
A BSP algorithm for on-the-fly checking CTL* formulas on security protocols

Frédéric Gava
University of Paris-East

frederic.gava@univ-paris-est.fr

Michaël Guedj
University of Paris-East

Franck Pommereau
University of Évry

franck.pommereau@ibisc.univ-evry.fr

Abstract—This paper presents a distributed algorithm to
compute on-the-fly whether a structured model of a security
protocol satisfies or not a CTL* formula. The design of this
simple and still efficient algorithm is possible by using the struc-
tured nature of security protocols. A prototype implementation
has been developed, allowing to run benchmarks.

Keywords-BSP; CTL*; Security Protocols;

I. INTRODUCTION

Security protocols are small distributed programs which
aim at guaranteeing security properties such as confidential-
ity of data, authentication of participants, etc. It has long
been a challenge to determine whether a given protocol is
secure or not [1]. Model-checking is common solution to
find flaws [2]. In this paper, we consider the problem of
checking a CTL* formulae over labelled transition systems
(LTS) that model security protocols.

The problem of checking a CTL* formula is that the gen-
eration of large discrete state spaces of security protocols is
so a computationally intensive activity with extreme memory
demands, highly irregular behaviour, and poor locality of
references: this is a case of the so-called state explosion
problem. It has thus led to consider exploiting the larger
memory space available in distributed systems [3] and to
reduce the overall execution time. One of the main technical
issues is to partition the state space: each subset of states
is thus “owned” by a single machine. Also, it is rarely
necessary to compute the entire state space before finding a
path that invalidates the logic formula (a flaw in a protocol):
on-the-fly (local) algorithms are designed to build the state
space and check the formula at the same time. Depth First
Search is the common solution but hard to parallelize [4].

In this paper, we exploit the well-structured nature of
security protocols to have a specialized partition func-
tion and we used a model of parallel computation called
BSP [5] to simplify the design of our algorithm which is
a parallelisation of the algorithm of [6]. It combines the
construction a proof-structure (a graph whose nodes states of
the underlying Kripke structure together with sets of logical
formulas) with a Tarjan’s depth-first-search algorithm.

II. CONTEXT AND DEFINITIONS

A. The BSP model
A BSP computer is a set of uniform processor-memory

pairs connected through a communication network [5]. A

BSP program is executed as a sequence of super-steps
(see Fig. 1), each one divided into three successive disjoint
phases: (1) each processor only uses its local data to perform
a sequential computation and to request data transfers to
other nodes; (2) the network delivers the requested data; (3) a
global synchronisation barrier occurs, making the transferred
data available for the next super-step.

B. State space of security protocols [7]

We models security protocols as a labelled transition
system (LTS) where agents send messages over a network
which contains a Dolev-Yao attacker [8]. The intruder can
overhear, intercept, and synthesise any message and is only
limited by the constraints of the cryptographic methods
used. As a concrete formalism to model protocols, we have
used an algebra of coloured Petri nets called ABCD [9,
Sec. 3.3] but our approach is largely independent of the
chosen formalism. It is enough to assume that the following
properties hold: (P1) LTS function succ can be partitioned
into two successor functions succR and succL that cor-
respond respectively to transitions upon which an agent
(except the intruder) receives information (and stores it), and
to all the other transitions; (P2) there is an initial state s0 and
there exists a function slice from states to natural numbers
(a measure) such that if s′ ∈ succR(s) then there is no
path from s′ to any state s′′ such that slice(s) = slice(s′′)
and slice(s′) = slice(s) + 1 (it is often call a sweep-line
progression); (P3) there exists a function cpu from states
to natural numbers (a hashing) such that for all state s if
s′ ∈ succL(s) then cpu(s) = cpu(s′); mainly, the knowledge
of the intruder is not taken into account to compute the hash
of a state; (P4) if s1, s2 ∈ succR(s) and cpu(s1) 6= cpu(s2)
then there is no possible path from s1 to s2 and vice versa.

C. BSP computing of the state space [7]

Based on the following properties, we have designed in
[7] a BSP algorithm (in a SPMD fashion) for computing
the state space of security protocols as shown in Fig. 2.
In this algorithm, “BSP EXCHANGE” is a primitive that
allows processors to globally exchange data: a set of pairs
(pid,value) is used to define values to be sends. Mainly:
(1) states are distributed across the processors using the
cpu function; (2) the algorithm finishes when no states are
exchanged; (3) function Successor is called to compute the

local computations

p0 p1 p2 p3

communication
synchronisation barrier
next super-step...

...
...

...
Figure 1. A BSP super-step.

def bsp state space() is
todo,known←∅,∅
total←1
if cpu(s0) =mypid

todo←todo∪{s0}
while total>0

tosend←Successor(known,todo)
todo,total←Exchange(known,tosend)

return known

def Successor(known,todo) is
tosend←∅
while todo6= ∅

pick s from todo
known←known∪{s}
todo←(todo ∪ succL(s)) \ known
for s′ ∈ succR(s)

tosend←tosend ∪{ (cpu(s′),s′)}
return tosend

def Exchange(known,tosend) is
dump(known)
return BSP EXCHANGE(Balance(tosend))

def Balance(tosend) is
histoL←{(i,]{(i, s) ∈ tosend})}
compute histoG from BSP EXCHANGE(histoL)
return BinPack(tosend,histoG)

Figure 2. BSP computing the state space of protocols.

successors of the states, then all new states from succL
are added in todo (states to be proceeded) and states from
succR are sent to be treated at the next super-step, enforcing
an order of exploration of the state space that match the
progression of the protocol; (4) It thus becomes possible
at the beginning of each super-step, to dump from the main
memory all the known states because they cannot be reached
anymore due to the sweep-line progression; (5) States to
be sent are first balanced across the processors using an
histogram histoG (which is first totally exchanged to be the
same on each processor and enforce consistent decisions
on all the processors: each processor send its own local
histogram histoL) and according to a simple heuristic for
the bin packing problem, classes of states (consistent with
partition function cpu) are grouped on processors so there
is no possibility of duplicated computation. This algorithm
gives better performances than a naive distributed one and
is able to dump all the known states at the beginning of
each super-step allows to use less memory. Partial-order
reductions [10] can also be trivially introduced.

D. Proof-structure and LTL/CTL* checking [6]

The CTL* logic permits users to characterise many prop-
erties both linear and branching time. Syntax and informal
semantics are giving on Fig. 3 where A and E are path

Syntax of CTL* formulas:
State S ::= a | ¬a | S ∧ S | S ∨ S | AP | EP
Path P ::= S | P ∧ P | P ∨ P | XS | SUS | SVS

Informal semantics of modal operators :
Xφ : • → •φ → • → • → • → · · ·

φ1Uφ2 : •φ1 → •φ1 → •φ1 → •φ2 → • → · · ·

φ1Vφ2 : •φ2 → •φ2 → •φ2 → •φ2 → •φ2 → · · ·
or •φ2 → •φ2 → •φ2 → •φ1∧φ2 → • → · · ·

Figure 3. Syntax and informal semantics of modal operators.

quantifiers i.e. forAll paths in the LTS, resp. Exists a path.
Two important sublogics are CTL (every path modality is
immediately preceded by a path quantifier) and LTL —
formulas AP where the only state sub-formulas of P are
propositions. CTL* checking can done using a collection of
top-down proof rules for inferring when a state in a Kripke
structure satisfies an LTL formula [6].

We define M = (S,R,L) to be a Kripke structure where
S is the set of states, R ⊂ S × S the LTS relation which
is assumed to be total (thus all paths in M are infinite)
and L ∈ S → 2A the labelling. The (only) seven proof-
rules are fully available in [6] (Fig. 4 only presents rules
that are used in this work) and they operate on assertions
of the form s ` AΦ where s ∈ S and Φ is a set of path
formulas. Semantically, s ` AΦ holds if s � A(

∨
φ∈Φ φ).

We write A(Φ, φ1, · · · , φn) to represent a formula of the
form A(Φ∪{φ1, · · · , φn}). If σ is an assertion of the form
s ` AΦ, then we use φ ∈ σ to denote that φ ∈ Φ. Proof-rules
are used to build proof-structures that are defined as follows:

Definition 1. Let Σ be a set of nodes, Σ′ = Σ∪ true, V ⊆
Σ′, E ⊆ V ×V and σ ∈ V . Then 〈V,E〉 is a proof structure
for σ if it is a maximal directed graph such that for every
σ′ ∈ V , σ′ is reachable from σ, and the set {σ′′|(σ′, σ′′) ∈
E} results from applying some rule to σ′.

Definition 2. Let 〈V,E〉 be a proof structure. Then: (1) σ ∈
V is a leaf iff there is no σ′ such that (σ, σ′) ∈ E. A leaf σ is
successful iff σ ≡ true; (2) an infinite path π = σ0, σ1, · · ·
in 〈V,E〉 is successful iff for some assertion σi infinitely
repeated on π there exists φ1Vφ2 ∈ σi such that for all
j ≥ i, φ2 /∈ σj; (3) 〈V,E〉 is successful iff all its leaves and
infinite paths are successful.

Roughly speaking, an infinite path is successful if at some
point a formula of the form φ1Vφ2 is repeatedly “regener-
ated” by application of rule R6; that is, the right subgoal (and
not the left one) of this rule application appears each time on
the path. Note also that if no rule can be applied (i.e., Φ = ∅)
then the proof-structure and thus the formula is unsuccessful.

Theorem 1. Let M be a Kripke structure with s ∈ S and
Aφ an LTL formula, and let 〈V,E〉 be a proof structure for
s ` A{φ}. Then s � Aφ iff 〈V,E〉 is successful.

It turns out that the success of a finite proof structure

s ` A(Φ, φ)

true
(R1)

s ` A(Φ, φ)

s ` A(Φ)
(R2)

s ` A(Φ, φ1 ∨ φ2)

s ` A(Φ, φ1, φ2)
(R3)

if s � φ if s 2 φ

s ` A(Φ, φ1Vφ2)

s ` A(Φ, φ2) s ` A(Φ, φ1,X(φ1Vφ2))
(R6)

s ` A(Xφ1, ...,Xφn)

s1 ` A(φ1, ..., φn) sm ` A(φ1, ..., φn)
(R7)

if succ(s) = {s1, ..., sm}

Figure 4. Proof rules for LTL checking [6].

may be determined by looking at its strongly connected
components (SCC) for any accepting cycle. A Tarjan’s like
algorithm is used in [6] and let us name it SeqChkLTL.

Now for CTL* checking, [6] remarks that an efficient
algorithm (let name it SeqChkCTL*) could simplify be a re-
cursive decomposition of the state formulas into subformulas
until reaches assertions and calls SeqChkLTL appropriately
when it encounters assertions of the form s ` AΦ or
s ` EΦ. SeqChkLTL is also modified as follows: each time
the SCC computation of the proof-graph found an assertion
of the form s ` A(Φ) where Φ is not an LTL sub-formula
then it recursively calls SeqChkCTL* on Φ to determine if
s � Φ (semantically valid for s) and then decides if rule R1
or rule R2 (of Fig. 4) needs to be applied. We have thus
a double-recursively of SeqChkLTL and SeqChkCTL* as
the syntax of CTL* suggests.

III. BSP ON-THE-FLY CTL* CHECKING

For lack of space, all the algorithms are available in [11].

A. BSP on-the-fly LTL checking

As explained in the previous section, we use two LTS
successors functions for constructing the Kripke structure:
succR ensures a measure of progression “slice” that intu-
itively decomposes the Kripke structure into a sequence of
slices S0, . . . , Sn (n is the maximal number of possible
protocol sessions) where transitions from states of Si to
states of Si+1 come only from succR and there is no possible
path from states of Sj to states Si for all i < j. Also
after succR transitions (with different hashing partition cpu),
there is no possible common paths which is due to different
knowledge of the agents — honest and intruder.

In [12], we have show that using the distributed state
space generation of Section II-C, states and thus assertions
of the proof-structures are distributed such as a SCC (if
exists) can only be local on a processor and on a slice: we
compute separately the next states for succL and succR; the
former results in local states to be processed in the current
step, while the latter results in states to be processed in the
next step. That is, it is sufficient to perform sequential SCC
computations on each processor and for each super-step to
found flaws — an unsuccessful SCC.

Between each super-step, assertions are distributed ac-
cording to the balance function of states and thus our BSP

algorithm for LTL checking is mainly an iteration over the
independent slices, one slice per super-step and, on each
processor, working on independent sub-parts of the slice by
calling SeqChkLTL each time for the received assertions
— furthermore, in the case of multi-core processors, these
computations can also be done purely in parallel. Notice
that at each super-step, each processor dumps V and E to
its local disk, recording the super-step number, in order to
be able to reconstruct a trace: when a state σ that invalidates
the formula is found, a trace from the initial state to σ
is constructed by reconstructed traces as they are locally
computed and by following the proof-structure backward
even on distant sending— see [12] for the details.

B. A naive BSP algorithm for CTL* checking

The algorithm works as follow. As in Fig. 2, a main
loop is used to compute over received assertions and for
each of them, a SeqChkCTL* is used to decompose the
formulae and run SeqChkLTL adequately to check for
an unsuccessful SCC in the proof-structure. We name this
computation a “session”. During the generation of the
proof-structure, when a sub-formulae beginning by A or E
is found (case of rules R1 and R2), the ongoing “session”
is halting and is now waiting the result of a new “session”
which is running for checking the validity of s � p —
where p could be any CTL* formulae. The ongoing session
is push on a stack of waiting sessions.

The main problems are: (1) different processors can throw
sessions; (2) a session can induce several super-steps (slices)
if it is a path formulae (use of modal operators); this is due to
the double recursion of the CTL* checking; (3) the different
sessions are not fully disjoints; states of the Kripke structures
as well as assertions can be shared: this happens when the
same sub-parts of the Kripke structure are generated and
when sets of formulas in the assertions are not disjoints.
There is thus not possibility of embarrassingly parallel
computations on this set of sessions. A naive solution is to
select, by all the processors, one of these generated sessions
(the other remaining in a distributed global stack) and to
entirely compute this session until another (child) session is
throw or an answer is find — validity of s � p. But this
naive approach has many drawbacks.

First, each time a session is throw, this session can
traverse all the state-space — in several super-steps. This
can happen when the session has been throwed by a
formulae which contains model operators. This can thus
generated too much barriers and inducees a poor latency.
Second, the sweep-line technical used in the previous
section could not holds: each slice does not correspond to
a super-step and thus during backtracking of the answers,
the save on disks assertions must be entered in the main
memory: this can be also costly. Otherwise, we can keep
them all in the main memory but with a risk of swapping.
Third, the balance of the assertions over the processors is

done dynamically at each slice of each session: this ensures
that two assertions for the same Kripke’s state would be
hold by the same processor. That ensures no duplication of
the computations. But if two sessions are run in sequence,
the first one will balance some assertions and the second
session if shared the same states (but for a different set of
logical formulas) must balance the assertions depending of
this first partial balance: this is not optimal. A naive solution
is to re-balance the assertions but it would be too costly.
Fortunately, in our experience, the number of classes and
the small number of assertions in each class are sufficient to
not have too poor balancing even using partial informations.

C. A “purely breadth” BSP algorithm for CTL* checking

To avoid these problems we will take into account the
“nature” of the proof-structures: having an explicit decom-
position of the logical formulae which can help to choose
where a parallel computation is needed or not. The main idea
of the algorithm is based on the rules R1 and R2: computing
s � φ together with s ` A(Φ). In this way, we will able to
choice which rule (R1 or R2) can be applied. As above, the
computation of s � φ would be performed by a LTL session
while the computation of s ` A(Φ) would be performed by
following the execution of the sequential Tarjan algorithm
— SCC computation. In a sense, we expect the result of
s � φ by computing the validity of the assertion s ` A(Φ).

We see three main advantages. First, as we computed
“simultaneously” both s � φ and s ` A(Φ), we would
aggregated the super-steps of the both computations and
thus reduced to the maximal number of slices of the model.
Second, we also aggregated the computations and the com-
munications without unbalanced them; similarly, we would
have all the assertions (and more) of each slice, which
implies a better balance of the computations than the use
of the partial balances of the naive algorithm. Third, the
computation of the validity of s ` A(Φ) can be used
latter in different LTL sessions. On the other side, the pre-
computation of s ` A(Φ) may generated unnecessary works,
but, if we suppose a sufficient number of processors, this is
not a problem for scalability: the exploration is in a breadth
fashion that allows us a highest degree of parallelization.

The algorithm works as this of Fig. 2 [11]: performed
until the answer of the initial assertion is computed and
each super-step corresponds to a slice. The difficulty in this
algorithm is the management of the answers. Indeed, we
do not know, a priori, the answer of an assertion when
we computed the validity of s � φ or where it has been
send to another processor. Thus, we need to modify the
backtracking when an answer is unknown by considering a
third possibility of answers: ⊥ (and the following equation
¬⊥ = ⊥) for the case when we cannot conclude. In this
manner, the “session” is halting until a theu boolean answer
be computed — mainly in the next slice i.e. next super-
step. For the management of the sending assertions, we use

two distinct sets, one to store the assertions to continue
the exploration of the distributed proof-structure and the
second for backtracking answers. In this way, at the begin
of a super-step, we first read for answers to possibly unlock
halting sessions (store in a stack) which could now continue
their works — SCC computations. Then, the algorithm
explores the sub-parts of the proof-structures of the received
assertions. All these works are done until the initial assertion
(of the first session) has its answer. In the case of a flaw,
we rebuild the trace as for LTL checking [12].

For the sweeping of assertions we have that states and
thus assertions do not overlap between different slices. But
this does not still work since some assertions do not have
their answers (equal to ⊥) during a slice. We can thus not
sweep them into disks when changing of slice. To continue
to sweep assertions that are no longer needed (they have
their answers and are belong to a previous slice), we used
a variable CACHE which contains all the assertions — the
implicit graph for proof-structures and LTL sessions is mem-
orised by additional fields in assertions, thus there is no over-
cost of memory. At each end of treatment of a session, we
iterate on CACHE to sweep into disk unnecessary assertions
making more main memory available for the next sessions.

IV. EXPERIMENTAL RESULTS

We have implemented a prototype version in Python,
using SNAKES [9] for the Petri net part and the BSP Python
library for the BSP routines (which are close to an MPI
“alltoall”). While largely suboptimal (Python programs are
interpreted and there is no optimisation about the represen-
tation of the states in SNAKES and the implementation of
the attacker is not optimal at all), this prototype neverthe-
less allows an accurate comparison for acceleration. The
benchmarks presented below have been performed using
a cluster with 20 PCs connected through a 1 Gigabyte
Ethernet network. Each PC is equipped with a 2GHz Intel®
Pentium® dual core CPU, with 2GB of physical memory.

Our case studies involved the following four security
protocols: Needham-Schroeder, Yahalom, Otway-Rees and
Kao-Chow, all described in http://www.lsv.ens-cachan.fr/Software/
spore/. In order to evaluate our two algorithms, we have used
two formulas: the first is a LTL formula [2] for testing se-
crecy of the protocols whereas the second is CTL and is for
fairness — both are common formulas for verifying security
protocols. On several simple instances of the protocols with
counterexamples, we have observed that the sequential algo-
rithm can be faster than the parallel version when a violating
state can be found quickly: our parallel algorithm uses a
global breadth-first search while the sequential exploration is
depth-first, which usually succeeds earlier. Thus, the chosen
formulas globally hold so that the whole proof-structure is
computed so that our parallel algorithms always run faster
— and this is widely acknowledged as the hardest case.

0

5

10

15

20

25

30

35

2 4 8 16 32

Sp
ee

d-
up

Number of processors

Needham-Schroeder protocol

Linear
Secrecy (Naive)
Fairness (Naive)
Secrecy (Breadth)
Fairness (Breadth)

0

5

10

15

20

25

30

35

2 4 8 16 32

Sp
ee

d-
up

Number of processors

Otway-Rees protocol

Linear
Secrecy (Naive)
Fairness (Naive)
Secrecy (Breadth)
Fairness (Breadth)

0

5

10

15

20

25

30

35

2 4 8 16 32

Sp
ee

d-
up

Number of processors

Kao-Chow protocol

Linear
Secrecy (Naive)
Fairness (Naive)
Secrecy (Naive)
Fairness (Naive)

Figure 5. Speedup results for three of the protocols.

Naive Breath Naive Breath
0

20

40

60

80

100

120 Needham-Schroeder

Secrecy Fairness

Naive Breath Naive Breath
0

100

200

300

400

500

600

700

800 Yahalom

Secrecy Fairness

Naive Breath Naive Breath
0

1000

2000

3000

4000 Otway-Rees

Secrecy Fairness

Naive Breath Naive Breath
0

100

200

300

400

500 Kao-Chow

Secrecy

Fairness

Figure 6. Timing of the two algorithms (Naive and Breadth) and formula
(Secrecy and Fairness) for the protocols in seconds where times for the
computations are in black, communications in gray and waiting in white.

In Fig. 5, we give the speedup of the two algorithms
presented above (“Naive” and “Breadth”) for three different
protocols and for the two formulas — for the Yahalom
protocol, the computation fails due to a lack of main memory
if less that 4 nodes are used. As we might expect, the naive
algorithm less scales for both formulas. Note that for Kao-
Chow, both algorithms do not scale well: this is mainly due
to a lack of possible attacks (even if one win); the protocol
is less parallelized which implies less classes of states.

Fig. 6 shows the execution times for our two formulas
for each protocol for 32 processors. In the figure, the total
execution time is split into three parts: the computation time

(black) that essentially corresponds to the computation of
successful SCC of the proof-structures on each processor;
the global and thus collective communication time (gray)
that corresponds to assertions exchange; the waiting time,
i.e. latencies (white) that occur when processors are forced
to wait the others before to enter the communication phase
of each super-step. Notice that because of the BSP model,
these costs are obtained by considering the maximum times
among the processors within each super-step, accumulated
over the whole computation. We can see on these graphs that
the overall performance of our “Breath” algorithm is always
good compared to the naive one. As expected, the “Breath”
algorithm reduce both latencies (due to less super-steps and
a better balance) and communications — since they are
more en masse. Fairness needs more computations since it
is a more complicated formulae: the more the formulae and
the model are bigger, the more the “Breath” algorithm is
better. Finally, measuring the memory consumption of our
algorithms, we could also confirm the benefits of our sweep-
line strategy when large state spaces are computed.

V. RELATED WORKS

There are many tools dedicated to the modelling and
verification of security protocols [1]. Most of them limit
possible kinds of attacks or limit in their model language
how addresses of agents can be manipulated in ad-hoc
protocols — using arithmetic operations. Paper [13] presents
different cases study of verifying security protocols with
various standard tools. To summarise, there is currently no
tool that provides all the expected requirements. On the
contrary, our approach is based on model-checking that is
not tied to any particular application domain. Using CTL*,
we can also express many complex properties that some
dedicated tool cannot. But that also restrict our approach to
finite scenarios and bound number of agents.

The main idea of most known approaches to the dis-
tributed memory state space generation is similar to the naive
algorithm [3]. More references can be found in [14] for LTL
checking. Close to our idea, we can cite [15] which used a
partition function that enables cycles for a parallel NDFS
algorithm to be only local. The limits of the method are the
cost of this function and furthermore the number of SCCs
which is not enough to scale.

A kind of tree (hesitant) Büchi automata is used in [16]

where parallel SCC computations are perform. The automata
is hesitant is the sense that as for rules R1 and R2, it cannot
conclude and thus initiates the two possible computations.
That thus generated what they call “games” (close to our
“sessions”) and the algorithm has to manage how to store
partial results of games. A shared memory computation and
heuristics are used here to simplify this management. The
algorithm has also expensive management of invalid SCCs
which is seems not feasible for a distributed architecture.

VI. CONCLUSION AND FUTURE WORK

Designing security protocols is complex and often error
prone: various attacks are reported in the literature to proto-
cols thought to be “correct” for many years. There are now
many tools that check the security of cryptographic proto-
cols. But none is sufficient and adaptable for complicated
scenarios. The use of CTL* can help to check non trivial
property (e.g. fairness) but is computationally intensive.
Distributed computation is one of the solution to reduce this
overall time. Our solution is to use the well-structured nature
of security protocols to choose which part of the state and
formulas is really needed for the partition function and to
empty as much as possible the data-structures at each super-
step of the parallel computation. We thus a trick to precom-
puted the partial validity of logical assertions to force a more
breadth search which is clearly more coarse-grained even if
it induces more communications. Our solution also entails
automated classification of states and dynamic mapping of
classes to processors which simplifies the research of logical
flaws and improve balancing workload.

In future work we want to improve our implementation
using compilation and not Python byte-code interpretation
which is too slow for comparison with other tools as AVISPA
[17]. We also want to develop tools to automatically trans-
form standard representations of security protocols (e.g. the
one of [17]) into ABCD. To optimise the performance, using
a specific library as Divine [18] will also be considered.
Finally, in the security domain, we will consider more
complex protocols with branching and looping structures, as
well as complex data types manipulations. In particular, we
will consider protocols for secure storage distributed through
peer-to-peer communication [19] because it is currently
model using ABCD and generates large state spaces.

REFERENCES

[1] H. Comon-Lundh and V. Cortier, “How to prove security of
communication protocols? a discussion on the soundness of
formal models w.r.t. computational ones,” in STACS, 2011,
pp. 29–44.

[2] A. Armando, R. Carbone, and L. Compagna, “LTL model
checking for security protocols,” Applied Non-Classical Log-
ics, 2009.

[3] H. Garavel, R. Mateescu, and I. Smarandache, “Parallel state
space construction for model-checking,” in Workshop on
Model Checking of Software SPIN, May 2001.

[4] J. H. Reif, “Depth-first search is inherrently sequential,”
Information Processing Letters, vol. 20, no. 5, pp. 229–234,
1985.

[5] R. H. Bisseling, Parallel Scientific Computation. A structured
approach using BSP and MPI. Oxford University Press,
2004.

[6] G. Bhat, R. Cleaveland, and O. Grumberg, “Efficient on-the-
fly model checking for CTL*,” in Logic in Computer Science
(LICS). IEEE Computer Society, 1995, pp. 388–398.

[7] F. Gava, M. Guedj, and F. Pommereau, “A BSP algorithm for
the state space construction of security protocols,” in PDMC.
IEEE Computer Society, 2010, pp. 37–44.

[8] D. Dolev and A. C. Yao, “On the security of public key pro-
tocols,” IEEE Transactions on Information Theory, vol. 29,
no. 2, pp. 198–208, 1983.

[9] F. Pommereau, Algebras of coloured Petri nets. Lambert
Academic Publisher, 2010, iSBN 978-3-8433-6113-2.

[10] M. Torabi Dashti, A. Wijs, and B. Lisser, “Distributed partial
order reduction for security protocols,” ENTCS, vol. 198, pp.
93–99, 2008.

[11] M. Guedj, “Bsp algorithms for LTL & CTL* model checking
of security protocols,” Ph.D. dissertation, University of Paris-
East, 2012. [Online]. Available: \url{http://www.lacl.fr/gava/
guedj thesis.pdf}

[12] F. Gava, M. Guedj, and F. Pommereau, “A BSP algorithm for
on-the-fly checking LTL formulas on security protocols,” in
ISPDC. IEEE, 2012.

[13] N. Dalal, J. Shah, K. Hisaria, and D. Jinwala, “A comparative
analysis of tools for verification of security protocols,” Int. J.
Communications, Network and System Sciences, vol. 3, pp.
779–787, 2010.

[14] J. Barnat, “Distributed memory LTL model checking,” Ph.D.
dissertation, University of Brno, 2004.

[15] J. Barnat, L. Brim, and I. Cëerná, “Property driven dis-
tribution of nested dfs,” in Workshop on Verification and
Computational Logic (VCL), 2002, pp. 1–10.

[16] C. P. Inggs and H. Barringer, “CTL* model checking on
a shared-memory architecture,” Formal Methods in System
Design, vol. 29, no. 2, pp. 135–155, 2006.

[17] A. Armando and et al., “The AVISPA tool for the automated
validation of Internet security protocols and applications,” in
Computer Aided Verification (CAV), ser. LNCS, vol. 3576,
2005, pp. 281–285.

[18] J. Barnat, L. Brim, M. Černá, and P. Ročkai, “DiVinE: Par-
allel Distributed Model Checker,” in Parallel and Distributed
Methods in Verification (PDMC). IEEE, 2010, pp. 4–7.

[19] S. Sanjabi and F. Pommereau, “Modelling, verification, and
formal analysis of security properties in a P2P system,” in
Workshop on Collaboration and Security (COLSEC). IEEE,
2010, pp. 543–548.

