, . For each a € K,(2) there is b

M,—1—minimal such that a = (b)o.
Wx € Kp®(x, V)"
)
{Vz,x({ z = (ut) (9(2)) } — ®(x,7)) : 8(t) € Mys)

A x=(2)o
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Expressing "Vx € K, in the language of Aritmetic
» Suppose 2 = I1X, . For each a € K,(2) there is b

M,—1—minimal such that a = (b)o.
Wx € Kp®(x, V)"
)
{Vz,x({ z = (ut) (9(2)) } — ®(x,7)) : 8(t) € Mys)

A x=(2)o
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

A “nice” axiomatization of Thy,  (BX,)

Theorem (n > 1)

Over I, the following theories are equivalent:
1. Ths,, (BX,)
2. B(X;,.Khn)
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

A “nice” axiomatization of Thy,  (BX,)

Theorem (n > 1)
Over I, the following theories are equivalent:

1. Ths,, (BX,)
2. B(X,,Kn)
Proof: (1=-2):

“x € KCp S(x)"
(»

(32, x (Yt —6(t) Vv ({ = () (5(?) } A B(x)) : 8(£) € Moy}

A x = (2)o
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

A “nice” axiomatization of Thy,  (BX,)

Theorem (n > 1)
Over I, the following theories are equivalent:

1. Thy, ,(BX,)

Proof: (2==1): Assume 2 = B(X,, KCp, Kp).
Case 1: Z,(A) =A. Then, A =BX F Ths, , (BL,).
Case 2: Z,(A) # . Then

» 7,(A) E BX, ( end—extension properties)
> () = Thn,.. (), by B(X,,Ky).

So, A = Thy, ,(BX,) 0
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZp

A “nice” axiomatization of Thy,  (BX,)

Corollary (n > 1)
Let 2 be a model of Ix,,_1. The following are equivalent:
1. A Thy,,,(BX,)
2. A E=B(%,,Kn)
3. A =LA,
4. (+exp) Every “locally increasing” ¥ ,—definable function in 2
is “globally increasing”.

Locally increasing  ~» Vx(f(x) < f(x+1))
Globally increasing ~ Vx,y(x <y — f(x) < f(y))
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

What about Ths,  (1X,)?

» Goal: To obtain an “up to” restriction on the X ,—induction
scheme that captures its ¥, 1—consequences.
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

What about Ths,  (1X,)?

» Goal: To obtain an “up to” restriction on the X ,—induction
scheme that captures its ¥, 1—consequences.

» Does /(X , ;) axiomatize the Thy,, (1X,)7?
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

What about Ths,  (1X,)?

» Goal: To obtain an “up to” restriction on the X ,—induction
scheme that captures its ¥, 1—consequences.

» Does /(X ,/C,) axiomatize the Thy (I1X,)? NO
Because...

» Over I, it holds that /(X ,/KC,) = I,

» I, is strictly weaker than Thy, ., (I1X,).
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements

Characterizing the X, j—consequences of I1X,

What about Ths,  (1X,)?

» Goal: To obtain an “up to” restriction on the X ,—induction
scheme that captures its ¥, 1—consequences.

» Does /(X ,/C,) axiomatize the Thy (I1X,)? NO
Because...

» Over I, it holds that /(X ,/KC,) = I,
» I, is strictly weaker than Thy, ., (I1X,).

» Question: How can we extend /(X;,C,) to capture the
¥ ,+1—consequences of 1X,?
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

lterating X ,—definability: H°

Definition
> H(2) = Zn(2A)
» For each k, HKT1(A) = Z,,(A, HX(A))
> M) = [ Ha(2)
k>0
Lemma

1. IfA = 1X,-1 then HP(A) <& A
2. HeO(A) is the least initial segment of A containing all the
2 ,—definable elements and closed under ¥ ,—definability.
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Motivation

On Axiom Schemes Restricted up to Definable Elements ETEXEHCITAIIT (12 i ~ERTECGIEIEES €ff [Py
Characterizing the X, j—consequences of I1X,

Expressing "Vx € H°" in the language of Aritmetic
» Suppose 2 = 1X,_1. For each a € K,(2, X) there is b

M,—1—minimal (with parameters in X) such that a = (b)o.
“Vx € HE ®(x, V)"
0

a0 = (ux) (do(x)) A by < ag
_ a; = (,U,X) ((51(X7 bo)) AN b <a
Vé,b( : _> q)(bkvv))

ak = (ux) (Ok(x, bk-1)) A b < ak

where dg, ..., 0, run over I, _1.

A. Cordén-Franco A. Fernandez—Margarit F.F. Lara—Martin
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

A “nice” axiomatization of Ths (1¥X,)

Theorem (n > 1)
Over IX,,_1 the following theories are equivalent:

1. Th):nH(IZ,,)
2. (X5, 1Y)
3. I(Zn, HS®, HE®)
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Motivation

ing the X, ;—consequences of BX

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

A “nice” axiomatization of Ths (1¥X,)

Theorem (n > 1)

Over IX,,_1 the following theories are equivalent:
1. Ths,, (1X,)
2. (X5, HY)
3. 1(Xn, HSR, HY)

Proof: (1=="2): For each k, HX(2l) is not cofinal in 2.

(2==-3): It follows from a general property:

A= I(Zn, {a}, {b})

2(b,b) S a

A. Cordén—Franco A. Fernandez—Margarit F.F. Lara—Martin A Model-theoretic Framework for Conservation Results



Motivation
ing the X, ;—consequences of BX

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

A “nice” axiomatization of Ths (1¥X,)

Theorem (n > 1)

Over 1X,_1 the following theories are equivalent:

1. Th):nH(IZ,,)
2. (X5, 1Y)
3. I(Zn, HS®, HE®)

Proof: (3==1): Assume 2 = I(X,, HS°, HX).
Case 1: Hpo(A) =2 Then, A = 1%,
Case 2: Hyo () # 2. Then

> H(A) <& A proper.
> H>(2A) E BX, 41 IX, (end—extension properties)
So, A = Ths,,, (IZ,). O
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

Kaye—Paris—Dimitracopoulos’ theories [JSL'88]
For each k > 1, LZf,k)’_ denotes
Ixa, ey Xk e(Xay ey Xk)

I

x1 = (ut) (Ixo, ...y xk p(t, X2, - -+, Xk)

) A
xo = (pt) (Ixz, ..., xkp(xa, t, ..o X)) A

E|X1, cee s Xk
Xk = (,U,t) (@(X17X27 SERE) t))

where ¢(xg, ..., Xxk) runs over X ,,.

> Theorem: Thy,,(1%,) = | J LZ{)™
k>1
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Motivation

On Axiom Schemes Restricted up to Definable Elements Character!z!ng 2 Xy ~ERTEGENEES 6 [y
Characterizing the X, j—consequences of I1X,

Beklemishev—Visser's theories [APAL'05]
» The X —LIMR is given by:

JuVx > u(f(x+1) < f(x))
JuVx > u(f(x) = f(u)) ’

where f runs over the X —functions provably total in 1%,_;.
> [IZ,,_l, Z;—LIMR]O =1x,1
NEn_1, X7 —LIMR] k1 = [1Z0—1, X —LIMR]y, £ -LIMR]

> Theorem: Thy,,,(1,) = | J[1Z5-1, X, -LIMR],
k>1
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

The equivalence theorem

Theorem (k > 0)

Let A = 1X,_1. The following are equivalent:
1A= I(Z;,HY
2. A 1Xh1, X, —LIMR] k41
3.9 Lx{-
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Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

The equivalence theorem

Theorem (k > 0)

Let A = 1X,_1. The following are equivalent:
1A= I(Z;,HY
2. A 1Xh1, X, —LIMR] k41
3.9 Lx{-

» We prove a hierarchy theorem for these families:
Kn(, HA(R)) | 1(Z5 Hy) + 12, 1)

A. Cordén—Franco A. Fernandez—Margarit F.F. Lara—Martin A Model-theoretic Framework for Conservation Results



Motivation
Characterizing the X, j—consequences of BY,

On Axiom Schemes Restricted up to Definable Elements Characterizing the T 1—consequences of IZ,

The equivalence theorem

Theorem (k > 0)

Let A = 1X,_1. The following are equivalent:
1A= I(Z;,HY
2. A 1Xh1, X, —LIMR] k41
3.9 Lx{-

» We prove a hierarchy theorem for these families:
Kn(, HA(R)) | 1(Z5 Hy) + 12, 1)

» In [APAL'05] Beklemishev—Visser posed the question of
characterizing the theories [IX,_1, X, -LIMR]y for k > 1.
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Final Remarks

Conclusions

» dll—closed models provide a simple method to obtain
conservation results between theories described by axiom
schemes and their inference rule or parameter free versions.

> |t leans upon the syntactical structure of the axiom scheme
and no ad hoc model-theoretic construction is involved.

» The notion of a monotonic scheme isolates general syntactical
conditions sufficient for the method to become applicable.

» Most of the “classic” conservation results between fragments
of Arithmetic can be derived in this framework.
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Final Remarks

Conclusions

» dll—closed models provide a simple method to obtain
conservation results between theories described by axiom
schemes and their inference rule or parameter free versions.

‘

» Axiom schemes “up to" definable elements are interesting and
useful fragments of Arithmetic.

» They capture the ¥, ;—consequences of ¥ ,—induction and
2 ,—collection schemes.
» They provide nice reformulation of “classic” fragments and

suggest new techniques for studying them: to consider
inference rule "up to” definable elements.
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Final Remarks

A promising application: [l —induction scheme
> 1N, = I(X,,K,)
» By our general conservation result,
T, is I,4+1—conservative over 1Y, + (X,, KC,)-IR.
» “Y,—IR up to definable elements’ suggests a new point of
view to study Thn,,, (IM;).

» This approach seems to provide new, uniform proofs of...

» Theorem(KPD): IT] is My—conservative over 1Ag + exp.

» Theorem(Bek): I is Bool(X;)—conservative over 13X .
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Final Remarks

Conclusions

» dll—closed models provide a simple method to obtain
conservation results between theories described by axiom
schemes and their inference rule or parameter free versions.

‘

» Axiom schemes “up to" definable elements are interesting and
useful fragments of Arithmetic.

» Roughly speaking...
“closed models + definability = cut—elimination + reflection”

How can we make explicit this apparent relation?
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