
Modular Implementation of Dense Matrix Operations
in a High-level BSP Language

Sovanna Tan and Frédéric Gava
Laboratory of Algorithms, Complexity and Logic, University of Paris-East, Cŕeteil-Paris, France,

sovanna.tan@univ-paris-est.fr and frederic.gava@univ-paris-est.fr

POSTER PAPER

ABSTRACT

BSML is a high-level language for programming parallel
algorithms. Built upon the OCaml language, it provides a
safe setting for the implementation of BSP algorithms and
for avoiding concurrency related problems (deadlocks, in-
determinism,etc.). Dense matrices appear in many scien-
tific computations but many libraries are limited to matri-
ces of numeric elements. This paper is our first experiment
to design a generic library of BSP implementation in ML
of dense matrix operations for scientific computation.

KEYWORDS: BSP, Matrix, Module, ML.

1. INTRODUCTION

Generalities. Matrices play an important role in numerical
analysis and in scientific computations in general. It is im-
portant to have efficient parallel algorithms for them. But it
is not sufficient, especially for high-level language and for
symbolic computations.

There exists many efficient numerical libraries (which con-
tain matrix implementation) for low level languages C, For-
tran and for higher level ones such as C++, Python, Java
etc. We can cite BLAS1 and ScaLAPACK2. Most of them
only provide floating point arithmetic (in single or dou-
ble precision) and sometimes complex numbers for matrix
computations. Even if it suffices for most parallel com-

1http://www.netlib.org/blas/
2http://www.netlib.org/scalapack/

putations, what about polynomials or more complex ex-
pressions? Some libraries are more generic using C++
STL templates as MTL3 or MET4. But when storing non-
numerical types, some mathematical functions are missing.
Some might cause compiler errors or errors during runtime.

That makes the design of new and robust parallel libraries
an important area of research. Creating such a library in-
volves a trade-off between the possibility of writing pre-
dictable and efficient programs and the abstraction of such
features to make programming safer and easier.

BSML. An interesting compromise for coding parallel li-
braries is Bulk-Synchronous Parallel (BSP) ML (BSML), an
extension of ML to code BSP algorithms [1]. It combines
the high degree of abstraction of ML with the scalable and
predictable performances of BSP.

Main goal. The main objective of this research is to design
generic libraries by abstracting as much as possible the de-
tails of the implementation of complex data structures such
as matrices, graphs,etc. without generating poor perfor-
mances and without writing unusable API or unreadable
code. We follow the spirit of [2] by using the module lan-
guage of ML and [4] by allowing to replace the primary
data structures of the application by their parallel versions:
therefore the complexity of parallelism is hidden behind an
interface that tries to stay as close as possible to a sequen-
tial one, thus making the code easy to learn and to use.

This paper is our first experience with this design. We have
chosen dense matrices because they appear in many scien-

3http://www.osl.iu.edu/research/mtl/
4http://met.sourceforge.net/

tific computations. Square dense matrices are certainly, the
most studied data structures.

2. FUNCTIONAL BSP PROGRAMMING

For lack of space, we refer to [1]5 for a gentle introduction
to the BSP model and BSP C programming (BSPlib).

p0 p1 p2 p3

Local
computing

Communications

Barrier

Next
Super-step

Replicated parts
Local parts

Global
communications

and barrier

p0 p1 p2

Figure 1. A BSP Super-step (Left) and BSML Model of
Execution (Right)

General description. BSML is currently a library based
on the Objective Caml (OCaml) language; this choice was
made among the different variants of ML available mainly
for a reason of efficiency. Other reasons include the amount
of libraries available and the tools provided. We plan a full
language implementation by generating OCaml code. The
core syntax ofBSML is that of OCaml — with few restric-
tions. BSML programs can mostly be read as OCaml ones.
In particular, the execution order should not seem unex-
pected to a programmer used to OCaml, even though the
program is parallel. Moreover, most normal OCaml pro-
grams can be considered asBSML programs that do not
make use of parallelism: the programs are executed se-
quentially on each processor of the parallel machine and
return their results normally. This allows the paralleliza-
tion to be done incrementally from a sequential program.

Few entry points are needed for parallelism.BSML is
based on a data type called parallel vector which, among all
OCaml types, enables parallelism. A vector has type’a par
and embedsp values of type’a at each of thep different
processors of the BSP machine. The number of processors
p is defined as a constantbsp p throughout the execution
of the program. We use the following notation to describe
a parallel vector:〈x0, x1, . . . , xp−1〉.

Model of Execution. What distinguishes this structure
from an usual vector of sizep is that the different values,
that will be calledlocal, are blind from each other, as it is
only possible to access the local valuexi in two cases: first
locally, on processori (by the use of a specific primitive)
and secondly, after some communications. These restric-
tions are inherent to distributed memory parallelism; here

5http://en.wikipedia.org/wiki/Bulk_
Synchronous_Parallel

they are enforced by the use of an opaque type. This choice
also makes parallelism fully explicit, the BSP costs eas-
ier to compute [3] and we think programs more readable.
Worth noting is that parallel vectors can not be embedded
in themselves since the BSP machine has only one level of
parallelism. We refer to [6] for discussions on the problem-
atic BSP implementation of nested vectors.

Since aBSML program deals with a whole parallel machine
and individual processors at the same time, a distinction
between the levels of execution will be needed (see right
scheme in Fig. 1):

• Replicated execution is the default. Code that does
not involveBSML primitives (nor, as a consequence,
parallel vectors) is run by the parallel machine as it
would be by a single processor. It is used to coordinate
the work of each processors.

• Local execution is what happens inside vectors, on
each of their components: the processor uses its lo-
cal data to do computations that may be different from
the others. Replicated and Local execution are strictly
disjoint, and typically, processors alternate between
them.

The distinction between these levels is strict [6].

Parallel primitives. Parallel vectors are handled through
the use of different communications primitives that consti-
tute the core ofBSML. Their implementation relies either
on MPI, BSPlib or on TCP/IP. The user can choose. A
toplevel is also provided where the user can define its num-
ber of processors: execution on the toplevel or on a parallel
machine gives the same results — except in time. Fig. 2
subsumes the use of the primitives. Informally, primitives
work as follows. Let≪ x≫ be the vector holdingx ev-
erywhere — on each processor. The≪≫ indicates that
we enter a local section and pass to the local level. Repli-
cated information is available inside the vector. Now, to
access local information, we add the syntaxx to open
the vectorx and get the local value it contains, which can
obviously be used only within local sections.

Theproj primitive is the only way to extract a local value
from a vector. Given a vector, it returns a function such
that when it is applied to the pid of a processor, it returns
the value of the vector at this processor. Theproj prim-
itive performs communications in order to make local re-
sults available globally within the returned function. Hence
it establishes a meeting point for all processors and, in BSP
terms, ends the current super-step. Note the choice of func-
tions of type(int→ ’a) in proj. Arrays of sizep or lists
could have been chosen instead, but the interface is more
functional and generic this way. Furthermore, as seen in the

examples, the conversion between one style and the other
is easy. Internally, our implementation relies on arrays.

The put primitive is the comprehensive communication
primitive. It allows any local value to be transferred to any
other processor. As such, it is more flexible thanproj. It is
as well synchronous, and ends the current super-step. The
parameter ofput is a vector that, at each processor, holds a
function of type(int→ ’a) returning the data to be sent to
processori when applied toi. The result ofput is another
vector of functions. Each function returns the datareceived
fromprocessori when applied toi.

BSP paradigm’s simplicity and elegance comes at a cost:
the ability to synchronize a subset of the processors would
break the BSP cost model. Subset synchronization is gen-
erally used to recursively decompose computations into in-
dependent tasks — the divide-and-conquer paradigm. The
last primitive allows the evaluation of twoBSML expres-
sionsE1 andE2 as super-threads. From the programmer’s
point of view, the semantics of thesuper is the same as
pairingi.e., building the pair(E1, E2) but the evaluation of
super E1 E2 is less costly because it merges the commu-
nication and the synchronization phases ofE1 andE2.

Defining some useful libraries simplify the coding of the
algorithms. Some typical examples ofBSML programming
can be found in [4, 3, 7, 6].

3. A MODULAR LIBRARY

3.1. The OCaml’s module system

In this section we briefly recall the characteristics of the
OCaml’s module system. This is an independent high-
order language (strongly typed [9]) above OCaml, com-
pleting only software engineering functionalities: separate
compilation, structuring space names and genericity of the
code. The building blocks are structures which pack to-
gether related definitions. Here is for instance a structure
packaging together a type of matrix and some operations:

module Matrices =
struct

type ’a mat = ’a array array
(∗ plus: (’a→ ’a→ ’a)→ mat→ mat→ mat ∗)
let plus oplus m1 m2 = ...

end

where “oplus” is an addition operator for elements of
the matrix. Outside the structure, its components can
be referred by using the structure name, for instance,
“Matrices.plus” or “ Matrices.mat” in a typed context.
Signatures are interfaces for structures. A signature speci-
fies which components are accessible from the outside, and
with which type. For instance, the signature below speci-
fies our matrices by hiding the implementation:

module type TypeMatrices =
sig

type ’a mat
val plus : (’a → ’a → ’a) → ’a mat → ’a mat → ’a mat

end

module OurMatrices = (Matrices : TypeMatrices)

(∗ or we can directly write ∗)
module OurMatrices: TypeMatrices =
struct
type ’a mat = ’a array array
...

end

Functors are “functions” from structures to structures.
They are used to express parametrized structures. For
instance, here is a structure implementing matrices
parametrized by a structure providing the type of the ele-
ments of the matrices and operators on them:
module type Algebra =
sig

type t
val plus: t → t → t

end

module type TypeMatrices =
sig

type element
include Algebra

end

module Matrices (Elt: Algebra) : TypeMatrices with type element = Elt.t =
struct

type element = Elt.t
type t= element array array
let plus m1 m2 = ...

end

Note that “Algebra” is a sub-type of “TypeMatrices” and
its thus allows to define a module of matrices of matrices:
module MatofMat=Matrices(Matrices(struct type t=float let plus=(+.) end))

As functors are first-class values in the module language
(high-order language), they can also be used as arguments
to another functor (it is the same kind of abstraction than
functions as arguments of other functions). For instance,
we can build a parallel implementation of matrix as a par-
allel vector of matrices but where the sequential implemen-
tation of them is abstract by a function (the parallel imple-
mentation is independent of the sequential one):
module Make (Elt : Algebra) (MakeLocMat:functor(Elt:Algebra) →
TypeMatrices with type element=Elt.t):TypeMatrices with type element=Elt.t
= struct
module LocMat = MakeLocMat(Elt)
type element = Elt.t
type t = LocMat.t par
let plus = ...

end

3.2. The BSML linear algebra Module

In this section, we describe the structure of our linear alge-
bra entities6. We begin by defining an hierarchy of mod-
ule types also called interfaces for the algebraic structures

6Freely available athttp://lacl.univ-paris12.fr/gava/
bsmlLA/

primitive type informal description
≪ x ≫ t par (if x : t) 〈x, . . . , x〉
pid (within a vector) int valuei on processori
v (within a vector) t (if v : t par) vi on processori (if v = 〈v0, . . . , vp−1〉)
proj ’apar→ (int→ ’a) 〈x0, . . . , xp−1〉 7→ (fun i → xi)
put (int→ ’a)par→ (int→ ’a)par 〈f0, . . . , fp−1〉 7→ 〈(fun i → fi 0), . . . , (fun i → fi (p − 1))〉
super (unit→ ’a)→ (unit→ ’a)→ ’a∗’b fa 7→ fb 7→ (fa (), fb ())

Figure 2. Summary of BSML Primitives

which are involved in linear algebra. We start from Set,
and move towards Group, Ring, Field and Normed Field.
In each interface, we declare the type of each structure op-
erator and the name of neutral elements. For normed struc-
tures, we add the type of the norm and its comparison oper-
ators. These modules were inspired by an existing library
for formal and numerical calculus in OCaml7.

We also introduce other functions such as absolute value,
modulus, square root and a very small value called ep-
silon needed by some classical linear algorithms such as
LU decomposition or Gauss Jordan elimination. With these
strong typing constraints, our algorithms work with any
data type that implements the required interface. This way
we avoid many compiler or runtime errors and build a ro-
bust library. To do actual computations, we use existing
OCaml data types to define the fields of real and complex
numbers according to the specified normed field interface.

In this framework, a matrix is implemented with a BSML
parallel vector of normed field element arrays. Linear alge-
bra algorithms are functors which perform computation on
matrices made of normed field elements.

For matrix computation, it is convenient to denote the pro-
cessors by a two dimensional arrayPr×Pc. Parallel algo-
rithms generally distribute matrix entries to processors in
such a way that a matrix row is located on a processor row
and a matrix column on a processor column. Many BSP
algorithms have been analyzed with a scattered distribution
[1], [5] where matrix element(i, j), 0 ≤ i ≤ m, 0 ≤ j ≤ n

is located on processor(i mod Pr, j mod Pc). There-
fore we choose first to implement these algorithms with a
scattered distribution.

4. DENSE MATRIX OPERATIONS

4.1. Dense Matrix Multiplication

This first example is based on an algorithm presented in [5]
which is independent of type of data of the square matri-

7http://www.lama.univ-savoie.fr/ ˜ RAFFALLI/
formel.html

ces. The true algorithm implemented in our library is close
to it except that it works for arbitrary size matrices and used
a scattered distribution and not a block one (it is thus less
readable). Initially, twon × n matricesA andB are dis-
tributed among thep =

√
p×√p processors so that each

processor stores a sub-set (call block) of sizem×m (where
m = n√

p
) of the original matrix. In this manner, element

A(i, j) (resp. B(i, j)) with 0 ≤ i, j < n is stored in the
(j

m
) × √p + i

m
-th block. We callAi (resp. Bi) the i-th

block ofA (resp.B) shared by processori. We note[0] an
empty matrix and⊕ (resp.⊗) sum (resp. multiplication)
of matrices. The algorithm can be written as follow:

begin Mult(C,A,B)
let m = n√

p

let pi = pid mod
√

p and pj = pid√
p

and Cq = [0] in
for 0 ≤ l <

√
p do

begin
let a = A((pi+pj+l) mod

√
p)×√

p+pi

and b = B((pi+pj+l) mod
√

p)+pj×
√

p in
Cpid ← Cpid ⊕ a⊗ b

end
end Mult

One can remark that each processor receives data from two
distinct processors at each super-step due to around-robin
distribution of the blocks. In Fig 3, we give the code of this
algorithm usingBSML and C+BSLlib [1]. For theBSML

implementation, we use twice the “get from” utility func-
tion and we “superposed” them to avoid the duplication
of super-steps. Each “get from” is built as in the algo-
rithm and as thebsp get in the C code. In this C code,
we used specific sequential addition and multiplication of
matrices of floats. These two codes have two main differ-
ences. First, using our modular implementation, theBSML

code abstracts the type of the elements of the matrices. Sec-
ond, in the C code we modify in place the matrix while in
theBSML code, the resulting matrix is build dynamically.

All the tests were run on the LACL cluster composed of
20 Pentium dual core 2Ghz with 2GB of RAM intercon-
nected with a Gigabyte Ethernet network. Fig. 4 gives some
benchmarks for matrices of floats (times and speedups).
Note that if we want other kinds of matrices, using the

(∗ multiply par:t→ t→ t ∗)
let multiply par parA parB =
let parC=ref mat create neutral parA.size row in
let sqrt p=sqrt int bsp p in
let ni=n/sqrt p in
let pi=≪ pid mod sqrt p≫

and pj=≪ pid/sqrt p≫ in
let fromA=≪ fun l→ ((pi+pj+l) mod sqrt p)∗sqrt p+pi≫

and fromB=≪ fun l→ ((pi+pj+l) mod sqrt p)+pj∗sqrt p≫
in
for l=0 to sqrt p−1 do
let rcvpA,rcvpB = super (fun ()→ get from fromA parA l)

(fun ()→ get from fromB parB l)
in ≪ $parC$:= seq plus $parC$ (seq mult $rcvpA$ $rcvpB$) ≫

done;
parC

void c mat mul(double ∗A,
double ∗B,
double ∗C,
int n,int p sqrt)

{
register int pid;
double ∗a,∗b,∗c;
register int l,pi,pj,ni,size
ni=n/p sqrt;
size=ni∗ni∗sizeof(double);
pi=pid % p sqrt;
pj=pid / p sqrt;
a = (double ∗)malloc(size);
b = (double ∗)malloc(size);
c = (double ∗)malloc(size);
init mat float(C,ni)

bsp push(A,size);
bsp push(B,size);
bsp sync();
for (l=0;l<p sqrt;++l)
{
bsp get((((pi+pj+l)%p sqrt)∗p sqrt+pi),A,0,a,size);
bsp get((((pi+pj+l)%p sqrt)+pj∗p sqrt),B,0,b,size);
bsp sync();
mat seq mult float(a,b,c)
mat seq add float(C,c)
}

bsp pop(B);
bsp pop(A);
free((void ∗)b);
free((void ∗)a);
free((void ∗)c);
}

Figure 3. BSML Code of the Matrix Multiplication (Left) and in C+BSPlib (Right, Two Columns)

modularBSML code, we just have to change the instanti-
ation of the algebra while using C code, we have to change
the code itself. We can remark that the C+BSPlib code is
three time faster thanBSML one. This mainly due to the
use of functors that are known by the OCaml community
to slow down the programs. For both, speedup are close
to the linear acceleration which is not surprising since ma-
trix multiplication is a good parallel problem. We can also
see a super-linear acceleration for the BSML code which is
more scalable than the C code. This is mainly due to the
fact that the computational parts of the C code are efficient
enough (even in the sequential implementation) to be only
slow down by the communications.

4.2. LU decomposition

In linear algebra, LU decomposition is the decomposition
of ann× n dense matrixA = aij into a a lower triangular
matrix L and an upper triangular matrixU so thatA =
L × U . This method has a great deal of applications in
numerical analysis (to solve systems of linear equations or
calculate the determinant). For lack of space, we do not
show theBSML code nor the C one which comes from [1].
Fig 5 presents the benchmark that we have done on our
cluster with matrices of floats.

We can see that performances degrade beyond 10 proces-
sors for both the ML and C codes. We can also see a super-
linear acceleration for the C code (this is certainly due to
less missed caches) with less than five processors. It can
be seen that the larger the matrix is, the less degradation
appears quickly and is important. This is due to the fact
that the algorithm communicates a lot and that the report
computation times/global synchronization is no more to the
advantage of a large number of processors. Each processor
has enough data to process: for the LU decomposition of
matrices of complex numbers, this degradation occurs only
for a number of processors twice as large.

As in the multiplication, the ML code is three times slower.
This suggests that it is not useless to continue the work on
parallel extensions to the ML languages but we must con-
sider that these languages offer safety and are more effi-
cient in the context of non-floating calculations [8]. More-
over, this safety enforcement could be an asset when paral-
lel computations performed are critical.

We have also implemented a Cholesky factorization, a
Gauss Jordan elimination, transposition and inversion of
matrices. Many other operations can be easily imple-
mented from this set of operations. For lack of space, we
do not presented them here.

5. RELATED WORKS

[8] is the first book that gives some useful examples of
the use of OCaml for scientific computing. It shows the
advantage of a polymorphic, safe, efficient language for
this community. Matrices are treated as arrays of arrays
of floats. But there is no study of generic implementations.
[4] presents the first implementation of modular BSP data
structures in ML: parallel set, map, hash tables, lifo are pro-
vided with an application to scientific computation. The
first massive use of functors for a data structure library is
OCamlGraph [2]. It provides a generic and modular imple-
mentation of graph in OCaml without poor performances.
BSML extension of this work is a work in progress.

For OCaml, we have found three libraries for manipulat-
ing matrices: psilab8 and lacaml9 which both used LA-
PACK for providing matrices operations. Psilab has very
convenient printing capacities for matrices. The last one,
OCamlFloat10 is also an interface to the Lapack and Blas
libraries which aims to improve the clarity and efficiency

8http://psilab.sourceforge.net/
9http://hg.ocaml.info/release/lacaml

10http://www.mirrorsky.com/ocaml/

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40

C
o

m
p

u
ta

tio
n

tim
e

(s
)

Number of processors

Computation time of float matrix n*m product written in BSML

800*820
1000*1020
1200*1200
1400*1420

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

C
o

m
p

u
ta

tio
n

tim
e

(s
)

Number of processors

Computation time of float matrix n*m product written in BSP-C

800*820
1000*1020
1200*1200
1400*1420

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

S
p

ee
d

u
p

Number of processors

Acceleration of float matrix n*m product written in BSML

800*820
1000*1020
1200*1200
1400*1420
Linear

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

S
p

ee
d

u
p

Number of processors

Acceleration of float matrix n*m product written in BSP-C

800*820
1000*1020
1200*1200
1400*1420
Linear

Figure 4. Multiplications of Dense Matrices of Floats

of numerical algorithms. This library also allows to build a
matrix using sub-matrices and there is a common interface
for matrices of floats and complex numbers. But there is
no interface for other kind of data. Using C++ template,
we can found many generic implementations of matrices11

in the literature and on the web. Some of them use paral-
lel algorithms12. To our knowledge, none of them offers
all together parallel operations, true generic interface and
safety/portability of execution. The matrix library scipy13

for the Python language also lacks these properties.

6. CONCLUSION

In this paper, we presented a generic, modular and ML style
implementation of some well known linear algebra prob-
lems in the context of the BSP model, analysed their perfor-
mance and compared them to a standard C implementation.
We reported the experimental results obtained:

• The experiments have strengthened our convictions

11e.g.http://www.codeproject.com/KB/architecture/
ymatrix.aspx

12http://polaris.cs.uiuc.edu/hta/
13http://www.scipy.org/

that algorithm design based on the BSP model is plau-
sible, easy to follow, leads to algorithms that can be
portable, scalable and without much programming ef-
fort, quite efficient;

• It seems that the pure numerical algorithms used as
examples in the paper are not the more appropriate
to show the advantages of this programming environ-
ment. Using the generic possibilities of the ML lan-
guages, parallel programs can be written to work on
any kind of algebra and not only numerical ones. We
think about many biological/chemistry systems where
elements are not floats but more complex structures
(e.g.atoms, cells,etc.);

• This genericity clearly slows down programs but not
as much as one might think. This is a well known fact
in the C++/template community.

The algorithms presented and their implementations are not
the better ones especially in the case of more specific dense
matrices (such as Vandermonde, Cauchy matrices, com-
plex Hadamard matrices,etc.). Future work will consider
three important points.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40

C
o

m
p

u
ta

tio
n

tim
e

(s
)

Number of processors

Computation time of float matrix n*m LU decomposition written in BSML

800*820
1000*1020
1200*1200
1400*1420

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 5 10 15 20 25 30 35 40

C
o

m
p

u
ta

tio
n

tim
e

(s
)

Number of processors

Computation time of float matrix n*m LU decomposition written in BSP-C

800*820
1000*1020
1200*1200
1400*1420

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

S
p

ee
d

u
p

Number of processors

Acceleration of float matrix n*m LU decomposition written inBSML

800*820
1000*1020
1200*1200
1400*1420
Linear

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
S

p
ee

d
u

p

Number of processors

Acceleration of float matrix n*m LU decomposition written inBSP-C

800*820
1000*1020
1200*1200
1400*1420
Linear

Figure 5. LU Decomposition of Dense Matrices of Floats

First we introduce squares matrices and conversion to/from
dense ones and naturally generic implementation of the
specific square matrix algorithms. Then, we can also con-
sider the big zoo of kinds of matrices and imagine specific
functor for each of them (implemented algorithms can be
the same but types would be different).

Secondly, we are thinking to compare the performance of
our work with that of functional language based related
works. To better judge the readability of the proposed
codes, we need to provide quantitative comparisons —
sizes of the codes, timings,etc. It is a hard work since
comparing programming languages is generally difficult.

In the third place, matrices are often very close to graphs.
There exists a generic implementation of graphs in OCaml
[2]. Implementing a BSP version of this library and merg-
ing it with our library is a challenging future work.

REFERENCES

[1] R. H. Bisseling. “Parallel Scientific Computation. A struc-
tured approach using BSP and MPI”. Oxford University

Press, 2004.

[2] S. Conchon, J.-C. Filliâtre, and J. Signoles. “Designing a
Generic Graph Library using ML Functors”. InTrends in
Functional Programming, volume 8. Intellect, 2007.

[3] F. Gava. “BSP Functional Programming; Examples of a cost
based methodology”. InICCS, volume 5101 ofLNCS, pages
375–385. Springer, 2008.

[4] F. Gava. “A modular implementation of data structures in
bulk-synchronous parallel ML”.Parallel Processing Letters,
18(1):39–53, 2008.

[5] A. V. Gerbessiotis. “Algorithmic and practical considerations
for dense matrix computations on the BSP model”. Technical
Report PRG-TR-32-97, The University of Oxford, 1997.

[6] L. Gesbert. “Développement systématique et sureté
d’éxécution en programmation paralléle structurée”. PhD
thesis, University of Paris-East, 2009.

[7] L. Gesbert, F. Gava, F. Loulergue, and F. Dabrowski. “Bulk
Synchronous Parallel ML with Exceptions”.Future Genera-
tion Computer Systems, 2009. to appear.

[8] J. D. Harrop. “Objective Caml for Scientists”, 2005.

[9] X. Leroy. “A modular module system”.Journal of Functional
Programming, 10(3):269–303, 2000.

