On the Bounded Version of Hilbert’s Tenth
Problem

Chris Pollett

214 MacQuarrie Hall
Dept. of Math and Computer Science
San Jose State University
1 Washington Square, San Jose CA 95192
USA

Abstract. The paper establishes lower bounds on the provability of
D =NP and the MRDP theorem in weak fragments of arithmetic. The
theory I°E; is shown to be unable to prove D =NP. This non-provability
result is used to show that I° E1 cannot prove the MRDP theorem. On the
other hand it is shown that I' E| proves D contains all predicates of the
form (Vi < |b])P(3,x) 0Q(3,x) where o is =, <, or <, and I°E; proves D
contains all predicates of the form (Vi < b)P(i,x) = Q(%,x). Here P and
@ are polynomials. A conjecture is made that D contains NLOGTIME.
However, it is shown that this conjecture would not be sufficient to imply
D = NP. Weak reductions to equality are then considered as a way of
showing D =NP. It is shown that the bit-wise less than predicate, <s,
and equality are both co-NLOGTIME complete under FDLOGTIME
reductions. This is used to show that if the FDLOGTIME functions are
definable in D then D = NP.

1 Introduction

The Matiyasevich-Robinson-Davis-Putnam (MRDP) theorem [15] says that the
Diophantine sets are precisely the recursively enumerable sets and provides a
negative answer to Hilbert’s Tenth Problem concerning the decidability of the
Diophantine sets. The MRDP theorem has been used to show many problems
from calculus and differential equations are undecidable (see Matiyasevich [16]).

The study of what bounded versions of this theorem hold was begun by
Adleman and Manders [1]. They show a bounded form of MRDP Theorem which
says a set A is in &, for n > 3 of the Grzegorczyk Hierarchy iff it is of the form:

A={z|(Ty < f(z))P(z,y) = Q(z,y)},

where P, () are polynomials with coefficients in N and f is in &,,. These bounds
are quite large as &3 is already the class of elementary functions. Adleman and
Manders also pose the question of whether NP is equal to the class D of predi-
cates given by formulas of the form:

G v <2 =) A P(a,y) = Qe y)]

where P, () are polynomials with coefficents in N. (It should be noted that many
papers on this class work with an equivalent formulation where integer coeffi-
cients are used and P and @ are pulled-over to the same side of the equality
and a check is made if this resulting polynomial is zero. It will be convenient
however to work with natural number coefficients in this paper.) They show that
the class resulting from the use of only a single existential quantifier is contained
in P and moreover if the two variable case is in P then primality checking is
p-time. Adleman and Manders [2] define a notion of D-reducibility and give four
very weak languages which are D-complete for N P. Jones and Matiyasevich [8]
have shown that D =NP if the predicate z <, y is in D. Here = <, y if the
i bit of z is less than the 7 bit of y for all i. Venkatesan and Rajagopalan [21]
conjecture that given a number A and a product 7 of powers of distinct odd
primes P; then testing whether A has even residues modulo all the P;’s is in D.
Under this conjecture, they show that D = NP and that the Randomized Dio-
phantine Problem (RDP) is average case complete for NP. On the other hand,
D =NP implies their conjecture, so it follows that D =NP implies the average
case completeness of RDP. Given the scarcity of natural average case complete
problems for IV P, this lends impetus to resolving the D = N P problem.

The question of what bounded forms of the MRDP theorem hold is closely
connected with how strong a formal system is needed to prove the MRDP theo-
rem. Gaifman and Dimitracopoulos [6] have shown that I Ag+exp can prove the
MRDP theorem. I Ag+exp essentially allows one usual induction on bounded
formulas in the language of arithmetic together with the axiom that exponenti-
ation is total. This result was improved by Kaye [11] who showed I E;+E could
prove the MRDP theorem and used this to show IE;+FE = I Ag+exp. Here E
was an axiom that asserted that a certain Diophantine equation had solutions.
The bounds on these solutions are known to be exponential in the real world.
These results correspond well with the Adleman and Manders result since Clote
and Takeuti [5] have shown that in some sense IAg+ezxp is the “right” theory
to reason about about the elementary functions.

Just as it is unknown if one can get a more than exponentially bounded
form of the MRDP theorem, it is also unknown what weaker theories can prove
this theorem. It is known that if a theory 7' C S, proves the MRDP theorem
then NP=co-NP (see Hijek and Pudldk [7] for a proof). Here Sy corresponds
roughly to a theory which has induction on formulas in the polynomial hierarchy.
However, no such complexity consequences are known concerning the provability
of D = NP in subsystems of Ss. It is also still open whether S or a subsystem
might be able to prove the MRDP theorem. That is, no one has proven Ss cannot
prove the MRDP theorem. It is known IOpen in the language of 0, .S, 4, - cannot
prove MRDP [12].

The first result of this paper is to give a “reasonably strong” theory which
cannot prove D = N P. Essentially by results of Kent-Hodgson [14], every N P-
predicate can be expressed in the language L, mentioned in the abstract by a
ﬁ'f—formula. That is, it can be expressed by a formula of the form B := (Jy <
t(x))(Vi < |s(x)|)A(x,y,i) where A is open (see Pollett [17]). Since D is closed

under bounded existentiation, to show D = NP it suffices to show D contains
the class of formulas II¢ of the form (Vi < |s(z)|)A(x,y,4). It seems likely that
such a proof should be formalizable in a weak arithmetic using induction over
values 0 < i < |s| for some ﬁg—formula and for some D-formula. The theory
I*E; which has length induction on bounded existential (E;) formulas should
thus be able to formalize this proof. This is because by standard tricks I' E; can
prove length induction on boolean combination of E;-formulas (so also bounded
universal (U;-) formulas). As evidence for this belief, in this paper it is shown
that I'E; proves D contains the predicates (V¢ < [b|)P (%,) o Q(¢,x) where o
is =, <, or < and P,Q are polynomials and ¢ < |b| means each i; < ||, j=1,...,
m. Replacing the Ly-base functions of the open predicate A in the formula B
above to get a matrix of the form P = @ for P,() polynomials would in general
introduce bounded existential quantifiers inside the length-bounded universal. So
this result does not imply D =NP. In the case of =, one can formalize an old result
of Raphael Robinson [19] to show IYE; proves D contains all predicates of the
form (Vi < b)P(¢,x) = Q(i,x). A “reasonably strong” theory here means I°F;,
which has five-lengths induction on E;-predicates and cannot prove D =NP. The
way this is proved is to show that I°E; can X?-define the function |1|z|] but

it cannot FE;-define it. Since D C E; this gives the result. The f]{’—deﬁnability
argument in I°E; essentially follows from a use of excluded middle. The E;-
nondefinability argument is based on a new more sensitive variant of the block
counting argument of Johannsen [9, 10] and Pollett [18].

One can slightly sharpen the ﬁ’{’—characterization of NP given above. NP can
be represented as those formulas of the form (Jy < ¢(x))co-NLOGTIME (The
PCP Theorem [3] says something stronger still: that NP is the predicates of the
form (Jy < #(x))co-RLOGTIME where the co-RLOGTIME machine can only
query y constantly many times on a given branch). This is sharper since neither
addition nor multiplication is in co-NLOGTIME. It also illustrates how weak a
class needs to be shown in D in order to prove D =NP and thus illustrates how
surprising it is that one can get any reasonable independence proof. This is be-
cause this result implies it suffices to show co-NLOGTIMEC D to get D = N P.
Nevertheless, at present the co-NLOGTIMEC D inclusion seems hard to show;
however, the author conjectures that it is reasonably likely that NLOGTIME is
in D. This is because the known techniques (machine-based, Chinese Remainder-
ing, or generalized geometric progressions) for removing a bounded universal in
front of a block of existentials make two nested uses of exponentiation. The first
use is to create a sequence of values and the second nested use is a call usually
to (Z) to verify some correctness property of this sequence. It seems possible
using these techniques that an NLOGTIME computation could be verified by a
quantifier of the form (Vi < ||¢||) in front of a block of small existentials and poly-
nomial equalities. If two nested exponentials are actually required to do sequence
coding with Diophantine equations than this might be the largest machine class
one could hope to directly get in D. If NLOGTIMEC D, though, one might
conjecture that D =NP because ENLOGTIME=NP. Here EC denotes the class
of languages expressed by predicates of the form (Jy < s)({(x,y) € L) for some

s an Lp-term and L in C. It is shown however that ENPOLYLOGTIMECNP.
Thus, if D=NP, the proof will need to rely more on the fact that =, 4+, and - lie
outside of NLOGTIME.

Pursuing this last idea, the possibility that = might be hard for co-NLOGTIME
under reductions computable in D is investigated. A function is said to be in FD-
LOGTIME if it has a polynomial sized bit-graph whose bits are in DLOGTIME.
Since DLOGTIM E is likely to be in D, it is conjectured that the FDLOGTIME
functions are definable in D. It is shown in this paper that both the <, of Jones
and Matiyasevich and equality are co-NLOGTIME-complete under FDLOG-
TIME reductions. So if the conjecture holds then using equality one can show
co-NLOGTIMEC D and so D =NP. Since it is easy to see that D =NP implies
< in D, Venkatesan and Rajagopalan [21]’s conjecture, <» in D, the conjecture
above, and D =NP are all equivalently hard problems. In the conclusion we
discuss a stronger conjecture which implies but is not equivalent to D =NP.

The remainder of this paper is organized as follows: In Section 2 some pre-
liminary definitions are presented. In Section 3, it is proven that EBASIC can
define | 1|z|] and the function algebras A™ are defined and these algebras are
shown to contain all the E;-definable functions of 1™ F;. Then in Section 4, it
is established that | £|«|] is not in A% and so I° By does not prove D =NP. Sec-
tion 5 gives the proof that the (Vi < |s|)P = @ predicates are in D. In Section 6
has the results about EPOLYLOGTIME and co-NLOGTIME. Finally, the last
section contains a conclusion.

2 Preliminaries

The language Lo contains the non-logical symbols: 0, S, +, -, =, <, =, L%az],
|z|, MSP(z,i) and #. The symbols 0, S(z) = = + 1, +, -, and < have the
usual meaning. The intended meaning of x — y is & minus y if this is greater
than zero and zero otherwise, |z| is « divided by 2 rounded down, and |z|
is [logy(z + 1)], that is, the length of « in binary notation. M.SP(z,i) stands
for ‘most significant part’ and is intended to mean |x/2¢]. Finally, z#y reads
‘z smash y’ and is intended to mean 2/*/'¥. The notation 1 is used for S(0),
2 for S(S(0)), etc. A quantifier of the form (Vz < ¢) or (Jz < t) where t is a
term not containing z is called a bounded quantifier. A formula is bounded or
Ag if all its quantifiers are. A quantifier of the form (Vo < |¢|) or of the form
(Jz < |t]) is called sharply bounded and a formula is sharply bounded if all its
quantifiers are. Given a language L, the hierarchy of formulas E; ;, and U; j, are
defined as follows: Ej j, are those formulas of the form (3z < t)¢ and U g, are
those formulas of the form (Vz < t)¢ where ¢ is an open formula. E; j are
those formulas of the form (Jz < t)¢ where ¢ € U;_ -formula. U, 1 are those
formulas of the form (Vo < t)¢ where ¢ € E;_; . The notations E; and U; are
used when L is understood. The class of quantifier-free formulas is denoted by
open. Fori > 0, a ﬁ‘f—formula (resp. ﬁf—formula) is defined to be a E;;1-formula
(resp. Ujt1-formula) whose innermost quantifier is sharply bounded. Kent and
Hodgson [14] (see also Pollett [17]) have shown the sets defined by X?-(resp.

I1%-)formulas in the Inaguage of Ly are precisely the X¥-(resp. I17-)predicates.
Thus, the ﬁ‘f—formulas correspond to the NP predicates.

The theory BASIC is axiomatized by all subtitution instances of a finite set
of quantifier free axioms for the non-logical symbols of L,. These are listed in
Buss [4] except for the axioms for M SP and - which are listed in Takeuti [20].

The Lo-terms below will be useful for this paper:

2lvl = 2lvl' .= 14y
2™ = oLy .= 2lul" T 4y
ok-lyl™ .— 9lyl™ . 9(k—1)-[y|"
Qmin(\y\ z) . MSP(Q\Z/\’ ly| =)

K. (z)=1=x
K/\(T/ y)=xz-y
K<(z,y) == K.(y ~) S
LSP(,i) i= 2 = MSP(x,i) - 2min(zl?)
Ba, t],w) = MSP(LSP(w, Sol]), alt])
Bit(i,) —,B(Z',l,ac)
B(x, [t], s,w) = min(B(z, [t|,w),)
Cond(w y,2) = K- (z) - y+K (K-(2)) - 2
max(z,y) := cond(K<(z,y),y,)
min(z,y) = cond(K<(z,y),z,y)

The k and n in 2%191" are fixed integers. Taking products of terms 2% 151"
one can construct terms representing 27(s1) where p is any polynomial. Roughly,
B(x, |t|, w) projects out the wth block (starting with a Oth block) of [¢| bits from
w. B(z, |t|, s, w) returns the minimum of 3(z, |t|,w) and s. For brevity, this paper
uses 2“””) for 2min([t(@)[.6(2)) "if ¢(x) is a term which is obviously less than |t(z)]
for some t € Ls.

A pairing operation which will sometimes be more convenient than block
coding can be defined as follows. Let B = 2lmax(z.9)l+1 Thys, B will be longer
than either or y. Define an ordered pair as (z,y) := (2!max@¥)l 4 4). B +
(2““‘“‘(””79)‘ + z). To project out the coordinates from such an ordered pair,
use B(1,w) = B(0, [zlwl] = 1,8(0, [3|wl],w)) and B(2,w) := (0, |5]w]] ~
1,8(1, |4|w|],w)) which return the left and right coordinates of the pair w.
(The real Godel beta function projects out 3(i,w), the ith element of a sequence
w. However, as this function is never used in this paper, the suggestive notation
should not cause confusion.) To check if w is a pair the function ispair(w) :=

Bit(w, | ghel) ~ 1) = 1A 2| max(5(1,w). B2, w)| +2 = [u

is used. Notice the above functions are all Lo-terms.

Definition 21 EBASIC is the theory obtained from BASIC by adding the
following azioms:

(1) b < 2min(kldLld®) 5 pr§p(g . gmin(kldld®) 4 p min(k - |d], |d|?)) = a.

(2) (b< 21 Aa <21y 5 (30,|d],a-21M+b) =bA B, |d],a- 29 +b) = a).

(3) Si-la| <k D B(i,|al,w) = B, |a], LSP(w, k))

The new axioms of EBASIC were used in Pollett [17] to show EBASIC
can do pairing. In particular, the following lemma was shown.
Lemma 22 Let m = max(s(a),t(a,s)), and let t+ := t(a, 3(0,|m], s(a), w))
where s(a),t(a,b) € La. Then the theory EBASIC proves:
(a) (3w < 221N AB(0,[ml, s,w), B(L, [ml, t,w))

& (32 < 5)(Fy <Az, y)
(b) (Yw < 22 A(B(0, [m], s, w), B(1,|m], ¢, w))

& (Vo < 5)(Vy <) A(z,y).

BASIC and EBASIC proofs will be formalized in the system LKB of
Buss [4] where one has equality axioms and where one takes the axioms of
BASIC (EBASIC) as initial sequents. The main point of LK B is it treats

bounded quantifiers syntactically. One defines stronger theories by adding vari-
ous types of induction rules to BASIC and EBASIC.

Definition 23 A W-L™IND inference is an inference

A(b), T — A(Sb), A
A0), I' = A(Jt(@)|m), A

where b is an eigenvariable and must not appear in the lower sequent, t is a term
in the language, and A € ¥. Here |alo = a and |a|p = ||a|m-1]- We call [t(z)|m
the principal term of the induction inference.

The notations IND, LIND and LLIND will be used instead of L°TND,
L'IND, and L?)IND.

Definition 24 (i > 0) I™E; is defined to be EBASIC+E;-L™IND and S} is
defined to be BASIC+X?-LIND. Finally, So := U;Si.

3 Definability Results

The proof that I° E; cannot prove D =NP requires first showing that I°E; can
S?-define the function | 1|z|] which will be done in this section. Then a function
algebra A™ which is an upper bound on the Ej-definable functions of I"™E;
is given. Since the ﬁ‘f—predicates are the NP-predicates and the E;-predicates
contain the D-predicates, these two results will serve as the basis for the proof
that I°E; cannot prove D =NP.

Let ¥ be a set of formulas. A theory T can ¥-define a function f(z), if there
is a Y-formula Af(z,y) such that T F Va3lyAs(z,y) and N |= Af(z, f(z)). The

notions of F; and f]{’—deﬁnability will be the most useful for this paper.
Theorem 1. |i|z|] is Sb_definable in EBASIC.
Proof. Using excluded middle,

where AL%MH is:

Bz < |2])(B(z,2) Ay = 2)
V(y = |z + 1A =3z < |2])B(x, 2))

and
B(z,z) =3z=|z|V3z+1=|z|V3z+2=|z|

This is easily seen to be equivalent in EBASIC to a ﬁ‘{’—formula. Uniqueness
follows since EBASIC can prove y must be either less than or equal to |z| or
greater than |z| but not both. In the latter case its value is forced to be || + 1.
In the former case, EBASIC can prove only one of 3z = |z|, 3z + 1 = |z|, and
3y + 2 = |z| can hold by using the axiom a + b < a+ ¢ & b < ¢ and equality
axioms. It is obvious that N |= A1, (=, |3]]])-

Definition 31 (BPR™) f is defined from functions g, h, t, and r by m-length
bounded primitive recursion if

F(0.z) = g(x)
F(n+1,z) = min(h(n,x, F(n,x)),r(n,x))
f(n, @) = F(|t(n, @)|m, x)

for some r € Ly and for some t € Lo.

If g, h, t, and r are multifunctions then f obtained by BPR™ results by
viewing each step in the above iteration as a composition of multifunctions.

Definition 32 A™ is the smallest class containing the Lo-terms, closed under
composition, and closed under BPR™.

The next theorem gives an upper bound on the FEj-definable functions of
I™E;.

Theorem 2. The Ei-definable functions of I Ey are contained in A™.

It is not claimed that I™E; can define all the functions in A™.

Proof. This is proved by a Buss-style [4] “witnessing argument”. Let f be Ej-
defined by Af(x,y). If I™E; proves (Va)(Jy)Ay, then since I"™E; is bounded
theory by Parikh’s Theorem there is a term ¢t € L, such that I"™FE; proves
(Va)(Jy < t)Ay. So I™E; proves (Jy < t(a))As(a,y). By cut-elimination, one
can assume every formula of a sequent in this last proof is either of the form
(3x1 < t1)(Jze < t2)¢ where ¢ is an open formula or can be made into this form
by padding on dummy quantifiers. Call such a formula LEFE;-formula (lexico-
graphically an existential followed by a Ej-formula). A witness predicate for such
an LEE,-formula is defined as follows: If A is open Wita(w, a) := w = 0N A(a).
If Ais (3z < t(a))B and Ais Ey then Wita(w,a) := w < t(a)AB(w, @). Finally,
it A(a) is (Fz1 < t1)(Jz2 < t2)B and A € EE; then

Wita(w,a) = ispair(w) A B(1,w) < t1 A B(2,w) < ta A
B(8(1,2),8(2,w), a).

For a cedent I' = {A;, ..., An} of LEE;-formulas, let AI' denote their conjunc-
tion and VI their negation. Let A be another such cedent. Following Pollett [18]
one can define open witness predicates Witar(w, a), Wity a(w, a) for such ce-
dents and also terms ¢t and ¢4 such that N I' — A iff

N = Gw < tr)Witar(w,a) = (FGw < tA)Witya(w,a).

The predicate Wity a(w, a) in Pollett [18] has the property that if A consists of
just one formula A then Wity a(w, a) = Wit 4(w, a). The predicate Witar(w, a)
in the case where I' is empty is defined in Pollett [18] as 0 = 0.

Next it is argued by induction on proofs of sequents of LE E;-formulas that
if I"™FE, proves I' — A then there is an A™ function g such that

N = Witar(w,a) = Wity a(g(w,a), a).

This induction breaks into cases depending on the last inference in the proof of
I' —» A. All of the cases in this witnessing argument can be handled in the same
way as the i = 1 case of Theorem 22 in Pollett [18] where 7 = {|z|,,}. The only
difference between the algebra here and the multifunction algebra B] given there
is that the latter contains the (Wj < |¢|)(s = 0) operator where s, t are Lo-terms.
This operator was used only to handle the sharply bounded universal quantifier
inferences that arose since LEZ:’f—formulas were being considered in that paper.
Since all the sequents in our proofs will only involve LE FE;-formulas this kind
of inference never arises and so we can get away without these operators.

Thus, if I™Ey F (Jy < t)A(a,y), then by the above there is a A™ func-
tion g such that N |=— Wita,(a,g(a)). So by the definition of witness, N |=
Ag(a,B(1,9(a))). Hence, one obtains f = (1, g(a)) € A™.

4 |3|z|] is not E;-definable

In this section, the proof that I° E; cannot prove D =NP is completed by showing
that I° By cannot Ej-define | £||]. To show this it suffices by Theorem 2 to show
that A° cannot define | §|«|]. The idea of the proof is to introduce a notion called
the plus-complexity of a natural number. It is shown that if one feeds low plus-
complexity inputs into a A% function then the plus-complexity of the output of
the function will not be too “large”. On the other hand, the plus-complexity of
|1]z|] on these inputs will be larger than any A% function could produce.

Plus-complexity as defined below will be a more sensitive measure than count-
ing the number of alternations of 1’s and 0’s in a number that was used in Jo-
hannsen [9,10] and Pollett [18]. Because Ly contains |z|, even if all the inputs
to a term ¢ had “few” alternations of 1’s and 0’s, all one could say about the
number of alternations in the output was that it was polynomial in ||---|| of
the inputs. This is not be sufficiently sensitive to show the non-definability of
[%|az|J which is why the more complicated notion of plus-complexity needed to
be invented.

Before plus-complexity can be defined, the notion of a stack code must first
be defined:

Definition 41 0 is a stack code. If v and w are stack codes, then the expressions
(v + w) and (2°) and (—v) are stack codes. Nothing else is a stack code. The
natural number v represented by a stack code v is defined to be the number
obtained by evaluating the stack code according to the usual definitions of +,—,
2% on the natural numbers.

Since 20 evaluates to 1 and stack codes are closed under addition it follows
that every natural number is represented by at least one stack code. In general,
there are many stack codes for any given number. For example, 3 can be rep-
resented by 22’ — 20 and by 2° + 2° + 2°. Here parentheses are omitted from
the codes, as will be done often in this paper, to improve readability. Also, the
convention above in the definition that barred variables are stack codes and the
same variable without the bar is what it evaluates to will be followed throughout
this paper. The plus-complezity of a stack code v, C (), is defined below.

Definition 42 If v, w are stack codes then:
1. CL(0) :==1.

2. CL((2Y) = Oy (0).

5. C4((=0)) = C4 (0).

4. C+((v +w)) := Cy(0) + Cy(w) + 1.

For a natural number z we define C1(z) to be

min(Cy (0)|0 is a stack code evaluating to x).

Lemma 43 Let x € N, z > 0. (1) There is stack code T such that C(Z) =
Ci(z) and T has the form:

(-o- (270 £271) £ ... £ 27).

where evaluating codes T; to numbers x; gives xg > x1 > ... > xy. (2) If T is of
the form

then we can take xo > x1 + 2.

Proof. (1) follows by noticing that stack codes with subcodes of the form (27 +
(—2%)) and (29 4 2%)) cannot be minimal. In the minus case, this is because one
could replace this subcode with 0. In the plus case, one could replace such a
code with 27+2° which has a smaller plus-complexity. To get the 27 ordered in
the correct way we can use the fact that (o + w) and (@ + ¥) evaluate to the
same number and so do ((7+ @) + 2) and (7 + (w + 2)) and also (—(7 4+ w)) and
((—=9) + (—w)). Finally, since z > 0 the first term does not have a minus in front
of it.

For (2) suppose Ty = x1 + 1 then for the sub-stack code (2%° — 2%1) we could
have used the code 2%' which has lower complexity.

The next lemma gives a simple upper bound on C(x).

Lemma 44 For allz € N, Cy(z) < |z]® 4+ 1.

Proof. The proof is by induction on z. C(0) = 1, C4+(1) = 1, C4(2) = 1,
C.(3) = C4(22° +29) =3, C,(4) = 1. So assume for all n < z that Cy(n) <
|n|*> + 1. Let Z be the representation of x from Lemma 43. There are fewer
than |z| many summands. The plus-complexity rule for plus adds 1 for each of
these. By the induction hypothesis, each z; will have plus-complexity less than
|z;|*> + 1 < ||z||> + 1. So one can bound the plus-complexity of = by |z| + |z] -
(lz||®> + 1) = |z| + |=|||=|]* < |=|> + 1. The last inequality holds if the weaker
inequality 1+ ||#||* < |z|* holds and this in turn holds if |z| > 3. i.e, z > 4.

Definition 45 The function # p(x) returns the number of alternations between
1 and 0 in reading the binary number x from left to right. The counting of this
number is started at 1 so #p(1) = 1.

As an example, let z be the binary number 1110011 then #g(z) = 3. The
next lemma, gives a lower bound on the plus-complexity of a number.

Lemma 46 For allz € N, Cy(x) > #p(z) —

Proof. Consider a minimal stack code Z for x. Assume it is written in the form
given by Lemma 43. From the definition of plus-complexity in the case of sum,
and the fact that each summand has plus-complexity at least 1, we get Cy(z) >
2 - (number of summands — 1) + 1 in Z. On the other hand it is easy to see
#p(w+2Y) < #p(w) +2 and also #p(w —2Y) < #p(w) + 2 and so we get the
result.

In the next lemma, the plus-complexity of the output of each of the base
functions of Ly is compared with the plus-complexity of its inputs.

Lemma 47 Let z,y € N.
1. C+($ +y) S Cp(a) + Cr(y) +1 < 2(Ch(2) + C1(y))-

2. Ci(z+y) < Ch(z) + Ci(y) + 1 < 2(Cy(2) + Cr(y)-

3. C+(8(z)) < Ci(z) +2 < 3C4(x).

4. Ci(@-y) < (Ch(x) + Coly) +1)° < 8(Ch(a) + Co())°.

5. Cy(lel) < Cy () +2 < 3C4 (a).

6. Ci(z#ty) < (Cy(z) + Ci(y) +5)°
<43(C (z) + C(y))*.

7. CL(MSP(z,y)) < (Ci(x) + Ci(y) +1)? < 4(Ch(x) + Ci(y))*.

8. If t(xy,...,x) is an Lo-term, then one can find fized constants k,d such
that C. (t(x)) < K(¥, Cs ().

Proof. (1) follows directly from Definition 42.

(2) if y > @ then C4(z — y) = C+(0) = 1 and the bound holds; otherwise,
the bound holds because of Definition 42 cases (3) and (4).

(3) follows from the fact C (1) = C1(2°) = 1 and the definition of plus-
complexity for +.

(4) First consider the case where and y have minimal stack codes of the
form 2% and 27, respectively. Then a stack code for z -y is 2 7 and so
Ci(x-y) < Cy(x) + Cy(y) + 1. Notice if there had been minus signs in front
of either z or y it would not have affected the plus-complexity of the output. In
the general case, a minimal stack code of z (resp. y) will be additions of less
than Cy(x) (resp. Cy(y)) terms of form 2% or (—2%') each of plus-complexity
less than C4(x) (resp. C1(y)). So if the minimal stack codes of & and y are
“multiplied out” a stack code for x -y is obtained with less than Cy (z) - C4(y)
terms each of which has plus-complexity less than Cy (x) + C4 (y) + 1. Using the
definition of plus-complexity for addition and subtraction one obtains

Ci(z-y) < Ci(2)Ch(y)(Cp(2) + Cr(y) + 1) + Ci(x) Oy (y)

which is less than

(Cy(@)Cy (y) + D(Cr(2) + Cr(y) + 1)

This in turn is seen to be less than (Cy(z) + Cy(y) +1)3.

(5) Assume Z is a minimal stack code for z and is in the form given by
Lemma 43. i.e., T = 2 47 and evaluating ¥ gives a number between —2¢"~1 and
2%’ Then either #', (z' +2°), or (2 +22") is a code for |z|. Since Cy (z') < Cy(2)
this gives the bound.

(6) follows from the definition of x#uy, (5), (4) and the definitions of C; (27).

(7) Let z := (--- (2% £ 2%1) & ... £ 2%) and y be stack codes for z and y
of minimal complexity as given in Lemma 43. A stack code for u = 2/2¥ (not
necessarily a natural number) is

(- (2%07T £2T17Y) £ ... £ 27T,

This code @ can be split into two parts: a part @ with z; —y > 0 and a part @
with z; —y < 0. To obtain a stack code for M SP(x,y) := |z/2Y], delete & from
u if it evaluates to a positive real and if v evaluates to a negative real replace
it with (—(2°)). In the resulting stack code there are at most C () summands
of plus-complexity less than Cy(x) + C4+(y) + 1. So one can bound the plus-
complexity of adding these summands by (Ci(z) + 1)(C+(z) + C4(y) + 1) <
(Cy(2) + Ch(y) +1)%
(8) This is straightforward to prove by induction on the complexity of ¢.

Now the effects of recursion on plus-complexity are considered.
Lemma 48 Let Cs(z) := Cy(z) + |||z|||- Let f be defined by BPR® using g, h,
r, t satisfying
Cwsls)F
1. C+(g(:l:)) <ec- (Zz Cs(wi))suua ils)
2. Cy(h(z,z,w)) < ¢ (Cs(z) + Cs(w) + X, Cs(x;))¥ where ¢ is defined to be
g1z tw+3; wils)"

3. Ci(r(z,y)) < c-(Cs(y) + X, Cs(x;)* where s,s1 € Ly and ¢,k are con-
stants.

Then there is a constant k' such that

Ci(f(n,x)) <c) + Z Cs(3(|1+"+El 2150k’

Proof. Note there is loss of generality in assuming the constants c, k are the same
in the bound of each g, h, and r since if they differed one could always take the
maximum of the three values. It follows from the bound on A that

m

Cy(F(n+1,2)) < c¢-[Cs(n) + Cs(F(n, @) + Y _ Cs(a;)]"
=0

where ¢ := 3(1+n+F(n@)+3; 2ils)" By the definition of BPR®, F(n,x) < r(n, @).
So also |F|3 < |r|3. Since 7 € Ly, there is a constant k' such that

[P @)l <K - (nls + 3 lrl) K - (Os(m) + 3 Osa)

Let k := k' + 1. Thus, Cs(F(n + 1, x)) is less than

m

c[k(Cs(n) + Y _ Cs(:) + Cy (F(n,x

i=0

))]3(\1+n+F<n,m)+Ei ail5)"

Using the bound on C (h), one can then expand C4 (F(n,x)) and so on. Doing
this gives a bound on C4(f(n,x)) = C4(F(Jt(n,x)|5,x)) of Y :=

m |t]s
Z :U, -l-Zk CS -l-ZCS:U,
i=0
where 9 is
|t]s
(L + sz Z
and Wj is

147+ F(j,z +in|5

The leftmost Y.", Cs(z;) in YV and the (|1 + Y, zi|5)* in ¢ come from the
composition with g. Since ¢t € Ly one can bound [t(n,z)]s < M = (|1 +n +
Zﬁds)k” for some constant k" and n > 1. As F < r < 214722l for some
d one can bound ¢ by ¢’ :=

d
(14D wils)® + M- (|14 M 4 2Pl LN ")k
i i

By choosing d' sufficiently large one can bound ¢’ by ¢" := (|[14+n+3_, xil5)?
(Notice the term 2/7+M+3: 2" is contained within the |- - |5.) Now consider the

term T under the exponent in Y. Since |t|5; < M and by Lemma 44, W can be
bounded by

iCS(iEi) + M -k- (M +1+i05(wz))

Notice since Cy (z;) > 1 and M < Cs(n) +), Cs(x;), there are a, b such that
the above and W can be bounded by (W')" := a- (Cs(n) + >, Cs(z;))® Thus,

Ci(f) < (W’)Hw” and one can make this bound into the form of the theorem
by choosing a slightly larger value than d’ in "

Corollary 1. If f(x) € A% and Cy(x;) < |x;|3 then

C+(f(:l:)) S c- (Z |$i|3)3(lzmi\5)k .

Proof. Follows from Lemma 47 and Lemma 48.
The main result of this section can now be established.

Theorem 3. The function |1|z|] is not B -definable in I° Ey. Hence, I° By can-
not prove E, = ﬁ‘f and also cannot D = ﬁ‘f

Proof. By Theorem 2, the E;-functions of I°E; are contained in A®. Consider

=221 _ 1 for any n. So for large enough z,

Ci(@) < (Inh)* +7 < Jals

22"+171_

since by Lemma 44, C(n) < (|n|)®+1. On the other hand, [3|z|] = [3[2
1| is a number of length ||z|| — 1 of the form 1010---. Hence, by Lemma 486,

1 lwla—1_ (lz5)k
C+(L§|93|J)lewll—2222 2> (jzfs)?

for fixed ¢, k and large enough x. The last inequality follows because

2l5)* 52 |z)5-(|z|5)k
C'(|$|3)3(| I5) < 0‘222\ I5-(=l5)

for fixed ¢, k, and large enough z. So by Corollary 1, |1|«|] is not in A% and
hence not Ei-definable in I°Ey. But |1z is Py deﬁnable in EBASIC. So if
IPE; could prove every El -predicate equivalent to some Ej-predicate, it could
Ey-define | z|2|]. Thus, I° Ey cannot prove Ey = 2P, Tt also cannot prove D = 5?
since every D predlcate can be expressed as an FEj-predicate provably in [5E1
since even EBASIC can do pairing.

The following is a variation on a result mentioned in the introduction, which
is used later to show I°E; cannot prove MRDP.

Theorem 4. Suppose T C Sy. If T' proves the MRDP theorem then T proves
D =NP=PH=co-D.

Proof. Suppose T proves the MRDP theorem. Then for every U;-formula A(x)
there is a formula E(x) := (Jy)P(x,y) = Q(x,y) where P, are polynomials
such that 7'+ A = E. In particular, T proves A — (Jy)P(x,y) = Q(xz,y). By
Parikh’s theorem (see Héjek and Pudlak [7] for a proof), since T' is a bounded
theory one can bound the y’s by an Lo-term ¢. Since A implies this bounded
form of E it will also imply Es := (3y)[| >, vi| < 9l 2 asl* 5 P(z,y) = Q(z,y)]
for large enough k. Note Es D EF D A so A = E,. Hence, every U;-formula
is equivalent to an D-formula. Using this one can show D = Ay = U;E; =
Uzﬁ‘f = PH. i.e., the polynomial hierarchy (PH) collapses. Since Aq is closed
under complement we get D =co-D.

The next result follows from the previous two theorems.
Corollary 2. I°E If the MRDP theorem.
In fact, a stronger theory cannot prove the MRDP theorem.

Corollary 3. Let Z := U;Z; where Z; = EBASIC +X°+L"3IND. Then Z
cannot prove the MRDP theorem.

Proof. In Pollett [18], it was shown Z cannot prove the collapse of the polynomial
hierarchy, but D =NP=co-D implies the collapse of the polynomial hierarchy.

5 Towards D =NP

In this section, several statements in the direction of trying to show D =NP will
be proven. It will be shown that I'E; proves D contains predicates of the form
(Vi < |s])P o @ for o either =, <, or <. A D-predicate A(x) :=

(Hy)[(z y; < 22w

J

‘ k

JAP =Q]

is uD in T, if T proves (Jy)(P = Q) D A. It is shown below that I'E; proves
its uD-functions closed under composition, and under A, and V. This is used to
show I'E; can D-define Ly-terms. Lastly, D is shown to be closed under certain
sums of polynomial length and this is used to prove the result.

Lemma 51 Let P;, Q); be polynomials EBASIC proves (1) (PL = Q1 AN P> =

Q) PL+P=01+Q2 (2)(PL=0Q1VP=Q2) & PP+ 0Q1Q2 = P1Q2+
PQ1 (3) I'E; proves its uD-definable functions are closed under composition.

Proof. (1) and (2) are straightforward. For (3), let f, g be two Diophantine
functions. By Parikh’s theorem, if I'Ey proves (Vz)(3ly)Af(x,y) then there is
an Lo-term ty bounding y such that I'E; + (Vz)(3y < t5)Af(x,y). Since y
was originally unbounded and unique one can choose t; of the form 2lel* for
some fixed k. So if and I'E; F (Vy)(3'2)A,(y, 2). Then it follows I'E; proves

(Vz)(T2)(Fy < 2‘””‘k)Af NAy. let B be what’s inside the scope of the (3!z). Then
B can be made into a D predicate by choosing a bound of the correct form larger
than the bounds on y and in Ay and Ay, prenexifying the existentials of Ay and
A, and using (1). To show that this new predicate, C, is equivalent to B, we use
that Ay and A, are uD for I'E; to show C D B.

Lemma 52 I'E; can uD-define <, <, x ~y, and |x/y] and prove basic prop-
erties of them.

Proof. Define LE(z,y) as (Jw)(w < 24 Az +w =y) and # < y as LE(Sz,y).
The goal is to show I'E; proves LE(x,y) < = < y where < is the Lo-predicate
symbol. That LE(xz,y) implies < y involves checking that LE satisfies all of
the EBASIC axioms for <. For instance, LE(0,y) holds taking w = y. For
x < y implies LE(z,y), use the EBASIC axioms (4) and (20) from Buss [4]
and LIND on these axioms to binary search for the w such that « + w = y.
Define Sub(x,y) = zas (x =y+2V (2 =0Ax <y)). Since = is in Ly, I'E; can
use this to prove z exists and is unique and in fact Takeuti’s [20] axiom for - is
precisely how Sub(z,y) is defined. Define |z/y| = z as (Fw)[w < 21*T¥ A ((y =
0Az=0Aw=0)V(w<yAz=2zy+w))]. The proof of existence of z in I'E;
can be done using LIND to binary search for a value. Uniqueness and being in
uD follow from EBASIC axioms.

The next argument is based on an observation of Raphael Robinson [19].

Theorem 5. Let P, Q be polynomials. (1) I°E; proves D contains the predicate
B_(b) := (Vi < b)P(i,x) = Q(i,z). (2) I'E, proves D contains the predicate
B_(b))-

Proof. First, note the predicate B_(b) above holds if and only if P'(b,x) :=
S ot o P(i,x) is equal to Q'(b,x) == Y7 o0 _ Q(i,x). P’ and
Q' can be written as polynomials. This is because Z?jzo(ij)m for fixed m
is expressible as a degree m + 1 polynomial over a fixed number. For exam-
ple ijzo(ij)l = b(b+ 1)/2. Let C(c) be the formula: B_(c) & P'(c,z) =
Q'(c,z). As mentioned in the introduction by standard methods [17] one can
show I°E; proves induction for Boolean combinations of E;-formulas. So it has
induction for C(c). I°E; trivially shows C(0) holds and I°E; proves P'(c,x) +
Z;Fo e Z;kzo P(c+ j1,...,¢ + jr,x) equals P'(¢ + 1,x) and similarly for
Q'(c+1,). This suffices to show C(c+1). So by induction on ¢, I°E; can prove
C'(b) which shows B_ is in D.

A Diophantine representation of exponentiation was given in Matiyasevich [15]
by studying the zeros of the equation p(a,z,y) := 2> + y*> — 2ay — 1. Adleman

and Manders [1] have shown the predicate E(z,y,z) := « = y* is in D by
bounding the existentials in this representation in terms of x. Using E(x,y, 2)
one can define (h(z) = z as (Fy)(x <y Ay <2x A E(y,2,z)) and one can define
zH#y = z as E(z,2,lh(z) - Ih(y)). (These are not quite D predicates but one can
combine the bound on y in [h with that of E to make it in D.) I'E; can prove
the existence of z in lh(x) = z using LIND on this predicate and can also show
lh(z) = |z| and show E and lh are uD-predicates. The details about verifying
the correctness of the E predicate in weak theories of arithmetic can be found
in Kaye [11]. Together with Lemma 52, I' E; can show all the Ly base functions
are in 4D and, hence, also the Lo-terms listed in the preliminaries.

Lemma 53 Fiz n and suppose |i"| < |b| for all i < |a|. Then (1) I'E; can D-
define S,,(ja]) := 2|4 i"2710 and (2) prove S,(|2a]) = S.(la] + 1) = S, (la]) +
(jal + 1)".

Proof. The proof is by induction (in the real world) on n. For n = 0 note I* E; can
D-define Sp(|a]) using the formula for summing a geometric series: [%J

Now assume for n’ < n + 1 we have defined S, (]a|) in I'E; and proven (2).
Then one can define S,41(ja]) = = as

@2l — 1)z = |a|" T2 — 14

. nt1_ifn+1

> (T sizal) - i)

i=0
The value of an z satisfying the above can be bounded by the right hand side
of the equation. I'E; can verify (2) for S,.; by LIND on ¢ for the equation
for Sp4+1(min(c, |2a])), the induction step using that S}, is correctly defined. The
above definition is motivated by the appendix on summing geometric equations
in Matiyasevich [16] and by Kaye [13]. Note that n in the above (and so the
("F')’s) are fixed natural numbers.

Lemma 54 Suppose |P(i,y)| < |s| for all i < |t|. Then I'E; can (1) D-define
S(Jal,y) = 3,2, P(i,y)2"*! and (2) prove 5(2al, y) = S(ja| +1) = S(jal, y) +
P(lal + 1, y).

Proof. Rewrite P as Z?ZO P; (y)i? where the P;’s are polynomials in the remain-
ing variables. So S equals

la| 4
> (> P2t

i=0 j=0

which in turn equals
lal

d
> P Qi 2.
j=0 =0
Each of the outer summands is just a product of a polynomial with the kind
of sums we showed D-definable in Lemma 53 (1). So S is D-definable in I'Ej;.
Similarly using Lemma 53 (2) establishes (2) above.

Theorem 6. Let P, Q be polynomials. I* E1 proves Bo(|b],y) := (Vi < |b])P(3,y)o
Q(i,y) is equivalent to a D-predicate where o is either < or <.

Proof. Only the B. case is shown as the proofs of the two cases are essentially the
same. Since P, () have nonnegative integer coefficients they are nondecreasing

in each variable. Hence, I* B proves P(i,y) < P(|b],...,|b],y) and Q(i,y) <
Qbl,- ... 1b],y). Let m = |P(|b],...|b],y) - Q(|b],-..|b],y)|- Now B holds iff
we have

[6] [6]

i1=0 1,=0

koo -
where v = 7 4; - m’ is equal to

|l |6]

O3 Q)i b

i1=0 ip=0

for some polynomial length string w. Let L(|b|,y,w) and R(]b|,y) be the first
and second sums respectively. Using Lemma 54 and that the L,-terms are uD-
definable, I'E; can D define L and R. So LIND on ¢ in C(c) :=

B<(min(e, [b]),y) & (Jw < #)(L(min(c, [b]), y, w) = R(min(c, [b]),y))

for some large enough term ¢ gives the result. The induction step uses Lemma 54(2).
As mentioned in the introduction I'E; will have LIND for this predicate since
it is a boolean combination of F-formulas.

6 Logtime classes and D

As was mentioned in the introduction the author conjectures that techniques
similar to those in the last section might be able to show NLOGTIME is con-
tained in D. In this section, it is shown that this result would not suffice to
prove D =NP. The possibility of proving D =NP by showing equality is hard
for co-NLOGTIME under some kind of reduction computable in D is then con-
sidered. The model of sublinear time used in this section is the standard one:
The machines used are allowed to write an index of an input tape square on a
query tape, enter a query state, and in one step get the value of that square of
the input.
Definition 61 Let C be a class of languages. Then EC denotes the class of
languages in (Jy < s){x,y) € L for some s an La-term and L in C.

One might conjecture that ELOGTIM E =NP or the weaker conjecture that
ENPOLYLOGTIME=NP. It is established next that this is not possible.

Theorem 7. Let t(|z|) be monotonic Lo-terms so that t(|z|) > log |z, t(|z|*) €
O([t(|z)]*) C o(|z|) for all k. Then

ENTIME[t°M] =NTIME[t°™M)].

The case of a single input variable x is shown but the method can be generalized
to any number of inputs.

Proof. By the definition if L is in ENTIME[t®V], there is some Lo-term s and
L' in NTIME[t®(M] such that

re€Le (Jy<s)ry)el.

Note since s is an Lo-term then s can be bounded above by 2°U#D for some
polynomial p. Thus, there is some nondeterministic machine M for L’ such that
on inputs = and y < s(x) decides if x € L in time bounded by [t(|z|+ p(|z]))]F <
t(|z])¥" for some constants k, k. Without loss of generality one can assume M
never queries the |s| — 1st bit of y, so if M makes a query to the i bit of y there
are values of y < s so that this value is both 1 and 0. Let N be the machine that
simulates M on input = but whenever M makes a query of a bit value of y, IV
checks in a table it stores on another tape if that query has been made before. If it
has it uses the value it stored for that query. Otherwise, N nondeterministically
guesses 1 or 0 as a returned value. Storing the value of which bit position was
queried takes less than log |s| < [t(]z])]™ bits for some m so N’s runtime is in
NTIME[tO(l)]. If there was a value of y such that M would accept, then the bits
used in this y give a guess path to an accepting path in V. Since all possible bit
settings for y’s occur in values less than s if there were some nondeterministic
choices that make N accept, one could set the appropriate bits of y accordingly
and make M accept.

Corollary 4. ENPOLYLOGTIMEC NP.
Proof. By the Theorem 7
ENPOLYLOGTIMECNLINCNP.
The last strict inclusion is by the nondeterministic time hierarchy theorem.

It might be possible to show D =NP by showing equality is hard for co-
NLOGTIME under some kind of reduction. As defined in the introduction, a
polynomially bounded functions is in FDLOGTIME if each bit of its output is
DLOGTIME computable. If NLOGTIME is in D then computing any individual
bit of an FDLOGTIME functions will be in D; however, it would still be unclear
if given a FDLOGTIME function whether its graph would be in D. The author
conjectures it will be and the next theorem shows that this conjecture would
imply D =NP. Recall from the introduction that the predicate x < y holds if
the ith bit of « is less than the ith bit of y for all <.

Theorem 8. x <5 y and equality are co-NLOGTIME-complete under FDLOG-
TIME reductions.

Proof. Both problems are in co-NLOGTIME as one can universally guess a bit
position i and then in DLOGTIME check if either BIT (i,2) < BIT(i,y) or

BIT(i,x) = BIT(i,y). Let M be a co-NLOGTIME machine and z an input.
Without loss of generality one can assume each path in the computation tree
of M is of length klog|z|. The FDLOGTIME reduction outputs two numbers
w,v to be input to the <, predicate as w <, v. It sets the ith bit of w to 1 if
M on path i rejected and to 0 otherwise. It sets the ith bit of v always to 0.
Since on a fixed path M’s computation is DLOGTIME, this reduction will be
in FDLOGTIME. Thus, w <, v iff for every bit of w is 0 and this happens iff
M accepted on every path. This in turn implies € L(M). To reduce z, M to
equality let the ith bit of w be 1 iff M accepts on path i and let the ith bit of
v be 1. Again, this reduction is in FDLOGTIME and w = v iff M accepts on
every path iff z € L(M).

7 Conclusion

Several lines of attack on the D =NP question seem promising. It is quite likely
one can find a better complexity notion than plus-complexity such that for all
the Lo base functions the complexity of the output can be bounded linearly in
the outputs. This measure would also have to be useful in that one should be
able to use the excluded middle trick to define some function whose complexity
cannot easily be bounded this new measure. Nevertheless, such a measure might
exist and allow one to show I"™ E; cannot prove D =NP for some m < 5.

Towards showing that D=NP holds, the approach of considering reductions
to equality might still bear fruit. The first step would be to show a complex-
ity class like NLOGTIME or DLOGTIME is contained in D. This would not
immediately imply FDLOGTIME is contained in D. But maybe some weaker
reduction would suffice. In any case, it is useful to make conjectures which aren’t
already equivalent to D =NP in the hopes that they either lead one towards a
proof of D =NP or their refutations gives some new insight on the problem.
For instance, one reducibility which is presumably weaker than FDLOGTIME
reducibility is to consider functions whose graphs are recognizable in DLOG-
TIME (or NLOGTIME). A reasonable conjecture is that equality testing is hard
for co-RLOGTIME under this kind of reducibility. If DLOGTIME is in D, this
would suffice to show D =NP. On the hand, D =NP does not neccessarily imply
this conjecture. Unfortunately, these kinds of reductions are probably too weak
to show the desired hardness result.

References

1. L.M. Adleman and K. Manders. The computational complexity of decision pro-
cedures for polynomials. In 16th Annual Symposium on Foundations of Computer
Science, pages 169-177. 1975.

2. L.M. Adleman and K. Manders. Diophantine Complexity In 17th Annual Sympo-
stum on Foundations of Computer Science, pages 81-88. 1976.

3. S. Arora, C. Lund, R. Motwani, M.Sudan, and M.Szegedy Proof verification and
hardness of approximation problems. In 38th Annual Symposium on Foundations of
Computer Science, pages 14-23. 1992.

4. S.R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

5. P. Clote and G. Takeuti. Exponential time and bounded arithmetic (extended
abstract). In Structure in Complezity Theory LNCS223, pages 125-143. Springer-
Verlag, 1986.

6. H. Gaifman and C. Dimitracopoulos. Fragments of Peano’s arithmetic and the
MRDP theorem. Monographie 30 de L’Enseignement Mathématique, pages 187-206,
1982.

7. P. Hijek and P. Pudldk. Metamathematics of First-Order Arithmetics. Springer-
Verlag, 1993.

8. J.P. Jones and Y. Matiyasevich. Register machine proof of the theorem on expo-
nential diophantine representation. Journal of Symbolic Logic, 49:818-829, 1984.

9. J. Johannsen. On the weakness of sharply bounded polynomial induction. In Pro-
ceedings of Kurt Godel Colloquium 1998, pages 223 230. Springer-Verlag, 1993.

10. J. Johannsen. A model-theoretic property of sharply bounded formula with some
applications. Mathematical Logic Quarterly, 44(2):205-215, 1998.

11. R. Kaye. Diophantine induction. Annals of Pure and Applied Logic, 46:1-40, 1990.

12. R. Kaye. Open induction, Tennenbaum phenomena and complexity theory. In
P. Clote and J. Krajicek, editors, Arithmetic, Proof Theory and Computational Com-
plezity, pages 222—-237. Oxford Science Publications, 1993.

13. R. Kaye. A diophantine undecidable subsystem of arithmetic with no induction
axioms. To appear in Journal of Symbolic Logic.

14. C. F. Kent and B.R. Hodgson. An arithmetical characterization of NP. Theoretical
Computer Science, 21:255—-267, 1982.

15. Y. Matiyasevich. Enumerable sets are Diophantine. Dokl. Acad. Nauk, 191:279-
282, 1970.

16. Y. Matiyasevich. Hilbert’s Tenth Problem. MIT press, 1993.

17. C. Pollett. Structure and definability in general bounded arithmetic theories. An-
nals of Pure and Applied Logic. 100:189-245, October 1999.

18. C. Pollett. Multifunction algebras and the provability of PH |. Annals of Pure
and Applied Logic. 104:279-303. July 2000.

19. R. Robinson. Arithmetical representation of recursively enumerable sets. Journal
of Symbolic Logic 21(2):162-186. June 1956.

20. G. Takeuti. RSUYV isomorphisms. In P. Clote and J. Krajicek, editors, Arith-
metic, Proof Theory and Computational Complexity, pages 364-386. Oxford Science
Publications, 1993.

21. R. Venkatesan and S. Rajagopalan. Average case intractibility of matrix and
Diophantine problems. In Proceedings of the 24th Symposium on the Theory of Com-
putation 1992, pages 632—642. ACM press, 1992.

