
Performance evaluations of a BSP algorithm
for state space construction of security protocols

Frédéric Gava
LACL, University of Paris-East
frederic.gava@univ-paris-est.fr

Michael Guedj
LACL

guedj@u-pec.fr

Franck Pommereau
IBISC, University of Evry, France

franck.pommereau@ibisc.fr

Abstract

This paper presents the implementation and the per-
formance comparisons of two Bulk-Synchronous Parallel
(BSP) algorithms to compute the discrete state space of
models. These algorithms are simple to express and the first
one is the most general one whereas the second is dedicated
for structured models of security protocols. Benchmarks of
security protocol scenarios has been done showing the ben-
efits of the implementation of the dedicated algorithm.

1. Introduction

Security protocols are small distributed programs which
aim at guaranteeing security properties such as confiden-
tiality of data, authentication of participants,etc. It has long
been a challenge to determine whether a given protocol is
secure or not. History has shown that even if cryptogra-
phy is supposed to be perfect, the correct design of secu-
rity protocols is notoriously error-prone: an attack can be
conducted by exploiting weaknesses in the protocol itselve.
Formally verifying security protocols is thus needed. It is
a well established domain that is still actively developed.
Different approaches exist as [2, 1, 6, 4]. One of them is
model-checking, a method based on reachability analysis
(state spaceexploration) and allows an automatic detection
of early design errors infinite-state systems. But the state
space construction may be very consuming both in terms of
memory and execution time.

Parallels the state space construction on several ma-
chines is thus done in order to benefit from all the local
memories, cpu resources and disks of each machine. This
allows to reduce both the amount of memory needed on
each machine and the overall execution time. One of the
main technical issues in the distributed memory state space
construction is to partition the state space among the partici-
pating computers: each single state is assigned to a machine
and this assignment is made using a function that partitions

the state space into subsets of states. Each such a subset is
then “owned” by a single machine.

While it has been showed that a partition function can
effectively balance the workload and achieve reasonable ex-
ecution time as well [7], this method suffers from some
obvious drawbacks and each author thus proposesheuris-
tics [3, 10]. But these studies were done in general case
and security protocols are very structured: without loss of
generality each agent only performs a sequence of send/re-
ceived routines. The complexity only come from the possi-
ble actions of the intruder and it is thus unknown if a general
approach works fine.

In [8], we have design a BSP [13] algorithm that exploit
the well-structured nature of security protocols for comput-
ing efficiently the state space of finite protocol sessions. The
structure of the protocols is exploited to increasing com-
putation locality and at the same time, the BSP paradigm
allows to simplify the detection of the algorithm termina-
tion and to load balance the computations. In this work, we
show that using a BSP library for Python [9] allows us to
write easily both algorithms and compare the performances
of the two implementations on a set of scenarios. We also
present how model protocols using our methodology.

2 Modeling the protocols

In this paper, we consider models of security protocols,
involving a set ofagentswhere a Dolev-Yao attacker re-
sides on the network. As a concrete formalism to model
protocols, we have used analgebra of coloured Petri nets
called ABCD [11] allowing for easy and structured mod-
elling. However, our approach is largely independent of
the chosen formalism and it is enough to assume that some
properties define in [8] hold.

ABCD (Asynchronous Box Calculus with Data [11]) is
a specification language that allows its users to express the
behavior concurrent systems at a high level. A specifi-
cation is translated into colored Petri nets. In particular,
the ABCD meta syntax allows its users to define a com-

plex processes in an algebra that allows: sequential com-
position (P;Q); non-deterministic choice (P+Q); iteration
(P*Q=Q+(P;Q)+(P;P;Q)+· · ·); parallel composition (P‖Q).
Processes are built on top of atoms comprising either named
sub-processes, or (atomic) actions,i.e. conditional accesses
to typed buffers. Actions may produce to a buffer, consume
from a buffer, or test for the presence of a value in a buffer,
and are only executed if the given condition is met. The
semantics of an action is a transition in a Petri net.

As a basic example, consider the ”Woo and Lam” proto-
col which ensures one-way authentication of the initiator A
to a responder B using symmetric-key cryptography and a
trusted third-party server S with share long-term symmetric
keys and a fresh and unpredictable nonce produced by B:

A, B, S : principal
Nb : nonce
Kas, Kbs : skey
1. A -> B : A
2. B -> A : Nb
3. A -> B : {Nb}Kas
4. B -> S : {A, {Nb}Kas}Kbs
5. S -> B : {Nb}Kbs

which could be model using ABCD as:
1 net Alice (A, agents, S) :
2 buffer B : int = ()
3 buffer Nb : Nonce = ()
4 [agents?(B), B +(B), snd+(A)] # 1. −>

5 ; [rcv?(Nb), Nb +(Nb)] # 2. <−

6 ; [Nb ?(Nb), snd+(("crypt", ("secret", A, S), Nb))] # 3. −>

7 net Bob (B, S) :
8 buffer A : int = ()
9 buffer myster : object = ()

10 [rcv?(A), A +(A)] # 1. <−

11 ; [snd+(Nonce(B))] # 2. −>

12 ; [rcv?(myster), myster +(myster)] # 3. <−

13 ; [A ?(A), myster ?(myster),
14 snd+(("crypt", ("secret", B, S), A, myster))] # 4. −>

15 ; [rcv?(("crypt", ("secret", S, B), Nb))
16 if Nb == Nonce(B)] # 5. <−

17 net Server (S) :
18 buffer B : int = ()
19 buffer Nb : Nonce = ()
20 [rcv?(("crypt", ("secret", B, S), A,
21 ("crypt", ("secret", A, S), Nb))), B +(B), Nb +(Nb)] # 4. <−

22 ; [B ?(B), Nb ?(Nb), snd+(("crypt", ("secret", S, B), Nb))] # 5. −>

The ’-’ operation on a buffer attempts to consume a value
from it and bind it to the given variable, scoped to the cur-
rent action. The language also supplies a read-only version
’?’, thus rcv?(Nb) will read a value from rcv into variable
Nb without removing it from the buffer. Similarly, the ’+’
operation attempts to write a value to the buffer, and there
are also flush (>>) and fill (<<) operations which perform
writes into and reads from lists respectively. Note that we
used two buffer called rcv and snd which model the sending
and receip in a network. Encoded message are tuple with
special values as ”crypt” and ”secret” that attacker agent
could not read if he have the keys.

The attacker has three components: a buffer named
knowledge which is essentially a list of the information
that the attacker currently ”knows”, a list of initial knowl-
edge, and a learning engine with which it uses to glean new

knowledge from what it observes on the network. Intu-
itively, the attacker performs the following operations : (1)
It intercepts each message that appears on buffer nw which
represent the network and adds it to its knowledge (2) It
passes each message along with its current knowledge to
the learning engine (it tries to learn from it by recursively
decomposing the message or decrypting it when the key to
do so is known) and adds any new knowledge learned to
it’s current knowledge (3) It then may either do nothing, or
take any message that is a valid message in the protocol that
is contained in its knowledge and put it back on buffer nw
(made available on the network). In ABCD, these actions
are expressed by the following term:

1 [nw−(m), knowledge>>(k), knowledge<<(learn(m,k))];
2 [True] + [knowledge?(x), nw+(x) if message(x)]

Note that a branch is created in the state space for each
message that can be intercepted in the first line, another for
the choice in the second line, and another for each valid
message in the knowledge. This is why the attacker is
the most computationally intensive component of our mod-
elling. As Python’s expressions are used in this algebra, the
learning engine (the Dolev-Yao inductive rules) is a Python
function and could thus be extended for taking account spe-
cific properties of hashing or of crypto primitives.

3 BSP Computing of the state space

Naively, to compute the state space in parallel, once can
use a partition functionh that returns for each state a pro-
cessor id,i.e., the processor numberedh(s) is the owner of
s. Usually, this function is simply a hash of the considered
state modulo the number of processors. The idea is that each
process computes the successors for only the states it owns.
However, each super-step is likely to compute few states be-
cause only few computed successors are locally owned. But
we known that the learning phase of the attacker is com-
putationally expensive, in particular when a message can
be actually decomposed, which leads to recompose a lot of
new messages. Among the many forged messages, only a
(usually) small proportion are accepted for a reception by
agents. Each such reception gives rise to a new state.

This whole process can be kept local to processors. To
do so, we design a new partition functionh such the data of
the intruder are not taken into account which make all the
attacker’s computations locals. For load balancing purpose,
h also works without modulo: this function defines classes
of states for whichh returns the same value.

In the rest of the text, the number of processors isnprocs
and for each processor has itspid. Then, to enter par-
allel code, in a SPMD (Single Program, Multiple Data)
fashion, once can make “parallel” the main function using
@ParFunction. Finally, the only used BSP-Python’s com-

munication routine performs also the barrier of synchroni-
sation (end of the super-step) as the collective operator “all-
to-allv” of MPI. This method calledexchange() sends each
data item (in the form of a list of pairs “id of destination,
item to send”) to the corresponding processor and returns a
set object storing the received data items. The main func-
tion (for our algorithm and the naive one) is the following:

1 @ParFunction
2 def main (infile) :
3 initialize (infile)
4 todo = set()
5 total = 1
6 known = set()
7 if h(s0) == pid :
8 todo.add(s0)
9 while total>0 :

10 tosend = states successor(known, todo)
11 todo, total = states exchange(known, tosend)

We first read in “infile” (line 3) the Petri Net and the initial
state. Setsknown andtodo are still used but become local
to each processor and thus provide only a partial view on
the ongoing computation. So, in order to terminate the algo-
rithm, we use an additional variabletotal in which we count
the total number of states waiting to be proceeded through-
out all the processors,i.e., total is the sum of the sizes of
all the setstodo. Initially, only states0 is known and only
its owner puts it in itstodo set of processorh(s0). This
is performed in lines 4–8. The loop (lines 9–11) performs
computations of successors and BSP exchange of states in
this way. Functionstate successor is called to compute the
successors of the states intodo:

1 def states successor (known, todo) :
2 tosend = collections.defaultdict(set)
3 while todo :
4 s = todo.pop()
5 known.add(state)
6 for s in succ local(s) − known :
7 todo.add(s)
8 for s in succ tosend(s) :
9 tosend[h(s)].add(s)

10 return tosend

Each states from todo is processed in turn and added to a
setknown (lines 4–5) while local successors (lines 6) are
added totodo and successors to be send (line 9) are added
to settosend . Notice that in the second loop, no state from
todo may be obtained through sending successors because
of the progression. So we have not−known in line 9. In the
naive algorithm, this is not true and each state can be possi-
bly sending or not, thus the two loops are merged and each
time a test is perform on the states which is less efficient. In
line 2, we define a collection of sets sinceh can return any
natural number. The collection would be used to balancing
the workload.

Then, functionstate exchange is responsible for per-
forming the actual communication between processors. It
sends each states for a pair(i, s) in tosend to the processor

i and returns the set of states received from the other pro-
cessors, together with the total number of exchanged states.
It is mainly a call to the methodexchange() by also adding
the exchange of “total” and dissociate this exchange to the
exchange of states:

1 def BSP EXCHANGE (tosend) :
2 todo = set(tosend[pid])
3 total = sum(len(tosend[k]) for k in xrange(nprocs))
4 for (count, states) in ParMessages((i, (total, tosend[i])) for i in
5 xrange(nprocs) if i != pid).exchange().value :
6 total += count
7 todo.update(states)
8 return total , todo

Then the functionstate exchange returns the set of re-
ceived states that are not yet known locally together with
the new value oftotal . To do so, we exploit the following
observation: for all the protocols we have studied so far, the
number of computed states during a super-step is usually
closely related to the number of states received at the begin-
ning of the super-step. Thus, before to exchange the states
themselves, we can first exchange information about how
many state each processor has to send and how they will be
spread onto the other processors. Using this information,
we can anticipate and compensate the balancing problem.

1 def states exchange (known, tosend) :
2 known.clear()
3 return BSP EXCHANGE(balance(tosend))

Notice that, using the progression property, it is not possible
to reach states computed in any previous super-step. They
are thus dumped from the main memory (line 2). In the
balance function (line 3 and no presented here due to a
lack of space), we compute a histogram of these classes on
each processor, which summarises howh would dispatch
the states. This information is then globally exchanged,
yielding a global histogram that is exploited to compute
on each processor a better dispatching of the states it has
to send. This is made by placing the classes according to
a simple heuristic for the NP-hard bin packing problem.
It may be remarked that the global histogram is not fully
accurate since several processors may have a same state
to be sent. Notice that, by postponing communication,
this algorithm allows buffered sending and forbids sending
several times the same state.

4 Benchmarks

The benchmarks presented below have been performed
using a cluster with 16 PCs, 2GHz Intel Pentium dual core
CPU, with 2GB of physical memory, connected through a
Gigabyte Ethernet network. MPICH were used as low level
library for BSP-Python. Our cases study involved the fol-
lowing five protocols: (1) Needham-Schroeder (NS) pub-
lic key protocol for mutual authentication; (2) Yahalom (Y)

For the Needham-Schroeder protocol:

Scenario Naive Balance Nb states
NS 1-2 0m50.222s 0m42.095s 7807
NS 1-3 115m46.867s 61m49.369s 530713
NS 2-2 112m10.206s 60m30.954s 456135

For the Yahalom protocol:

Scenario Naive Balance Nb states
Y 1-3-1 12m44.915s 7m30.977s 399758
Y 1-3-1 2 30m56.180s 14m41.756s 628670
Y 1-3-1 3 481m41.811s 25m54.742s 931598
Y 2-2-1 2m34.602s 2m25.777s 99276
Y 3-2-1 COMM 62m56.410s 382695
Y 2-2-2 2m1.774s 1m47.305s 67937

For the Otway-Rees protocol:

Scenario Naive Balance Nb states
OR 1-1-2 38m32.556s 24m46.386s 12785
OR 1-1-2 2 196m31.329s 119m52.000s 17957
OR 1-1-2 3 411m49.876s 264m54.832s 22218
OR 1-2-1 21m43.700s 9m37.641s 1479

For the Woo and Lam Pi protocol:

Scenario Naive Balance Nb states
WLP 1-1-1 0m12.422s 0m9.220s 4063
WLP 1-1-1 2 1m15.913s 1m1.850s 84654
WLP 1-1-1 3 COMM 24m7.302s 785446
WLP 1-2-1 2m38.285s 1m48.463s 95287
WLP 1-2-1 2 SWAP 55m1.360s 946983

For the Kao-Chow protocol:

Scenario Naive Balance Nb states
KC 1-1-1 4m46.631s 1m15.332s 376
KC 1-1-2 80m57.530s 37m50.530s 1545
KC 1-1-3 716m42.037s 413m37.728s 4178
KC 1-1-1 2 225m13.406s 95m0.693s 1163
KC 1-2-1 268m36.640s 159m28.823s 4825

Figure 1. Whole performances results

key distribution and mutual authentication using a trusted
third party; (3) Otway-Rees (OR) key sharing using a
trusted third party; (4) Kao-Chow (KC) key distribution and
authentication; (5) Woo and Lam Pi (WLP) authentification
protocol with public keys and trusted server.

For each protocol, usingABCD, we have built a modular
model allowing for defining various scenarios involving
different numbers of each kind of agents — with only one
attacker, which is always enough. We note these scenarios
NS−x − y ≡ x Alices, y Bobs with one unique sequential
session; Y(resp. OR, KC and WLP)−x − y − z n ≡ x

Servers,y Alices,z Bobs,n sequential sequential sessions.
We give here the total time of computation. We note

SWAP when at least one processor swaps due to a lack of
main memory for storing its part of the state space. We also
noteCOMM when the system is unable to received the too
amount of data. We can see in the tables of Fig 1 that the
overall performance of our dedicated implementation (call
balance) is always very good compared to the naive and
general one. This holds for large state spaces as well as for

smaller ones. “Naive” can also swap which never happens
for the “balance”.

To see the differences in behaviour (and not only exe-
cution time), we show some graphs for several scenarios.
In the Figures 2–5, we have distinguished: the computa-
tion time that essentially corresponds to the computationsof
successor states on each processor (in black); the commu-
nication time that corresponds to states exchange and his-
togram computations (in grey); the waiting times that occur
when processors are forced to wait the others before to en-
ter the communication phase of each super-step (in white).
Graphs in the right are cumulative time (in percentage in or-
dinate) depicted for each processor point of view (abscissa)
whereas graphs in the right are global points of view: cu-
mulative times of each of the super-steps (time in ordinate).
We also show the percentage (ordinate) of main memory
used by the program (average of the processors) during the
execution time of the program (abscissa).

We can see on these graphs that for “balance” the com-
munications are always greatly reduced but with some time
a greater waiting times. This is due to the computation of
the histograms and to the fact that we perform an heuristic
(of the bin packing problem) for dispatching the classes of
states on the processors: some classes induce a bigger num-
ber of successors and the probability that these states are
regrouped on the same classes is greater in “balance” than
in the complete random distribution of “naive”. Note that
the hashing (random) of “naive” gives the better balancing
on some scenarios. For a small OR scenario, the waiting
time of “naive” is greater but more balanced. However, for
a bigger scenario, “balance” outperforms “naive”.

By measuring the memory consumption of our imple-
mentations, we could confirm the benefits of “balance”
(emptied memory regularly) when large state spaces are
computed. For instance, in the NS-2-2 scenario, we ob-
served an improvement of the peak memory usage from
50% to 20% — maximum among all the processors. Sim-
ilarly, for the WLP-1-2-12, the peak decreases so that the
computation does not swap. For Y-3-2-1, “balance” used a
little less memory but that enough to not crash the whole
machine. Notice that the memory use never decrease even
for “balance”. This is due to the GC strategy of Python for
sets which de-allocate pages of the main memory only when
no enough memory is available: allocated pages are directly
used for other new items.

As a last observation about our “balance” implementa-
tion, we would like to emphasise that we observed a linear
speedup with respect to the number of processors.

5. Conclusion

To checked if a protocol does not contain a security trap,
we have model them (plus the intruder on the network) us-

2 6 10 14 18 22 26 30
0%

20%

40%

60%

80%

100%

Naive BSP

2 6 10 14 18 22 26 30
0%

20%

40%

60%

80%

100%

Balance

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

Naive-BSP

0 1000 2000 3000 4000
0

5

10

15

20

Balance

Figure 2. Performances for NS-2-2

2 6 10 14 18 22 26 30
0%

20%

40%

60%

80%

100%

Naive BSP

2 6 10 14 18 22 26 30
0%

20%

40%

60%

80%

100%

Balance

Figure 3. Performances for OR-1-2-1 2

0 20000 40000 60000 80000 100000
0

20

40

60

80

100

Naive-BSP

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

Balance

Figure 4. Performances for WLP-1-2-1 2

0 2000 4000 6000 8000 10000
0

10

20

30

40

50

60

70

Naive-BSP

0 1000 2000 3000 4000
0

10

20

30

40

50

Balance

Figure 5. Performances for Y-3-2-1

ing an Algebra of Coloured Petri Nets callABCD where
Python expressions are the coloured domain of the Petri net
and also the annotations. Find if there is an attack consist
of generated the whole marking graph and thus all the states
that are accessible from an initial one. But this activity leads
to many states which is the so called state space problem.
We have designed a solution which use the well-structured
nature of the protocols to choose which part of the state is
really needed for the partition function and to empty the
data-structure in each super-step of the parallel computa-
tion. That also entails automated classification of states into
classes, and dynamic mapping of classes to processors.

Using BSP-Python, we have easily implemented the
solutions and compare them in several benchmarks. The

general method fails in two points. First the number
of cross transitions is two high and lead to a too heavy
network use. Second, memorise all of them in the main
memory is impossible without crashing the machine and is
not clear when it is possible to put some states in disk using
general heuristics [5]. We have thus empirically verify our
assumption: our methods execute significantly faster and
achieve better network and memory use. It is encouraging
because we think we can check larger protocols [12] —
secure P2P exchange of files using truth servers.

References

[1] A. Armando, R. Carbone, and L. Compagna. LTL model
checking for security protocols. InProceedings of CSF,
pages 385–396. IEEE Computer Society, 2007.

[2] A. Armando and L. Compagna. SAT-based model-checking
for security protocols analysis.Int. J. Inf. Sec., 7(1):3–32,
2008.

[3] J. Barnat.Distributed Memory LTL Model Checking. PhD
thesis, Faculty of Informatics Masaryk University Brno,
2004.

[4] C. J. F. Cremers.Scyther - Semantics and Verification of Se-
curity Protocols. PhD thesis, Technische Universiteit Eind-
hoven, 2006.

[5] S. Evangelista and L. M. Kristensen. Dynamic State
Space Partitioning for External Memory Model Checking.
In Proceedings of Formal Methods In Computer Sciences
(FMICS), volume 5825 ofLNCS, pages 70–85. Springer,
2009.

[6] H. Gao.Analysis of Security Protocols by Annotations. PhD
thesis, Technical University of Denmark, 2008.

[7] H. Garavel, R. Mateescu, and I. Smarandache. Parallel state
space construction for model-checking. InWorkshop on
Model Checking of Software SPIN, May 2001.

[8] F. Gava, M. Guedj, and F. Pommereau. A bsp algorithm for
the state space construction of security protocols. In9th In-
ternational Workshop on Parallel and Distributed Methods
in verifiCation (PDMC, affiliated to conference SPIN 2010).
IEEE Computer Society, 2010.

[9] K. Hinsen. Parallel scripting with Python.Computing in
Science & Engineering, 9(6), 2007.

[10] C. Pajault.Model Checking paralléle et réparti de réseaux
de Petri colorés de haut-niveau. PhD thesis, Conservatoire
National des Arts et Métiers, 2008.

[11] F. Pommereau.Algebras of coloured Petri nets. Lambert
Academic Publisher, 2010.

[12] S. Sanjabi and F. Pommereau. Modelling, verification, and
formal analysis of security properties in a P2P system. In
Workshop on Collaboration and Security (COLSEC), pages
543–548. IEEE, 2010.

[13] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions
and Answers about BSP.Scientific Programming, 6(3):249–
274, 1997.

