
A BSP algorithm for the state space construction
of security protocols

Frédéric Gava, Michaël Guedj
LACL, University of Paris-East Créteil, France

Email: frederic.gava@univ-paris-est.fr, michael.guedj@univ-paris-est.fr

Franck Pommereau
IBISC, University of Évry, France

Email: franck.pommereau@ibisc.univ-evry.fr

Abstract

This paper presents a Bulk-Synchronous Parallel (BSP) algorithm to
compute the discrete state space of structured models of security protocols.
The BSP model of parallelism avoids concurrency related problems (mainly
deadlocks and non-determinism) and allows us to design an efficient algorithm
that is at the same time simple to express. A prototype implementation has been
developed, allowing to run benchmarks showing the benefits of our algorithm.

1. Introduction

In a world strongly dependent on distributed data com-
munication, the design of secure infrastructures is a crucial
task. At the core of computer security-sensitive applications
are security protocols, i.e., sequences of message exchanges
aiming at distributing data in a cryptographic way to the
intended users and providing security guarantees. This leads
to search for a way to verify whether a system is secure
or not. Enumerative model-checking is well-adapted to this
kind of asynchronous, non-deterministic systems containing
complex data types. In this paper, we consider the problem
of constructing the state space of labelled transition systems
(LTS) that model security protocols.

Let us recall that the state space construction problem is the
problem of computing the explicit representation of a given
model from the implicit one. This space is constructed by
exploring all the states reachable through a successor function
from an initial state. Generally, during this operation, all the
explored states must be kept in memory in order to avoid
multiple exploration of a same state. Once the state space
is constructed, or during its construction, it can be used as
input for various verification procedures, such as reachability
analysis or model-checking of temporal logic properties.

State space construction may be very consuming both in
terms of memory and execution time: this is the so-called
state explosion problem. The construction of large discrete
state spaces is so a computationally intensive activity with
extreme memory demands, highly irregular behavior, and poor
locality of references. This is especially true when complex
data-structures are used in the model as the knowledge of
an intruder in security protocols. Because this construction
can cause memory crashing on single or multiple processor
systems, it has led to consider exploiting the larger memory
space available in distributed systems [1], [2]. Parallelize the

state space construction on several machines is thus done in
order to benefit from all the storage and computing resources
of each machine. This allows to reduce both the amount of
memory needed on each machine and the overall execution
time.

Distributed state space construction. One of the main techni-
cal issues in the distributed memory state space construction is
to partition the state space among the participating machines.
Most of approaches to the distributed memory state space
construction use a partitioning mechanism that works at the
level of states which means that each single state is assigned
to a machine. This assignment is made using a function that
partitions the state space into subsets of states. Each such a
subset is then “owned” by a single machine.

To have efficient parallel algorithms for state space con-
struction, we see two requirements. First, the partition function
must be computed quickly and defined such that a successor
state is likely to be mapped to the same processor as its
predecessor; otherwise the computation will be overwhelmed
by inter-processor communications (the so called cross tran-
sitions) which obviously implies a drop of the computation
locality and thus of the performances. Second, balancing of
the workload is obviously needed [3] because it is necessary to
fully profit from available computational power to achieve the
expected speedup. In the case of state space construction, the
problem is hampered by the fact that future size and structure
of the undiscovered portion of the space space is unknown
and cannot be predicted in general.

While it has been showed that a pure static hashing for the
partition function can effectively balance the workload and
achieve reasonable execution time as well [4], this method
suffers from some obvious drawbacks [5], [6]. First, it causes
too much cross transitions. Second, if ever in the course of the
construction just one processor is so burdened with states that
it exhausts its available main memory, the whole computation
fails or slows too much due to swapping.

Verifying Security protocols. Designing security protocols is
complex and often error prone: various attacks are reported
in the literature to protocols thought to be “correct” for many
years. These attacks exploit weaknesses in the protocol that are
due to the complex and unexpected interleavings of different
protocol sessions as well as to the possible interference of



malicious participants, i.e., the attacker.
Furthermore, attacks are not as simple that they appear [7]:

the attacker can generally be powerful enough [8] to perform
a number of potentially dangerous actions as intercepting
messages or replacing them by new ones using the knowledge
it has previously gained; or it is able to perform encryption and
decryption using the keys within its knowledge. Consequently
the number of potential attacks generally grows exponentially
with the number of exchanged messages.

Formal methods offer a promising approach for automated
analysis of security protocols: the intuitive notions are trans-
lated into formal specifications, which is essential for a careful
design and analysis, and protocol executions can be simulated,
making it easier to verify various security properties. Formally
verifying security protocols is a well established domain that
is still actively developed. Different approaches exist as [9],
[10], [11] and tools are dedicated to this purpose as [12], [13].

Contribution. In this paper, we exploit the well-structured
nature of security protocols and match it to a model of parallel
computation called BSP [14], [15]. This allows us to simplify
the writing of an efficient algorithm for computing the state
space of finite protocol sessions. The structure of the protocols
is exploited to partition the state space and reduce cross
transitions while increasing computation locality. At the same
time, the BSP model allows to simplify the detection of the
algorithm termination and to load balance the computations.

Outline. First, we briefly review in Section 2 the context of our
work that is the BSP model, models of security protocols and
their state space representation as LTS. Section 3 is dedicated
to the description of our new algorithm constructed in a
step-wise manner from a sequential one. Then, in Section 4,
we briefly describe a prototype implementation and apply
it to some typical protocol sessions, giving benchmarks to
demonstrate the benefits of our approach. Related works are
discussed in Section 5 while a conclusion and future works
are presented in Section 6.

2. Context and general definitions

2.1. The BSP model

In the BSP model, a computer is a set of uniform processor-
memory pairs connected through a communication network
allowing the inter-processor delivery of messages [14], [15].
Supercomputers, clusters of PCs, multi-core, GPUs, etc., can
be considered as BSP computers.

A BSP program is executed as a sequence of super-steps
(see Fig. 1), each one divided into three successive disjoint
phases: first, each processor only uses its local data to perform
sequential computations and to request data transfers to other
nodes; then, the network delivers the requested data; finally, a
global synchronisation barrier occurs, making the transferred
data available for the next super-step. The execution time
(cost) of a super-step is the sum of the maximum of the local

local computations

p0 p1 p2 p3

communication

synchronisation barrier
next super-step...

...
...

...

Fig. 1. A BSP super-step

processing, the data delivery and the barrier times. The cost
of a program is the total sum of the cost of its super-steps.

On most of cheaper distributed architectures, barriers of-
ten become more expensive when the number of processors
increases. However, dedicated architectures make them much
faster and they have also a number of attractions. In particular,
they dramatically reduce the risks of deadlocks or livelocks,
since barriers do not create circular data dependencies.

The BSP model considers communication actions en masse.
This is less flexible than asynchronous messages, but easier
to debug since there are many simultaneous communication
actions in a parallel program, and their interactions are usually
complex. Bulk sending also provides better performances since
it is faster to send a block of data rather than individual data
because of less network latency.

2.2. State spaces of protocol models

A labelled transition system (LTS) is an implicit represen-
tation of the state space of a modelled system. It is defined
as a tuple (S, T, `) where S is the set of states, T ⊆ S2 is
the set of transitions, and ` is an arbitrary labelling on S ∪T .
Given a model defined by its initial state s0 and its successor
function succ, the corresponding explicit LTS is LTS(s0, succ),
defined as the smallest LTS (S, T, `) such that s0 in S, and
if s ∈ S then for all s′ ∈ succ(s) we also have s′ ∈ S
and (s, s′) ∈ T . The labelling may be arbitrarily chosen, for
instance to define properties on states and transitions with
respect to which model checking is performed.

In the paper, we consider models of security protocols
involving a set of agents and we assume that any state can
be represented by a function from a set L of locations to
an arbitrary data domain D. For instance, locations may
correspond to local variables of agents, shared communication
buffers, etc.

As a concrete formalism to model protocols, we have used
an algebra of coloured Petri nets [16] allowing for easy
and structured modelling. However, our approach is largely
independent of the chosen formalism and it is enough to
assume that the following properties hold:
(P1) Any state of the system can be described as a function

L → D.
(P2) There exists a subset LR ⊆ L of reception locations

corresponding to the information learnt (and stored) by



agents from their communication with others.
(P3) Function succ can be partitioned into two successor

functions succR and succL that correspond respectively
to the successors that change states or not on the
locations from LR.

More precisely: for all state s and all s′ ∈ succ(s), if
s′|LR

= s|LR
then s′ ∈ succL(s), else s′ ∈ succR(s); where

s|LR
denotes the state s whose domain is restricted to the

locations in LR. Intuitively, succR corresponds to transitions
upon which an agent receives information and stores it. On
concrete models, it is generally easy to distinguish syntacti-
cally the transitions that correspond to a message reception
in the protocol with information storage. Thus, is it easy to
partition succ as above. This is the case in particular for the
algebra of Petri nets that we have used.

In the following, the presented algorithms compute only
S. This is made without loss of generality and it is a trivial
extension to compute also T and `, assuming for this purpose
that succ(s) returns tuples (`(s, s′), s′, `(s′)). This is usually
preferred in order to be able to perform model-checking of
temporal logic properties.

2.2.1. Dolev-Yao attacker. We consider models of protocols
where a Dolev-Yao attacker [8] resides on the network. An
execution of such a model is thus a series of message ex-
changes as follows. (1) An agent sends a message on the
network. (2) This message is captured by the attacker that
tries to learn from it by recursively decomposing the message
or decrypting it when the key to do so is known. Then,
the attacker forges all possible messages from newly as well
as previously learnt informations (i.e., attacker’s knowledge).
Finally, these messages (including the original one) are made
available on the network. (3) The agents waiting for a message
reception accept some of the messages forged by the attacker,
according to the protocol rules.

2.2.2. Sequential state space construction. In order to ex-
plain our parallel algorithm, we start with Algorithm 1 that
corresponds to the usual sequential construction of a state
space. The sequential algorithm involves a set todo of states
that is used to hold all the states whose successors have not
been constructed yet; initially, it contains only the initial state
s0. Then, each state s from todo is processed in turn and
added to a set known while its successors are added to todo
unless they are known already. At the end of the computation,
known holds all the states reachable from s0, that is, the state
space S.

3. A BSP algorithm for state space construction

We now show how the sequential algorithm can be par-
allelised in BSP and how several successive improvements
can be introduced. This results in an algorithm that remains
quite simple in its expression but that actually relies on a
precise use of a consistent set of observations and algorithmic

Algorithm 1 Sequential construction
1: todo ← {s0}
2: known ← ∅
3: while todo 6= ∅ do
4: pick s from todo
5: known ← known ∪ {s}
6: for s′ ∈ succ(s) \ known do
7: todo ← todo ∪ {s′}
8: end for
9: end while

modifications. We will show in the next section that this
algorithm is efficient despite its simplicity.

3.1. A naive BSP version

Algorithm 1 can be naively parallelised by using a partition
function cpu that returns for each state a processor identifier,
i.e., the processor numbered cpu(s) is the owner of s. Usually,
this function is simply a hash of the considered state modulo
the number of processors in the parallel computer. The idea is
that each process computes the successors for only the states it
owns. This is rendered as Algorithm 2; notice that we assume
that arguments are passed by references so that they may be
modified by sub-programs.

This is a SPMD (Single Program, Multiple Data) algorithm
so that each processor executes it. Sets known and todo are
still used but become local to each processor and thus provide
only a partial view on the ongoing computation. So, in order to
terminate the algorithm, we use an additional variable total
in which we count the total number of states waiting to be
proceeded throughout all the processors, i.e., total is the sum
of the sizes of all the sets todo. Initially, only state s0 is known
and only its owner puts it in its todo set. This is performed
in lines 4–6, where mypid evaluates locally to each processor
to its own identifier.

Function Successor is then called to compute the successors
of the states in todo. It is essentially the same as the sequential
exploration, except that each processor computes only the
successors for the states it actually owns. Each computed state
that is not owned by the local processor is recorded in a set
tosend together with its owner number. This partitioning of
states is performed in lines 7–11.

Then, function Exchange is responsible for performing
the actual communication between processors. The primitive
BSP EXCHANGE send each state s from a pair (i, s) in
tosend to the processor i and returns the set of states received
from the other processors, together with the total number of
exchanged states. The routine BSP EXCHANGE performs a
global (collective) synchronisation barrier which makes data
available for the next super-step so that all the processors are
now synchronised. Then, function Exchange returns the set of
received states that are not yet known locally together with the
new value of total . Notice that, by postponing communication,



Algorithm 2 Naive BSP construction
1: todo ← ∅
2: total ← 1
3: known ← ∅
4: if cpu(s0) = mypid then
5: todo ← todo ∪ {s0}
6: end if
7: while total > 0 do
8: tosend ← Successor(known, todo)
9: todo, total ← Exchange(known, tosend)

10: end while
Successor(known, todo) :

1: tosend ← ∅
2: while todo 6= ∅ do
3: pick s from todo
4: known ← known ∪ {s}
5: for s′ ∈ succ(s) \ known do
6: if cpu(s′) = mypid then
7: todo ← todo ∪ {s′}
8: else
9: tosend ← tosend ∪ {(cpu(s′), s′)}

10: end if
11: end for
12: end while
13: return tosend

Exchange(known, tosend) :

1: received , total ← BSP EXCHANGE(tosend)
2: return (received \ known), total

this algorithm allows buffered sending and forbids sending
several times the same state.

It can be noted that the value of total may be greater
than the intended count of states in todo sets. Indeed, it may
happen that two processors compute a same state owned by
a third processor, in which case two states are exchanged
but then only one is kept upon reception. Moreover, if this
state has been also computed by its owner, it will be ignored.
This not a problem in practise because in the next super-step,
this duplicated count will disappear. In the worst case, the
termination requires one more super-step during which all the
processors will process an empty todo, resulting in an empty
exchange and thus total = 0 on every processor, yielding the
termination.

3.2. Increasing local computation time

Using Algorithm 2, function cpu distributes evenly the states
over the processors. However, each super-step is likely to
compute very few states during each super-step because only
too few computed successors are locally owned. This also
results in a bad balance of the time spent in computation with
respect to the time spent in communication. If more states
can be computed locally, this balance improves but also the

total communication time decreases because more states are
computed during each call to function Successor .

To achieve this result, we consider a peculiarity of the
models we are analysing. The learning phase (2) of the attacker
is computationally expensive, in particular when a message
can be actually decomposed, which leads to recompose a lot
of new messages. Among the many forged messages, only
a (usually) small proportion are accepted for a reception by
agents. Each such reception gives rise to a new state.

This whole process can be kept local to the processor and
so without cross-transitions. To do so, we need to design a
new partition function cpuR such that, for all states s1 and s2,
if s1|LR

= s2|LR
then cpuR(s1) = cpuR(s2). For instance,

this can be obtained by computing a hash (modulo the number
of processors) using only the locations from LR.

On this basis, function Successor can be changed as shown
in Algorithm 3.

Algorithm 3 An exploration to improve local computation
Successor(known, todo) :

1: tosend ← ∅
2: while todo 6= ∅ do
3: pick s from todo
4: known ← known ∪ {s}
5: for s′ ∈ succL(s) \ known do
6: todo ← todo ∪ {s′}
7: end for
8: for s′ ∈ succR(s) \ known do
9: tosend ← tosend ∪ {(cpuR(s′), s′)}

10: end for
11: end while
12: return tosend

The rest is as in Algorithm 2.

With respect to Algorithm 2, this one splits the for loop,
avoiding calls to cpuR when they are not required. This may
yield a performance improvement, both because cpuR is likely
to be faster than cpu and because we only call it when
necessary. But the main benefits in the use of cpuR instead
of cpu is to generate less cross transitions since less states
are need to be sent. Finally, notice that, on some states, cpuR
may return the number of the local processor, in which case the
computation of the successors for such states will occur in the
next super-step. We show now on how this can be exploited.

3.3. Decreasing local storage

One can observe that the structure of the computation is
now matching closely the structure of the protocol execution:
each super-step computes the executions of the protocol until
a message is received. As a consequence, from the states
exchanged at the end of a super-step, it is not possible to
reach states computed in any previous super-step. Indeed, the
protocol progression matches the super-steps succession.

This kind of progression in a model execution is the basis of
the sweep-line method [17] that aims at reducing the memory



footstep of a state space computation by exploring states in an
order compatible with progression. It thus becomes possible
to regularly dump from the main memory all the states that
cannot be reached anymore. Enforcing such an exploration
order is usually made by defining on states a measure of
progression. In our case, such a measure is not needed because
of the match between the protocol progression and the super-
steps succession. So we can apply the sweep-line method by
making a simple modification of the exploration algorithm, as
shown in Algorithm 4.

Algorithm 4 Sweep-line implementation
Exchange(tosend , known) :

1: dump(known)
2: return BSP EXCHANGE(tosend)

The rest is as in Algorithm 3.

Statement dump(known) resets known to an empty set,
possibly saving its content to disk if this is desirable. The rest
of function Exchange is simplified accordingly.

3.4. Balancing the computation

As on can see in the benchmarks below, Algorithm 4 (and
in the same manner Algorithm 3) can introduce a bad balance
of the computations due to a lack of information when hashing
only on LR. Thus, the final optimisation step aims at balancing
the workload. To do so, we exploit the following observation:
for all the protocols we have studied so far, the number of
computed states during a super-step is usually closely related
to the number of states received at the beginning of the
super-step. So, before to exchange the states themselves, we
can first exchange information about how many states each
processor has to send and how they will be spread onto the
other processors. Using this information, we can anticipate and
compensate balancing problems.

To compute the balancing information, we use a new
partition function cpuB that is equivalent to cpuR without
modulo, i.e., we have cpuR(s) = cpuB(s) mod P , where P
is the number of processors. This function defines classes of
states for which cpuB returns the same value. We compute
a histogram of these classes on each processor, which sum-
marises how cpuR would dispatch the states. This information
is then globally exchanged, yielding a global histogram that is
exploited to compute on each processor a better dispatching
of the states it has to send. This is made by placing the classes
according to a simple heuristic for the bin packing problem:
the largest class is placed onto the less charged processor,
which is repeated until all the classes have been placed. It
is worth noting that this placement is computed with respect
to the global histogram, but then, each processor dispatches
only the states it actually holds, using this global placement.
Moreover, if several processors compute a same state, these
identical states will be in the same class and so every processor
that holds such states will send them to the same target. So

there is no possibility of duplicated computation because of
dynamic states remapping.

Algorithm 5 Balancing strategy
Exchange(tosend , known) :

1: dump(known)
2: return BSP EXCHANGE(Balance(tosend))

Balance(tosend) :

1: histoL← {(i, ]{(i, s) ∈ tosend})}
2: compute histoG from BSP MULTICAST(histoL)
3: return BinPack(tosend , histoG)

The rest is as in Algorithm 4, using cpuB instead of cpuR.

These operations are detailed in Algorithm 5 where vari-
ables histoL and histoG store respectively the local and global
histograms, and function BinPack implements the dispatching
method described above. In function Balance , ]X denotes
the cardinality of set X . Function BSP MULTICAST is
used so that each processor sends its local histogram to every
processor and receives in turn their histograms, allowing to
build the global one. Like any BSP communication primitive
it involves a synchronisation barrier.

It may be remarked that the global histogram is not fully
accurate since several processors may have a same state to be
sent. Nor the computed dispatching is optimal since we do not
want to solve a NP-hard bin packing problem. But, as shown
in our benchmarks below, the result is yet fully satisfactory.

Finally, it is worth noting that if a state found in a previous
super-step may be computed again, it would be necessary to
known which processor owns it: this could not be obtained
efficiently when dynamic remapping is used. But that could not
happen thanks to the exploration order enforced in Section 3.2
and discussed in Section 3.3. Our dynamic states remapping
is thus correct because states classes match the locality of
computation.

4. Experimental results

In order to evaluate our algorithm, we have implemented
a prototype version in Python, using SNAKES [18] for the
Petri net part (which also allowed for a quick modelling of
the protocols, including the inference rules of the Dolev-Yao
attacker) and a Python BSP library [19] for the BSP routines
(which are close to an MPI “alltoall”). We actually used the
MPI version (with MPICH) of the BSP-Python library. While
largely suboptimal (Python programs are interpreted and there
is no optimisation about the representation of the states in
SNAKES), this prototype nevertheless allows and accurate
comparison of the various algorithms.

With respect to the presented algorithms, our implemen-
tations differ only on technical details (e.g., value total
returned by BSP EXCHANGE is actually computed by
exchanging also the number of values sent by each processor)
and minor improvements (e.g., we used in-place updating of



sets and avoided multiple computations of cpu(s) using an
intermediate variable).

The benchmarks presented below have been performed
using a cluster with 20 PCs connected through a 1 Gigabyte
Ethernet network. Each PC is equipped with a 2GHz Intel R©
Pentium R© dual core CPU, with 2GB of physical memory.
This allowed to simulate a BSP computer with 40 processors
equipped with 1GB of memory each.

These experiments are designed to reveal how various as-
pects of the new method contribute to the overall performance.
Our cases study involved the following four protocols:

1) Needham-Schroeder (NS) public key protocol for mutual
authentication.

2) Yahalom (Y) key distribution and mutual authentication
using a trusted third party.

3) Otway-Rees (OR) key sharing using a trusted third party.
4) Kao-Chow (KC) key distribution and authentication.

These protocols and their security issues are documented at
the Security Protocols Open Repository (SPORE) [20].

For each protocol, we have built a modular model allowing
for defining easily various scenarios involving different num-
bers of each kind of agents (but only one attacker, which is
always enough).

4.1. Global performances

Figure 2 shows the execution times for two scenarios for
each protocol; the depicted results are fair witnesses of what
we could observe from the large number of scenarios we have
actually run. In the figure, the total execution time is split
into three parts: the computation time (black) that essentially
corresponds to the computation of successor states on each
processor; the global and thus collective communication time
(gray) that corresponds to states exchange; the waiting times
(white) that occur when processors are forced to wait the
others before to enter the communication phase of each super-
step. Notice that because of the BSP model, these costs
are obtained by considering the maximum times among the
processors within each super-step, accumulated over the whole
computation.

We can see on these graphs that the overall performance
of our last algorithm (right-most bars) is always very good
compared to the naive algorithm (left-most bars). In particular,
the communication and waiting times are always greatly
reduced. This holds for large state spaces as well as for smaller
ones.

An important waiting time corresponds to an unbalanced
computation: if some processors spend more time computing
successors, the others will have to wait for them to finish
this computation before every processor enters the communi-
cation phase. In several occurrences, we can observe that, by
increasing the local computation, we have worsen the balance,
which increased the waiting time. This corresponds to graphs
where the middle part in the second column is taller than
the same part in the left column. However, we can observe

Algo 2 Algo 4 Algo 5
0

10

20

30

40

50

60

70

80

Algo 2 Algo 4 Algo 5
0

1000

2000

3000

4000

5000

6000

7000

8000

Algo 2 Algo 4 Algo 5
0

100

200

300

400

500

600

700

800

Algo 2 Algo 4 Algo 5
0

5000

10000

15000

20000

25000

Algo 2 Algo 4 Algo 5
0

1000

2000

3000

4000

Algo 2 Algo 4 Algo 5
0

10000

20000

30000

40000

Algo 2 Algo 4 Algo 5
0

100

200

300

400

500

Algo 2 Algo 4 Algo 5
0

10000

20000

30000

40000

50000

60000

70000

Fig. 2. Computation times (in seconds) of Algorithms 2,
4 and 5 for the four studied protocols. Top row: two
instances of NS yielding respectively about 8K (left) and
5M states (right). Second row: two instances of Y with
about 400K (left) and 1M states (right). Third row: two
instances of OR with about 12K (left) and 22K states
(right). Bottom row: two instances of KC with about 400
(left) and 2K states (right).

that our last optimisation to improve the balance, without
introduce an overhead of communications, is always very
efficient and results in negligible waiting time in every case.
The variations of observed computation times are similarly
caused by a bad balance because we depicted the accumulation
of the maximum times among the processors.

Finally, by comparing the left and right columns of results,
we can observe that the overall speedup is generally better
when larger state spaces are computed. This is mainly due
to the fact that the waiting time accumulation becomes more
important on longer runs.

4.2. Memory consumption

By measuring the memory consumption of our various
algorithms, we could confirm the benefits of our sweep-line
implementation when large state spaces are computed. For
instance, in the NS scenario with 5M states, we observed



an improvement of the peak memory usage from 97% to
40% (maximum among all the processors). Similarly, for
the Y scenario with 1M states, the peak decreases from
97% to 60% (states in Y use more memory that states
in NS). We also observed, on very large state spaces, that
the naive implementation exhausts all the available memory
and some processors start to use the swap, which causes
a huge performance drop. This never happened using our
sweep-line implementation. However, notice that, in all the
presented scenarios, no swapping has occurred, which would
have dramatically biased the results. Moreover, this led to
nearly identical performances for Algorithms 3 and 4 which
explains why we presented only the latter.

4.3. Scalability

As a last observation about our algorithm, we would like
to emphasise that we observed a linear speedup with respect
to the number of processors. In general, most parallel algo-
rithms suffer from an amortised speedup when the number
of processors increases. This is almost always caused by the
increasing amount of communication that becomes dominant
over the computation. Because our algorithm is specifically
dedicated to reduce the number of cross transitions, and
thus the amount of communication, this problem is largely
alleviated and we could observe amortised speedup only for
very small models (less than 100 states) for which the degree
of intrinsic parallelism is very reduced but whose state space
is in any way computed very quickly.

5. Related works

Distributed state space construction has been studied in
various contexts. All these approaches share a common idea:
each machine in the network explores a subset of the state
space. This procedure continues until the entire state space is
generated and so no messages are sent anymore [4]. To detect
this situation a termination detection procedure is usually
employed. However, these approaches differ on a number of
design principles and implementation choices, e.g., the way of
partitioning the state space using either static hash functions
or dynamic ones that allow dynamic load balancing, etc. In
this section, we focus on some of these technics and discuss
their problems and advantages. More references can be found
in [5].

In [21], a distributed state space exploration algorithm
derived from the Spin model-checker is implemented using
a master/slave model of computation. Several Spin-specific
partition functions are experimented, the most advantageous
one being a function that takes into account only a fraction of
the state vector, similarly to our function cpuR. The algorithm
performs well on homogeneous networks of machines, but it
does not outperform the standard implementation except for
problems that do not fit into the main memory of a single
machine. Moreover, no clue is provided about how to correctly

choose the fraction of states to consider for hashing, while we
have relied on reception locations from L −R.

In [6] various technics from the literature are extended in
order to avoid sending a state away from the current processor
if its 2nd-generation successors are local. This is comple-
mented with a mechanism that prevents re-sending already sent
states. The idea is to compute the missing states when they
become necessary for model-checking, which can be faster
than sending it. That clearly improves communications but
our method achieves similar goals, in a much simpler way,
without ignoring any state.

There also exist approaches, such as [22], in which par-
allelization is applied to “partial verification”, i.e. state enu-
meration in which some states can be omitted with a low
probability. In our project, we only address exact, exhaustive
verification issues.

For the partition function, different technics have been
used. In [4] authors used of a prime number of virtual
processors and map them to real processor. This improves
load balancing but has no real impact on cross transitions.
In [23], the partition function is computed by a round-robin
on the successor states. This improves the locality of the
computations but can duplicate states. Moreover, it works well
only when network communication is substantially slower than
computation, which is not the case on modern architectures
for explicit model-checking. In [24], an user defined abstract
interpretation is used to reduce the size of the state space and
then it allows to distribute the abstract graph; the concrete
graphs is then computed in parallel for each part of the
distributed abstract graph. In contrast, our distribution method
is fully automated and does not require input from the user.

There are many tools dedicated to the modelling and veri-
fication of security protocols as [25], [9], [10], the most well
known is certainly AVISPA [12]. In contrast, our approach
is based on a modelling framework (algebras of Petri nets)
with explicit state space construction, that is not tight to any
particular application domain. Our approach however, relies
on the particular structure of security protocols. We believe
that our observations and the subsequent optimisations are
general enough to be adapted to the tools dedicated to protocol
verification: we worked in a very general setting of LTS,
defined by an initial state and a successor function. Our only
requirements are three simple conditions (P1 to P3) which can
be easily fulfilled within most concrete modelling formalisms.

6. Conclusion and future works

The critical problem of state space construction is deter-
mining whether a newly generated state has been explored
before. In a serial implementation this question is answered
by organizing known states in a specific data-structure, and
looking for the new states in that structure. As this is a
centralized activity, any parallel or distributed solution must
find an alternative approach. The common method is to assign
states to processors using a static partition function which is
generally a hashing of the states [4]. After a state has been



generated, it is sent to its assigned location, where a local
search determines whether the state already exists. This leads
to two main difficulties. First the number of cross transitions
is too high, leading to a too heavy network use. Second,
memorising all the states in the main memory is impossible
without crashing the whole computation and is not clear when
it is possible to dump some states in disk and if heuristics like
those in [21], [2] would work well for complex protocols.

Our first solution is to use the well-structured nature of
security protocols to choose which part of the state is really
needed for the partition function and to empty the data-
structure in each super-step of the parallel computation. Our
second solution entails automated classification of states and
dynamic mapping of classes to processors. We find that both
our methods execute significantly faster and achieve better
network use than a classical method. Furthermore, we find
that our method to balance states does indeed achieve better
network use, memory balance and runs faster.

The fundamental message is that for parallel discrete state
space construction, it is essential to exploit characteristics of
the models and to structure the computation accordingly. We
have demonstrated techniques that prove the feasibility of this
approach and demonstrate its potential. Key elements to our
success were (1) an automated states classification that reduces
cross transitions and memory footstep, while improving the
locality of computation (2) using global barriers (which is
a low-overhead method) to compute a global remapping of
states and thus improve balancing workload, achieving a good
scalability.

Future works will be dedicated to build a real and efficient
implementation from our prototype. It will feature in particular
a temporal logic model-checker, allowing to verify more than
reachability properties. Using this implementation, we would
like to run benchmarks in order to compare our approach with
existing tools. We would like also to test our algorithm on
parallel computer with more processors in order to confirm
the scalability that we could observe on 40 processors.

Moreover, we are working on the formal proof of our
algorithm. Proving a verification algorithm is highly desirable
in order to certify the truth of the diagnostics delivered by
such an algorithm. Such a proof is possible because, thanks to
the BSP model, our algorithm remains simple in its structure.
Finally, we would like to generalise our present results by
extending the application domain. In the security domain, we
will consider more complex protocols with branching and
looping structures, as well as complex data types manipu-
lations. In particular, we will consider protocols for secure
storage distributed through peer-to-peer communication [26].
Another generalisation will be to consider symbolic state
space representations, in particular those based on decision
diagrams.

References

[1] D. Nicol and G. Ciardo, “Automated parallelization of discrete state-
space generation,” Journal of Parallel and Distributed Computing, vol. 4,
no. 2, pp. 153–167, 1997.

[2] S. Evangelista and L. M. Kristensen, “Dynamic State Space Partitioning
for External Memory Model Checking,” in Proceedings of Formal Meth-
ods In Computer Sciences (FMICS), ser. LNCS, vol. 5825. Springer,
2009, pp. 70–85.

[3] R. Kumar and E. G. Mercer, “Load balancing parallel explicit state
model checking,” in ENTCS, vol. 128. Elsevier, 2005, pp. 19–34.

[4] H. Garavel, R. Mateescu, and I. Smarandache, “Parallel state space
construction for model-checking,” in Workshop on Model Checking of
Software SPIN, May 2001.

[5] J. Barnat, “Distributed memory LTL model checking,” Ph.D. disserta-
tion, Faculty of Informatics Masaryk University Brno, 2004.

[6] C. Pajault, “Model checking parallèle et réparti de réseaux de Petri
colorés de haut-niveau,” Ph.D. dissertation, Conservatoire National des
Arts et Métiers, 2008.

[7] D. Basin, “How to evaluate the security of real-life cryptographic
protocols? The cases of ISO/IEC 29128 and CRYPTREC,” in Workshop
on Real-life Cryptographic Protocols and Standardization, 2010.

[8] D. Dolev and A. C. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2, pp. 198–208,
1983.

[9] A. Armando and L. Compagna, “SAT-based model-checking for security
protocols analysis,” Int. J. Inf. Sec., vol. 7, no. 1, pp. 3–32, 2008.

[10] A. Armando, R. Carbone, and L. Compagna, “LTL model checking for
security protocols,” in Proceedings of CSF. IEEE Computer Society,
2007, pp. 385–396.

[11] H. Gao, “Analysis of security protocols by annotations,” Ph.D. disserta-
tion, Technical University of Denmark, 2008.

[12] A. Armando and al., “The AVISPA tool for the automated validation
of Internet security protocols and applications,” in Proceedings of
Computer Aided Verification (CAV), ser. LNCS, K. Etessami and S. K.
Rajamani, Eds., vol. 3576. Springer, 2005, pp. 281–285.

[13] C. J. F. Cremers, “Scyther - semantics and verification of security
protocols,” Ph.D. dissertation, Technische Universiteit Eindhoven, 2006.

[14] D. B. Skillicorn, J. M. D. Hill, and W. F. McColl, “Questions and
Answers about BSP,” Scientific Programming, vol. 6, no. 3, pp. 249–
274, 1997.

[15] R. H. Bisseling, Parallel Scientific Computation. A structured approach
using BSP and MPI. Oxford University Press, 2004.

[16] F. Pommereau, “Algebras of coloured Petri nets,” Habilitation thesis,
University Paris-East Créteil, 2009.

[17] S. Christensen, L. M. Kristensen, and T. Mailund, “A sweep-line method
for state space exploration,” in Proceedings of Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), ser. LNCS,
T. Margaria and W. Yi, Eds., vol. 2031. Springer, 2001, pp. 450–464.

[18] F. Pommereau, “Quickly prototyping Petri nets tools with SNAKES,” in
Proc. of PNTAP’08, ser. ACM Digital Library. ACM, 2008, pp. 1–10.

[19] K. Hinsen, “Parallel scripting with Python,” Computing in Science &
Engineering, vol. 9, no. 6, 2007.

[20] LSV, ENS Cachan, “SPORE: Security protocols open repository,” http:
//www.lsv.ens-cachan.fr/Software/spore.

[21] F. Lerda and R. Sista, “Distributed-memory model checking with SPIN,”
in Proceedings of SPIN, ser. LNCS, D. Dams, R. Gerth, S. Leue, and
M. Massink, Eds., no. 1680. Springer-Verlag, 1999, pp. 22–39.

[22] W. J. Knottenbelt, M. A. Mestern, P. G. Harrison, and P. Kritzinger,
“Probability, parallelism and the state space exploration problem,”
in Proceedings of Computer Performance Evaluation-Modeling, Tech-
niques and Tools (TOOLS), ser. LNCS, R. Puigjaner, N. N. Savino, and
B. Serra, Eds., no. 1469. Springer-Verlag, 1998, pp. 165–179.

[23] D. Petcu, “Parallel explicit state reachability analysis and state space
construction,” in Proceedings of ISPDC. IEEE Computer Society, 2003,
pp. 207–214.

[24] S. Orzan, J. van de Pol, and M. Espada, “A state space distributed policy
based on abstract interpretation,” in ENTCS, vol. 128. Elsevier, 2005,
pp. 35–45.

[25] T. Genet, Y.-M. Tang-Talpin, and V. V. T. Tong, “Verification of
copy-protection cryptographic protocol using approximations of term
rewriting systems,” in Workshop on Issues in the Theory of Security
(WITS), 2003.

[26] S. Sanjabi and F. Pommereau, “Modelling, verification, and formal
analysis of security properties in a P2P system,” in Workshop on
Collaboration and Security (COLSEC’10), ser. IEEE Digital Library.
IEEE, 2010, pp. 543–548.


