
Mechanised verification of distributed state-space algorithms for security protocols

Frédéric Gava
University of Paris-East

frederic.gava@univ-paris-est.fr

Arthur Hidalgo
University of Paris-East

Jean Fortin
University of Paris-East

jean.fortin@univ-paris-est.fr

Abstract—Explicit model-checking (MC) is a classical so-
lution to find flaws in a security protocol. But it is well-
known that for non trivial protocols, MC may enumerate state-
spaces of astronomical sizes — the famous state-space explosion
problem. Distributed model checking is a solution but complex
and subject to bugs: a MC can validate a model but miss
an invalid state. In this paper, we focus on using a verification
condition generator that takes annotated distributed algorithms
and ensures their termination and correctness. We study five
algorithms (one sequential and four distributed where three
of them are dedicated and optimised for security protocol)
of state-space construction as a first step towards mechanised
verification of distributed model-checkers.

Keywords-BSP; Mechanized proof; Security protocol

I. INTRODUCTION

Security protocols are small and standard components
of systems that communicate over untrusted networks.
Their relatively small size, combined with their critical
role, makes them a suitable target for formal analysis [1].
Model-checking (MC) is common solution to find flaws [2].
Ideally, we would also like to have a proof of the protocol’s
correctness or of the attack found: generate a “certificate”
[3] that can be checked later. But the generation of large
discrete state spaces of some non traditional protocols [4]
(especially when complex data-structures are used by
the agents such as lists of trusted servers etc.) is such a
computationally intensive activity that the use of distributed
machines is desirable and is a great challenge of research.

But MCs, especially distributed ones [5], like any complex
softwares are subject to bugs. And generating distributed
certificates to be later machine-checked using a theorem
prover such as Coq is currently not reasonable since provers
are critical softwares that can not be altered without much
attention. For this purpose, we proposed to prove the cor-
rectness of the distributed MC itself and not its results as
“certifying MC” [3] generally does.

But unlike [6] where authors only focus on safety prop-
erties such as no overflows, no deadlocks etc., we use
the condition generator (VCG) Why [7] and extend the
deductive verification to the correctness of the final result:
has the full state-space been well computed (in parallel)
without adding unknown states? We consider the mechanised
verification of different annotated algorithms: a sequential
one as an introduction of the methodology; the traditional

distributed state space algorithm and three specialised dis-
tributed algorithms for computing the state space of security
protocols [8]. All distributed algorithms used a model of
parallel computation called BSP [9]. The annotated source
codes are available at http://lacl.fr/gava/cert-mc.tar.gz.

II. CONTEXT AND DEFINITIONS

A. Deductive verification of algorithms using Why [7]

Why is a framework for algorithms verification. Basically,
it is composed of two parts: a (polymorphic first-order)
logical language called Why with an infrastructure to trans-
late it to existing theorem provers and SMT solvers; and
an intermediate verification programming language called
WhyML with a VCG. The examples of the standard library
propose finite sets of data and several operations with their
axiomatisation — which can be proved using Coq. In the
logical formula, x@ is the notation for the value of x in
the prestate, i.e. at the precondition point and x@label for
the value of x at a certain point (marked by a label) of the
algorithm. Mutable data types can be introduced, by means
of polymorphic references: a reference r to a value of type
σ has type ref σ, is created with the function ref, is accessed
with !r, and assigned with r←e. Algorithms are annotated
using pre- and post-conditions, loop invariants, and variants
to ensure termination. VCG is computed using a weakest
precondition calculus and then passed to the back-end of
Why to be sent to provers. Notice that in Why, sets are
purely applicative and thus only a reference on a set can be
modified and assigned to another set.

B. Definition of the finite state-space

Let us recall that the finite state-space construction prob-
lem is the problem of computing the explicit graph repre-
sentation (also known as Kripke structure) of a given model
from the implicit one. This graph is constructed by exploring
all the states reachable through a successor function succ
from an initial state s0. Generally, during this operation, all
the explored states must be kept in memory in order to avoid
multiple explorations of a same state.

In the following, the algorithms only compute the state-
space, noted StSpace. This is made without loss of generality
and it is a trivial extension to compute the full Kripke
structure — usually preferred for checking temporal logic
formula. To represent StSpace, we used the following:

1 logic s0: state logic succ: state→ state set logic StSpace: state set
2 axiom contain state space: ∀ss:state set. StSpace ⊆ ss↔
3 (s0 ∈ ss and (∀ s:state. s ∈ ss→ s ∈ StSpace→ succ(s) ⊆ ss))

i.e. defines which sets can contain the state-space. Now ss is
the state-space (ss=StSpace) if and only if, the two following
properties hold: (A) ss ⊆ StSpace and (B) StSpace ⊆ ss; that
is equality of sets using extensionality.

C. Verification of a sequential algorithm

Fig. 1 gives a common sequential algorithm in WhyML
(logical assertions are in curly brackets) using an appropriate
syntax for set operations. A set called known contains all the
states that have been processed and would finally contain
StSpace. The set todo is used to hold all the states whose
successors have not been constructed yet; each state s from
todo is processed in turn (lines 4 and 12) and added to known
(line 13) while its successors are added to todo unless they
are known already — line 14. Note that the algorithm can be
made strictly depth-first by choosing the most-recently dis-
covered state (i.e. todo as a heap), and breadth-first by choos-
ing the least-recently one. This has not been studied here.

We need to prove three properties regarding this code:
it does not fail, it indeed computes the state-space and it
terminates. The first property is immediate since the only
operation that could fail is pick (where the precondition is
“not take any element from an empty set”) and this is assured
by the while’s boolean condition. Only four invariants (lines
6−9) are needed: (1) known and todo are subsets of StSpace;
at the end, todo will be empty which ensures (A); (2) these
sets are disjoint which ensures that only new states are
added to known; (3) and (4) known is as StSpace and when
todo will be empty, then it ensures (B). Also, the termina-
tion of this algorithm is ensured by the following variant:
|StSpace \ known| and this variant holds at every step since
the algorithm only adds a new state s since (known ∩ todo)=∅.

All the obligations produced by the VCG of WhyML are
automatically discharged by a combination of SMT provers:
CVC3, Z3, Simplify, Alt-Ergo, Yices and Vampire. For each
prover, we give a timeout of 10 seconds. In the following
table, we give the number of generated obligations and how
many are discharged by the provers:

Algo/SMT Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire
Seq 11 2 10 11 7 3 3

One could notice that SMT solvers Simplify and Z3 give
the best results. In practice, we mostly used them: Simplify
is the faster and Z3 sometime verified some obligations
that had not be discharged by Simplify. We also have
worked with the provers as black-boxes and we have thus
no explanation for this fact. It also took a day for the first
author to annotate this first algorithm.

III. DISTRIBUTED STATE-SPACE CONSTRUCTION

A BSP computer is a set of uniform processor-memory
pairs connected through a communication network [9]. A
BSP program is executed as a sequence of super-steps, each

1 let seq algo () =
2 let known = ref ∅ in
3 let todo = ref {s0} in
4 while todo 6= ∅ do
5 {
6 invariant (1) (known ∪ todo) ⊆ StSpace
7 and (2) (known ∩ todo)=∅
8 and (3) s0 ∈(known ∪ todo)
9 and (4) (∀ e:state. e ∈known→ succ(e) ⊆ (known ∪ todo))

10 variant |StSpace \ known|
11 }
12 let s = pick todo in
13 known←!known ⊕ s;
14 todo←!todo ∪ (succ(s) \ !known)
15 done;
16 !known
17 {result=StSpace} (* result is the value of known*)

Figure 1. Sequential annotated algorithm

one divided into three successive disjoint phases: (1) each
processor only uses its local data to perform sequential
computation and to request data transfers to other nodes;
(2) the network delivers the requested data; (3) a global
synchronisation barrier occurs, making the transferred data
available for the next super-step.

A. Deductive verification of BSP algorithms

Our tool BSPWhy extends WhyML with BSP primitives
(message passing and synchronisation) and definitions of
collective operations. A special constant nprocs (equal to
p the number of processors) and a special variable my pid
(with range 0, . . . ,p − 1) were also added to WhyML
expressions. A special syntax for BSP annotations is also
provided which is simple to use and is sufficient to express
conditions in most practical programs: we add the construct
t<i> which denotes the value of a term t at processor id i,
and <x> denotes a p-values x (represented by fparray,
purely applicative arrays of constant size p) that is a value
on each processor by opposition to the simple notation x
which means the value of x on the current processor.

We used the WhyML language as a back-end of our own
BSPWhyML language. This transformation is based on the
fact that, for each super-step, if we execute sequentially the
code for each processor and then perform the simulation of
the communications by copying the data, we have the same
results as in really truly doing it in parallel. Also, when trans-
forming a if or while structure, there is a risk that a global
synchronous instruction (a collective operation) might be
executed on a processor and not on the others. We generate
an assertion to forbid this case, ensuring that the condition
associated with the instruction will always be true on every
processor at the same time and thus forbidding deadlocks.
The details and some examples are available in [10].

B. A generic BSP algorithm for state-space generation

This sequential algorithm can be easily parallelised in a
SPMD (Single Program, Multiple Data) fashion by using a
partition function cpu that returns for each state a processor
id, i.e., the processor numbered cpu(s) is the owner of s.
The idea is that each processor computes the successors

1 let naive state space () =
2 let known = ref ∅ in let todo = ref ∅ in
3 let pastsend = ref ∅ in let total = ref 1 in
4 if cpu(s0) = bsp pid then
5 todo←s0 ⊕ !todo;
6 while total>0 do
7 { invariant
8 (1)

⋃
(<known>) ∪

⋃
(<todo>) ⊆ StSpace

9 and (2) (
⋃

(<known>) ∩
⋃

(<todo>))=∅
10 and (3) GoodPar(<known>) and GoodPart(<todo>)
11 and (4) (∀ i,j:int. isproc(i)→ isproc(j)→ total<i> = total<j>)
12 and (5) total<0> ≥ |

⋃
(<todo>)|

13 and (6) s0 ∈(
⋃

(<known>) ∪
⋃

(<todo>))
14 and (7) (∀ e:state. e ∈

⋃
(<known>)→ succ(e) ⊆ (

⋃
(<known>) ∪⋃

(<todo>)))
15 and (8) (∀ e:state. ∀i:int. isproc(i)→ e ∈known<i>→ succ(e) ⊆

(known<i> ∪ pastsend<i>))
16 and (9)

⋃
(<pastsend>) ⊆ StSpace

17 and (10) (∀ i:int. isproc(i)→ ∀e:state. e ∈pastsend<i>→ cpu(e) 6= i)
18 and (11)

⋃
(<pastsend>) ⊆ (

⋃
(<known>) ∪

⋃
(<todo>))

19 variant pair(total<0>,| S \
⋃

(known) |) for lexico order
20 }
21 let tosend=(local successors known todo pastsend) in
22 exchange todo total !known !tosend
23 done;
24 !known
25 {

⋃
(<result>)=StSpace and GoodPart(<result>)}

Figure 2. Parallel annotated algorithm

for only the states it owns. This is rendered as the BSP
algorithm of Fig. 2. Sets known and todo are still used but
become local to each processor and thus provide only a
partial view on the ongoing computation. For lack of space,
we only present the code of the main parallel loop: other
functions are available in the source code.

Function local successors computes the successors of the
states in todo where each computed state that is not owned by
the local processor is recorded in a set tosend together with
its owner number. The set pastsend contains all the states
that have been sent during the past super-steps — the past
exchanges. This prevents returning a state already sent by the
processors. Function (synchronous) exchange is responsible
for performing the actual communications: it returns the set
of received states that are not yet known locally together
with the new value of total .

In order to terminate the algorithm, we use the additional
variable total in which we count the total number of sent
states. We have thus not used any complicated methods as
the ones presented in [11], [12]. It can be noted that the
value of total may be greater than the intended count of
states in todo sets. Indeed, it may happen that two processors
compute a same state owned by a third processor, in which
case two states are exchanged but then only one is kept
upon reception. In the worst case, the termination requires
one more super-step during which all the processors will
process an empty todo, resulting in an empty exchange and
thus total=0 on every processor, yielding the termination.

C. Verification of this generic distributed algorithm

We use the following predicates:
• isproc(i) defines what is a valid processor id, that is

0≤ i<nprocs;

•
⋃

(p set) is the union of the sets of the p-value p set
that is

⋃p
pid=0 p set(pid);

• GoodPart(<p set>) is used to indicate that each pro-
cessor only contains the states it owns that is
∀i:int. isproc(i)→ ∀s:state. s ∈p set<i>→ cpu(s)=i.

As above, we need to prove that the code does not
fail, indeed computes the entire state-space and terminates.
The first property is immediate since only pick is used
as above. Absence of deadlock (the main loop contains
exchange which implies a global synchronisation of all the
processors) can easily be maintained using invariant (4)
(line 11): total has the same value on all the processors
during the entire execution of the algorithm. Let us now
focus on the two other properties.

The invariants (lines 8−18) of the main parallel loop work
as follow: (1) as in the sequential algorithm, we need to
maintain that known (even distributed) is a subset of StSpace
which finally ensures (A) when todo is empty; (2) as usual,
the states to treat are not already known; (3) our sets are well
distributed (there is no duplicate state that is, each state is
only kept in a unique processor); (4) total is a global variable,
we thus ensure that it is the same value on each processor;
(5) ensures that no state remain in todo (to be treated) when
leaving the loop since total is upper to the size of todo, total is
an over-approximation of the number of sent states; (6) and
(7) usually ensure property (B); (8) states in known have their
successors locally present or already sent; (9) past sent states
are in the state-space; (10) pastsend only contains states that
are not owned by the processor and (11) all these states, that
were sent, are finally received and stored by a processor.

In the post-condition (line 25), we can also ensure that
the result is well distributed: the state-space is complete and
each processor only contains the states it owns depending
of the function “cpu”.

For the local computations, the termination is ensured as
in the sequential algorithm. The main loop is more subtle:
total is an over-approximation and thus could be greater to
0 whereas todo empty. This happens when all the received
states are already in known. The termination has thus two
cases: (1) in general the set known globally (that is in the
point of view of all processors) grows and we have thus the
cardinal of StSpace minus known which is strictly decreasing;
(2) if there is no state in any todo of a processor (case of
the last super-step), no new states would be computed and
thus total would be equal to 0 in the last stage of the main
loop. We thus used a lexicographic order (this relation is
well-founded ensuring termination) on the total size of the
p values known following with total (which is the same value
on each processor) when no new states are computed and
thus when no state would be sent during the next super-step.
Finally, one processor can have received no states during a
super-step. We thus need an invariant in the local successors
for maintaining the fact that the set known potentially grows
with at least the states of todo. We also maintain that if todo

is empty then no state would be sent (in local successors) and
received, making total equal to 0 after the exchange function.

With some obvious axioms on the predicates, all the
produced obligations are automatically discharged by a
combination of the SMT solvers. In the following table, for
each part of this parallel algorithm, we give the number of
obligations and how many are discharged by the provers:

part/SMT Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

main 106 49 90 92 0 0 81
successor 94 45 90 88 75 0 58
exchange 90 42 80 78 74 0 75

Now the combination of all provers is needed since none of
them (or at least a couple of them) is able to prove all the
obligations. This is certainly due to their different heuristics.
We also note that Simplify and Z3 continue to remain the
most efficient. It took one month for the authors to annotate
this parallel algorithm.

IV. DEDICATED ALGORITHMS FOR PROTOCOLS

A. BSP computing the state-space of security protocols [8]

We model security protocols as a labelled transition
system (LTS) where agents send messages over a network
which contains a Dolev-Yao attacker [13]. The intruder can
overhear, intercept, and synthesise any message and is only
limited by the constraints of the cryptographic methods used.
It is enough to assume that the following properties hold:
(P1) LTS function succ can be partitioned into two successor
functions succR and succL that correspond respectively
to transitions upon which an agent (except the intruder)
receives information (and stores it), and to all the other
transitions; (P2) there is an initial state s0 and there exists a
function slice from states to natural numbers (a measure)
such that if s′ ∈ succR(s) then there is no path from
s′ to any state s′′ such that slice(s) = slice(s′′) and
slice(s′) = slice(s) + 1 (it is often called a sweep-line
progression); (P3) there exists a function cpu from states
to natural numbers (a hashing) such that for all state s if
s′ ∈ succL(s) then cpu(s) = cpu(s′); mainly, the knowledge
of the intruder is not taken into account to compute the hash
of a state; (P4) if s1, s2 ∈ succR(s) and cpu(s1) 6= cpu(s2)
then there is no possible path from s1 to s2 and vice versa.
Based on the following properties, we have designed in [8],
in an incremental manner, three different BSP algorithms for
effectively computing the state space of security protocols.
Only the functions local successors and exchange have been
modified in the distributed algorithms.

In the first algorithm, called “Incr”, when the function
local successors is called, then all new states from succL
are added in todo (states to be proceeded) and states from
succR are sent to be treated at the next super-step, enforcing
an order of exploration of the state space that matches
the progression of the protocol. Another difference is the
forgotten variable “pastsend” since no state could be sent
twice due to this order. Fig. 3 schemes this idea. In the
second algorithm, called “Sweep”, and using the previous

succ_L

succ_R

communication/slice

Figure 3. Scheme of the “Incr” distributed algorithm

1
2

3

4

p0

p0

p0

p1

p1

p1

p2

p2

p0

class of states

balanced communications

slices

Figure 4. Scheme of the “Balance” distributed algorithm

hypothesis, at the beginning of each super-step, we also
dump from the main memory all the known states because
they cannot be reached anymore due to the sweep-line
progression. In the third algorithm, called “Balance”, states
to be sent are also first balanced across the processors.
Classes of states (consistent with partition function cpu) are
grouped on processors so there is no possibility of duplicated
computation. Fig. 4 schemes this idea. These algorithms
(especially the third one) give better performances than a
naive distributed one for security protocols [8]. Note that
partial-order reductions [14] can also be trivially introduced.

B. Verification of these dedicated parallel algorithms

For all these algorithms, the termination is proved correct
as above. For lack of space, we present only the differences
in the main loop of the algorithms and not in local successor
and exchange — see the source code.

1) Algorithm “Incr”: The invariants are the same of Fig 2
but with these changes. First, we need to forget all the
behaviour about pastsend in the invariants of Fig 2 that is
invariants (10), (15) and (18) since we no longer use this
variable. Second, we introduce these two new invariants:

1 (12) and (∀ e:state. e ∈
⋃

(<known>)→ slice(e)<ghost slice)
2 (13) and (∀ e:state. e ∈

⋃
(<todo>)→ slice(e)=ghost slice)

We need here to introduce the ghost variable1 ghost slice
which is incremented at each super-step and thus cor-
responds to the measure of progression of the protocol.

1Additional codes not participating in the computation but accessing the
program data and allowing the verification of the original code.

Invariant (12) is needed to prove that the set known contains
only states of the past slices and invariant (13) proves that
in todo there are only states of the current slice.

2) Algorithm “Sweep”: This algorithm works as “Incr”
except that known is empty at the beginning of each super-
step. We thus need to maintain this fact by using another
invariant (14)

⋃
(known)=∅. Note that known only grows in

function local successor.
Also, we can thus no longer use known as the variable

which contains the full state-space. We thus introduce an-
other ghost variable called ghost known which will grow at
each super-step by recovering all the states of known. In this
way, in all the previous invariants, we must replace known
per ghost known for having the correctness of this algorithm.

3) Algorithm “Balance”: In this algorithm, we no longer
used the partition function cpu since states are distributed per
class and classes are distributed across the processors using
a balance. We thus need a predicate class(e,e’) that logically
define that two states belong to the same class. We also
need to redefine the predicate GoodPart(<p set>) as follow:
∀i,j:int. isproc(i)→ isproc(j)→ i 6= j→ ∀s,s’:state. s ∈p set<i>→
s’ ∈p set<j>→ ¬class(e,e’) which denotes that two states that
belong to two different processors are not in the same class.

We also need to assert that after the computation of the
balance (currently axiomatised since a heuristic of a NP-
problem [8]), sent states respect the predicate GoodPart. We
also introduce this new invariant:

1 (14) and (∀ i:int. isproc(i)→ ∀e,e’:state. e ∈ghost known<i>→
class(e,e’)→ e’ ∈ghost known<i>)

which denotes that known states respect the fact that all
states in a class belong to the same slice at the same
processor. local successor would verify this fact.

4) “Proof obligation results”: In the following table, for
each part of each parallel algorithm, we give the number of
obligations and how many are discharged by the provers:

Algorithm Part Total Alt-Ergo Simplify Z3 CVC3 Yices Vampire

Incr
main 109 50 93 85 0 0 85
successor 105 55 102 101 77 0 73
exchange 32 15 28 22 19 0 27

Sweep
main 129 62 114 109 0 0 92
successor 107 58 103 102 81 0 78
exchange 31 14 29 23 21 0 28

Balance
main 135 71 123 119 0 0 102
successor 113 62 111 108 87 0 81
exchange 38 16 31 29 22 0 29

As above, only the combination of all provers is able to
prove all the obligations. And few of them (not necessarily
the harder) need that provers run minutes. Simplify and Z3
still remain the most efficient. An interesting point is that
the second author, as a master student (when writing this
article), was able to perform the job (annotate these parallel
algorithms) in three months. Based on this fact, it seems
conceivable that a more seasoned team in formal methods
can tackle more substantial algorithms (of model-checking)
in a real programming language.

V. RELATED WORKS

There are many tools dedicated to the verification of
security protocols: see [1] for an overview. The main idea
of most known approaches to the distributed memory state
space generation is similar to the naive algorithm [5]. Some
developments using theorem provers are related to model
checking. In [15] and [16], authors present development of
BDDs and tree automata using Coq. The verification of a
µ-calculus computation has also been done in Coq in [17].
A sequential state-space algorithm (with a partial order
reduction) has been checked in B in [18]. Our methodology
is also based on perfect cryptography. The author of [19]
annotated cryptographic algorithms to mechanize the proof
of their correctness.

To our knowledge, there are three existing approaches for
automatically generating machine-checked protocol security
proofs. The first approach is in [20] where a protocol
and its properties are modeled as a set of Horn-clauses
and where the certificate is machine-checked in Coq. The
second [21] used the theorem prover Isabelle and computed
a fixpoint of an abstraction of the transition relation of
the protocol of interest — this fixpoint over-approximates
the set of reachable states of the protocol. The latter [22]
also used Isabelle but two strong protocol-independent
invariants have been derived from an operational semantics
of the protocols. We see three main drawbacks to these
approaches. First, they limits (reasonably) protocols and
properties that can be checked. Second, each time the
proof of the tested property of the protocol need to be
machine-checked; in our approach, the results of the MC
are correct by construction. Third, there is currently no
possibility of distributed computations for larger protocols.

VI. CONCLUSION AND FUTURE WORK

Designing security protocols is complex and often error
prone: various attacks are reported in the literature to proto-
cols thought to be “correct” for many years. There are now
many tools that check the security of cryptographic protocols
and model-checking is one of the solution [1]. But model
checkers use sophisticated algorithms that can miss a state
which can be an unknown attack of the security protocol.
Mechanized correctness is thus vital.

In this work, we focus on correctness of a well-known se-
quential algorithm for finite state-space construction (which
is the basis for explicit model-checking) and on distributed
ones where three are dedicated to security protocols. We
annotated the algorithms for finite sets operations (available
in Coq) and used the VCG Why (certifying in Coq [23])
to obtain goals that were entirely checked by SMT solvers.
These goals ensure the termination of the algorithms as well
as their correctness for any successor function — assumed
correct and generating a finite state-space. We thus gained
more confidence in the code. We also hope to have convinced

that this approach is humanly feasible and applicable to true
(parallel or not) model-checking algorithms.

In future works, we plan to check model-checking algo-
rithms (in the sense of determining if a logical LTL/CTL*
formula holds a model) as Tarjan like algorithms. This
is challenging in general but using an appropriate VCG,
we believe that a team can “quickly” do it. Compressions
aspects (symmetry, partial order, etc.) must also be studied
since they can generate wrong algorithms. The work of [18]
which uses the B method could be a good basis. Further-
more, the transformation of BSPWhyML into WhyML is
potentially not correct. The third authors is working on this.
The successor function (computation of the transitions of
the state-space) is currently an abstract function. A machine-
checked proof of an implementation is needed. Finally, we
are currently proving algorithms and not the effective code.
Regarding the code structure, this is not really an issue
and translating the resulting proof into a verification tool
for true programs should be straightforward, mostly if high
level data-structures are used: the Why framework allows
a plugin of Frama-C (http://frama-c.com/) to generate WhyML
codes from C ones — a tool for Java codes is also present.

REFERENCES

[1] H. Comon-Lundh and V. Cortier, “How to prove security of
communication protocols? a discussion on the soundness of
formal models w.r.t. computational ones,” in STACS, 2011,
pp. 29–44.

[2] A. Armando, R. Carbone, and L. Compagna, “Ltl model
checking for security protocols,” Applied Non-Classical Log-
ics, 2009.

[3] K. S. Namjoshi, “Certifying model checkers,” in Computer
Aided Verification (CAV), ser. LNCS, vol. 2102. Springer,
2001, pp. 2–13.

[4] S. Sanjabi and F. Pommereau, “Modelling, verification, and
formal analysis of security properties in a P2P system,” in
Workshop on Collaboration and Security (COLSEC’10), ser.
IEEE Digital Library. IEEE, 2010, pp. 543–548.

[5] H. Garavel, R. Mateescu, and I. Smarandache, “Parallel state
space construction for model-checking,” in Workshop on
Model Checking of Software SPIN, May 2001.

[6] J. Sun, Y. Liu, and B. Cheng, “Model checking a model
checker: A code contract combined approach,” in Formal En-
gineering Methods (ICFEM), ser. LNCS, vol. 6447. Springer,
2010, pp. 518–533.

[7] J.-C. Filliâtre, “Verifying two lines of C with Why3: an exer-
cise in program verification,” in Verified Software: Theories,
Tools and Experiments (VSTTE), 2012.

[8] F. Gava, M. Guedj, and F. Pommereau, “A bsp algorithm for
the state space construction of security protocols,” in PDMC.
IEEE Computer Society, 2010, pp. 37–44.

[9] R. H. Bisseling, Parallel Scientific Computation. A structured
approach using BSP and MPI. Oxford University Press,
2004.

[10] J. Fortin and F. Gava, “BSP-Why: an intermediate language
for deductive verification of BSP programs,” in High-level
Parallel Programming and Applications (HLPP). ACM
Press, 2010.

[11] J. Barnat, “Distributed memory LTL model checking,” Ph.D.
dissertation, University of Brno, 2004.

[12] H. Garavel, R. Mateescu, and I. M. Smarandache, “Parallel
state space construction for model-checking,” in Proceedings
of SPIN, ser. LNCS, M. B. Dwyer, Ed., vol. 2057. Springer,
2001, pp. 217–234.

[13] D. Dolev and A. C. Yao, “On the security of public key pro-
tocols,” IEEE Transactions on Information Theory, vol. 29,
no. 2, pp. 198–208, 1983.

[14] M. Torabi Dashti, A. Wijs, and B. Lisser, “Distributed partial
order reduction for security protocols,” ENTCS, vol. 198, pp.
93–99, 2008.

[15] K. N. Verma, J. Goubault-Larrecq, S. Prasad, and S. Arun-
Kumar, “Reflecting BDDs in Coq,” in Asian Computing
Science Conference (ASIAN), ser. LNCS, vol. 1961. Springer,
2000, pp. 162–181.

[16] X. Rival and J. Goubault-Larrecq, “Experiments with finite
tree automata in coq,” in Theorem Proving in Higher Order
Logics (TPHOL), ser. LNCS, vol. 2152. Springer, 2001, pp.
362–377.

[17] C. Sprenger, “A verified model checker for the modal µ-
calculus in coq,” in Tools and Algorithms for Construction
and Analysis of Systems (TACAS), ser. LNCS, vol. 1384.
Springer, 1998, pp. 167–183.

[18] E. Turner, M. Butler, and M. Leuschel, “A refinement-based
correctness proof of symmetry reduced model checking,”
in Abstract State Machines, Alloy, B and Z, ser. LNCS.
Springer, 2010, pp. 231–244.

[19] J. den Hartog, “Towards mechanized correctness proofs for
cryptographic algorithms: Axiomatization of a probabilistic
hoare style logic,” Sci. Comput. Program., vol. 74, no. 1–2,
pp. 52–63, 2008.

[20] J. Goubault-Larrecq, “Finite models for formal security
proofs,” Journal of Computer Security, vol. 18, no. 6, pp.
1247–1299, 2010.

[21] A. D. Brucker and S. Mödersheim, “Integrating automated
and interactive protocol verification,” in Formal Aspects in
Security and Trust (FAST), ser. LNCS, vol. 5983. Springer,
2009, pp. 248–262.

[22] S. Meier, C. J. F. Cremers, and D. A. Basin, “Strong invariants
for the efficient construction of machine-checked protocol
security proofs,” in Computer Security Foundations (CSF).
IEEE Computer Society, 2010, pp. 231–245.

[23] P. Herms, “Certification of a chain for deductive program ver-
ification,” in 2nd Coq Workshop, satellite of ITP’10, Y. Bertot,
Ed., 2010.

